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ABSTRACT. A new route to synthesize nano-sized Ti(IV) mixed ligand complexes have been investigated by 
the reaction of titanium(IV) chloride with ammonium salts of dithiophosphate and 3(2'-hydroxyphenyl)-5-(4-
substituted phenyl) pyrazolines. The resultant complex is then treated with H2S gas to get sulfur bridged dimer of 
Ti(IV) complex, a precursor of TiS2. The morphology of the complexes was studied by employing XRD which 
shows that all the complexes are amorphous solid. Molecular weight measurements, elemental analysis in 
conjugation with spectroscopic (IR, 1H NMR, 13C NMR and 31P NMR) studies revealed the dimeric nature of the 
complexes in which pyrazoline and dithiophosphate are bidentate. Scanning electron microscopic image and XRD 
indicate that the particles are in the nano range (50 nm). Putting all the facts together, coordination number six is 
proposed for titanium with octahedral geometry. 
  
KEY WORDS: Titanium(IV), Dithiophosphate, Pyrazoline, Nano-sized, Sol-gel, Mixed ligand complexes  
 

INTRODUCTION 
 

Titanium proves to be an excellent corrosion-resistance material in many environments as it 
forms a protective oxide layer on its surface [1, 2]. The high tensile strength, light weight and 
excellent corrosion resistant make the titanium a useful alloying agent for many parts of high-
speed aircraft, motorbikes, ships and missiles [3-5]. Titanium being a biocompatible material 
found application in prosthetic devices [6, 7]. 

The Ti(IV) complexes with nitrogen, oxygen and sulfur donor ligands have received 
considerable attention due to their widespread utilization as an active precursor for making TiO2 
and TiS2 [8]. Owing to the hard acid character of titanium, the synthesis of its simple thiolates 
was not possible. Attempts have been made to reduce the acidic strength of titanium metal 
centre by attaching electron-rich ligands such as dialkyl nitrogen and cyclopentadienyl which 
then forms a stable complex with soft bases [9]. The highly sensitive nature of titanium 
complexes towards hydrolysis reduces its activity towards different applications [10]. Available 
reports showed that the addition of bulky electron-rich ligands to Ti metal centre increases the 
resistance of metal complexes towards hydrolysis [11, 12]. 

The excellent biological activity of sulfur containing transition metal complexes makes them 
interesting [13]. Several reports are available on alkylene and O,O’-dialkyl dithiophosphate 
derivatives of Ag(I), Zr(IV), Fe(II) and Cu(II) [14, 15]. Carmalt et al. [9] reported titanium 
pyridine and pyridine thiolates as a precursor for the production of titanium disulfide. Ti(IV) has 
been extensively used for the polymerization of ethylene and propylene [16, 17]. Salen-Ti(IV) 
complex has been effectively employed in the controlled polymerization of D,L-lactic acid [18]. 
Park et al. [19] designed and synthesized a new class of green colored titanium complexes with 
a dithiolate ligand for LCD and TFT panels. The first non-platinum anticancer drug exhibiting 
excellent efficacy was titanium based titanocene dichloride and budotitane [20]. Later on, 
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numbers of complexes of titanium have been reported by several researchers which can act as a 
potent cytotoxic agent to kill cancer cells through apoptosis [21-24]. 

Several reports are available on titanium complexes of thiolates, dithiolates and 
dithiocarbamates [25-29]. The limited study on mixed ligand complexes of Ti(IV) in general 
and with pyrzoline [21-24, 30] and dithiophosphate in particular [31], furthermore the wide 
range application of nanosized TiS2 [32-35] drawn our attention to develop new series of Ti(IV) 
complexes with dithiophosphate and pyrazoline ligands applying sol-gel method. The resulting 
complex may act as a precursor for nano TiS2. 
 

EXPERIMENTAL 
Materials and methods 
 
Absolutely dry conditions were maintained throughout the reaction process as titanium 
tetrachloride reacts violently with water to produce toxic and highly corrosive HCl gas. Standard 
procedures were used to distill, purify and dry the solvents [36]. Phosphorus pentasulfide (s.d. 
fine chemicals, Mumbai), titanium tetrachloride (E. Merck), O-hydroxy acetophenone (CDH), 
benzaldehydes (E. Merk), sodium hydroxide (Glaxo), hydrochloric acid (Ranbaxy), acetic acid 
(CDH), and hydrazine hydrate (Ranbaxy) were used as received without any further 
purification. Pyrazolines and ammonium salt of dialkyl/alkylene dithiophosphates were prepared 
by the literature method [37, 38]. Titanium was estimated gravimetrically by cupferron’s 
method while chlorine by Volhard’s method. Perkin Elmer (2400 Series II) CHNS/O analyzer 
was used for the elemental analysis (C, H, N and S). IR Spectra were recorded in the range of 
4000-200 cm-1 on the Varian 3100 FT-IR spectrophotometer. Proton decoupled NMR spectra 
(13C, 1H NMR) were recorded (room temperature) on JOEL AL 300 FT NMR 
spectrophotometer at an operating frequency of 300.40 MHz. Bruker Nonious Kappa CCD 
diffractometer was used for X-ray diffraction studies. The FAB mass spectra were recorded on 
JOEL SX102 mass spectrometer using Argon or Xenon (6 kV, 10 mA) as the FAB gas. 
 
Synthesis of substituted dithiophosphate ligands 
 
O,O’-Dialkyl and alkylene dithiophosphoric acids were synthesized by reacting phosphorus 
pentasulfide with the corresponding phenols or alcohols (1:4 molar ratio) and with glycols (1:2 
molar ratio) as shown in the following chemical reactions (Eq. 1-2). 
        

P2S5   +    4ROH                                 2[(OR)2P(S)S]H       +         H2S           (1)Dry Benzene, 500C

8-10 hour Stirring

 

where R = -C6H5or -CH2CH2CH3 

 

 

where G = -C(CH3)2C(CH3)2, -CH2C(C2H5)2CH2-,-CH2CH2CH(CH3),-C(CH3)2CH2CH(CH3)-,    
-CH2C(CH3)2CH2- and –CH(CH3)CH(CH3)-.  

The corresponding ammonium salts of the synthesized dithiophosphoric acids have been 
prepared by passing dry ammonia gas through their benzene solutions (Eq. 3-4). The structure of 
ammonium salt of substituted dithiophosphate ligands are shown in Figure 1. 
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Figure 1. Structure of ammonium salt of substituted dithiophosphate ligands. 
 

Synthesis of substituted pyrazoline ligands 
 

Substituted pyrazoline ligands were synthesized by reported procedure [38]. 
 

(a)  Synthesis of substituted 2'-hydroxychalcone. A hot solution of sodium hydroxide was added 
to a mixture of o-hydroxyacetophenone and substituted benzaldehyde in ethanol. The mixture 
was stirred at room temperature for 6-8 hours. The sodium salt of the chalcone was obtained as 
dark yellow thick mass. It was cooled in ice and neutralized with aqueous acetic acid (50%). 
The yellow solid separated was filtered and washed with water before drying. Crystallization 
from ethanol yielded yellow needles. 
 

(b) Synthesis of substituted pyrazoline. A mixture of substituted 2'-hydroxychalcone and 
hydrazine hydrate in ethanol was refluxed for 3-4 hours. It was allowed to cool at room 
temperature. A white crystalline solid thus obtained was separated, washed with water and 
dried. Recrystallization with ethanol afforded white crystals of pyrazoline. The structure of 
substituted pyrazoline ligand is shown in Figure 2. 
 

 
Figure 2. Structure of substituted pyrazoline. 
 

Synthesis of TiCl2(C15H12N2OX)(RO)2PS2 

 

A benzene solution of pyrazoline (1.21 g, 5.10 mmol) was added dropwise with constant stirring 
to the titanium tetrachloride (0.96 g, 5.11 mmol) suspension at room temperature. To ensure the 
completion of reaction, the reaction mixture was stirred for 2-3 hours. To the above reaction 
mixture, the solution of ammonium salt of dithiophosphate in methanol was added dropwise 
under constant stirring for 3-4 hours. The by-product (NH4Cl) was filtered off using alkoxy 
funnel. A reddish-brown solid compound was obtained (1.76 g, 88%) after removal of the 
volatiles from the filtrate under reduced pressure. The same procedure was adopted for the 
synthesis of all the compounds (2-24). 

The two-step reaction scheme is proposed for the synthesis of mixed ligand titanium 
complexes of the general formula TiCl2(C15H12N2OX)(RO)2PS2] (Eq. 5-6). 

 
Step 1:   (1:1 molar ratio) 
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Step 2:   (1:1 molar ratio) 

Synthesis of Ti2(C15H12N2OX)2[(RO)4P2S6] 
 
In the methanolic solution of [TiCl2(C15H12N2OX)(RO)2PS2], dry H2S gas was passed for 1-2 
hours which result in the formation of orange-colored precipitate (Eq. 7-8). 

 
where X = -H, -CH3, -OCH3, -Cl; R = -CH2CH2CH3, -C6H5; G = -CH2CMe2CH2, -CMe2CMe2-, 
CH2CH2CHMe-.  

RESULTS AND DISCUSSION 
 
All the synthesized compounds are non-hygroscopic orange-colored solid which are stable at 
room temperature. They are easily soluble in coordinating solvents (THF, DMSO and DMF) as 
well as in common organic solvents (benzene, chloroform and methanol). The proposed 
stoichiometries of the synthesized compounds are in good agreement with the elemental analysis 
(H, C, N, S, Cl, and Ti) data reported in Table 1. 
 
Spectral analysis of Ti2(C15H12N2OX)2[(RO)4P2S6] 
 
Infrared spectral data analysis  
 
The medium intensity band observed at 3346-3325 cm-1 could be assigned to vibrations 
corresponding to [N-H] stretching [39] while the spectral bands in the region 1624-1604 cm-1 

are due to the [C=N] stretching vibration [40]. As compared to free pyrazoline the v[C=N] 
stretching in all the synthesized compounds is observed to be shifted to the lower wavenumber. 
This suggests that the imino nitrogen of pyrazoline is coordinated to a metal centre. The 
complete absence of a signal at ~3080 cm-1 in synthesized metal complexes, which is due to 
(O-H) stretching originally present in pyrazoline ligands suggests that the oxygen is covalently 
bonded to Ti metal. This is further confirmed by the appearance of the band in the region 485-
460 cm-1 corresponding to [Ti-O] stretching vibration. The bands present in 824-899 cm-1 and 
1078-1050 cm-1 region has been assigned respectively to [P-O-(C)] [41, 42] and [(P)-O-C] 
[43, 44]. The new bands of medium intensity observed in the region 549-529 cm-1 may be 
assigned to [P-S] stretching modes [45]. 

In comparison to free ligands, the appearance of two new bands in 335-321 cm-1 and 302-
290 cm-1 region corresponds to [Ti-S] stretching vibrations. Splitting of bands into two regions 
indicates that two types of sulfur are present in the molecule, one is terminal sulfur and another 
is bridging sulfur. The appearance of bands in the region 396-380 cm-1 has been ascribed to 
vibrations corresponding to [Ti-N] stretching [46]. The IR data of synthesized complexes are 
compiled in Table 2. 
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Table 1.  Analytical data for Ti2(C15H12N2OH)2[S6P2(OCH2CH2CH3)4]. 
 

S. 
No. 

 
Compound 

Mol. Wt. 
found 

(calculated
) 

 Analysis found 
(calculated) 

 
Metal S C N H Cl 

1 
 
Ti2(C15H12N2OH)2[S6P2(OCH2CH2CH3)4] 
 

1055 

(1059.8) 

9.09 

(9.04) 

18.06 

(18.12) 

47.49 

(47.56) 

5.36 

(5.28) 

5.02 

(5.09) 
_ 

2 
 
Ti2(C15H12N2OH)2[S6P2(OC6H5)4] 
 

1195 

(1195.8) 

8.08 

(8.01) 

16.02 

(16.06) 

54.24 

(54.19) 

4.65 

(4.68) 

3.82 

(3.85) 
_ 

3 
 
Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 
 

1059 

(1055.8) 

9.03 

(9.07) 

18.16 

(18.19) 

47.69 

(47.74) 

5.27 

(5.30) 

4.72 

(4.74) 
_ 

4 
 
Ti2(C15H12N2OH)2[S6P2{OCH2C(CH3)2CH2O}2] 
 

1030 

(1027.8) 

9.28 

(9.32) 

18.62 

(18.68) 

46.63 

(46.70) 

5.39 

(5.45) 

4.52 

(4.48) 
_ 

5 
 
Ti2(C15H12N2OH)2[S6P2{OC(CH3)2C(CH3)2O}2] 
 

1055 

(1055.8) 

9.01 

(9.07) 

18.23 

(18.19) 

47.70 

(47.74) 

5.28 

(5.30) 

4.80 

(4.74) 
_ 

6 
 
Ti2(C15H12N2OH)2[S6P2{OCH2CH2CH(CH3)O}2] 

995 

(996.8) 

9.54 

(9.61) 

19.20 

(19.26) 

45.81 

(45.75) 

5.66 

(5.61) 

3.45 

(3.41) 
_ 

7 
 
Ti2(C15H12N2OCH3)2[S6P2(OCH2CH2CH3)4] 
 

1085 

(1087.8) 

8.78 

(8.81) 

17.60 

(17.65) 

48.61 

(48.54) 

5.23 

(5.15) 

3.82 

(3.86) 
_ 

8 
 
Ti2(C15H12N2OCH3)2[S6P2(OC6H5)4] 

1125 

(1223.8) 

7.80 

(7.83) 

18.74 

(18.69) 

54.85 

(54.91) 

4.52 

(4.58) 

4.02 

(4.09) 
_ 

9 
 
Ti2(C15H12N2OCH3)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 

1080 

(1083.8) 

8.80 

(8.84 

17.85 

(17.72 

48.79 

(48.72 

5.13 

(5.17 

4.92 

(4.98 
_ 

10 
 
Ti2(C15H12N2OCH3)2[S6P2{OCH2C(CH3)2CH2O}2] 

1055 

(1055.8) 

9.15 

(9.07) 

18.16 

(18.19) 

47.80 

(47.74) 

5.25 

(5.30) 

4.70 

(4.74) 
_ 

11 
 
Ti2(C15H12N2OCH3)2[S6P2{OC(CH3)2C(CH3)2O}2]  

1082 

(1083.8) 

8.80 

(8.84) 

17.68 

(17.72) 

48.78 

(48.72) 

5.23 

(5.17) 

5.02 

(4.98) 
_ 

12 
 
Ti2(C15H12N2OCH3)2[S6P2{OCH2CH2CH(CH3)O}2] 
 

1025 

(1024.8) 

9.28 

(9.34) 

18.65 

(18.74) 

46.78 

(46.84) 

5.42 

(5.46) 

4.42 

(4.49) 
_ 

13 
 
Ti2(C15H12N2O2CH3)2[S6P2(OCH2CH2CH3)4] 
 

1120 

(1119.8) 

8.48 

(8.56) 

17.10 

(17.15) 

47.21 

(47.15) 

5.07 

(5.00) 

5.12 

(5.18) 
_ 

14 
 
Ti2(C15H12N2O2CH3)2 [S6P2(OC6H5)4] 
 

1260 

(1255.8) 

7.60 

(7.63) 

15.22 

(15.29) 

53.42 

(53.51) 

4.51 

(4.46) 

3.96 

(3.98) 
_ 

15 
 
Ti2(C15H12N2O2CH3)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 

1160 

(1161.8) 

8.31 

(8.25) 

16.50 

(16.53) 

45.52 

(45.45) 

4.87 

(4.82) 

4.68 

(4.64) 
_ 

16 
 
Ti2(C15H12N2O2CH3)2 [S6P2{OCH2C(CH3)2CH2O}2] 

1045 

(1042.8) 

9.17 

(9.19) 

18.35 

(18.41) 

48.28 

(48.33) 

5.42 

(5.37) 

4.75 

(4.79) 
_ 

17 
 
Ti2(C15H12N2O2CH3)2[S6P2{OC(CH3)2C(CH3)2O}2] 

1160 

(1161.8) 

8.19 

(8.25) 

16.50 

(16.53) 

43.29 

(43.38) 

4.78 

(4.82) 

4.60 

(4.64) 
_ 

18 
 
Ti2(C15H12N2O2CH3)2[S6P2{OCH2CH2CH(CH3)O}2] 

1015 

(1011.8) 

9.36 

(9.47) 

18.91 

(18.98) 

47.40 

(47.44) 

5.50 

(5.53) 

4.50 

(4.55) 
_ 
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19 
 
Ti2(C15H12N2OCl)2[S6P2(OCH2CH2CH3)4] 

1130 

(1128.8) 

8.441 

(8.49) 

16.99 

(17.00) 

46.65 

(46.78) 

4.93 

(4.96) 

4.63 

(4.61) 

6.25 

(6.28) 

20 
 
Ti2(C15H12N2OCl)2 [S6P2(OC6H5)4] 

1265 

(1264.8) 

7.69 

(7.57) 

15.13 

(15.18) 

51.17 

(51.29) 

4.52 

(4.49) 

3.46 

(3.48) 

5.64 

(5.61) 

21 
 
Ti2(C15H12N2OCl)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 

1120 

(1124.8) 

8.47 

(8.52) 

17.17 

(17.07) 

44.90 

(44.81) 

4.91 

(4.98) 

4.23 

(4.27) 

6.29 

(6.31) 

22 
 
Ti2(C15H12N2OCl)2[S6P2{OCH2C(CH3)2CH2O}2] 
 

1095 

(1096.8) 

8.68 

(8.73) 

17.45 

(17.51) 

43.85 

(43.76) 

5.04 

(5.11) 

4.05 

(4.01) 

6.50 

(6.47) 

23 
 
Ti2(C15H12N2OCl)2[S6P2{OC(CH3)2C(CH3)2O}2] 

1125 

(1124.8) 

8.49 

(8.52 

17.15 

(17.07) 

44.69 

(44.81) 

4.93 

(4.98) 

4.24 

(4.27) 

6.29 

(6.31) 

24 
 
Ti2(C15H12N2OCl)2[S6P2{OCH2CH2CH(CH3)O}2] 

1065 

(1065.8) 

8.91 

(8.99) 

18.07 

(18.01) 

42.88 

(42.78) 

5.19 

(5.25) 

3.76 

(3.75) 

6.62 

(6.66) 

 
1H NMR spectra analysis  
 
The 1H NMR spectra of synthesized mixed ligand complexes, recorded in CDCl3 exhibit 
characteristic signals (Table 3). In the region δ 7.42-6.39 ppm, a very complex pattern may be 
assigned to the aromatic protons of ligand pyrazoline [47]. The pyrazoline ligand exhibits a 
characteristic peak at δ~11.00 ppm due to hydroxyl protons, the absence of that particular peak 
in the 1H NMR spectra of the metal complex suggests that the hydroxyl oxygen atom is bonded 
to Ti metal. A broad singlet peak observed at δ 5.37-4.86 ppm may be attributed to the N-H 
group (primarily at δ 5.40-4.90 ppm in free pyrazoline) indicating that the –NH group is not 
involved in metal complex formation [47]. The bands at 3.82-3.07 and 2.25-2.02 ppm could be 
ascribed, respectively to -CH and -CH2 groups. The band at δ 5.54-4.19 ppm for -OCH2 and at δ 
4.94-4.21 ppm for -OCH group and bands for methyl group are observed at δ 1.10-0.90 ppm. 
The complex pattern observed at δ 7.21-7.04 ppm may be due to the skeletal protons of the 
phenyl ring. The hydrogen atom calculated through the integrations ratio suggests that two of 
the dithiophosphate ligands and two pyrazoline ligands are present in synthesized mixed ligand 
complexes. 
 

31P NMR spectra analysis 
 
The synthesized compounds exhibit only one signal for the phosphorus atoms in proton-
decoupled 31P NMR spectra. The 31P NMR signals of Ti dichlorodithio-compounds are obtained 
at δ = 90.0 ppm while that of synthesized Ti mixed ligand complexes are observed at δ = 110.0- 
91.3 ppm. The downfield shifting of the signal due to dithiophosphato phosphorus atom at about 
δ15.0 ppm confirms the bidentate nature of the ligand [48]. Although two phosphorus atoms are 
there only one signal is obtained, indicates a similar environment for both the phosphorus atom 
(Table 3). 
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Table 2. IR spectral data (cm−1) for Ti2(C15H12N2OH)2[S6P2(OR)4]. 

 
 

S. No. 
[N-H] [C=N] [C-O] [(P)-O-C] [P-O-(C)] [P=S] [P-S] Ring vib [Ti-O] [Ti-S] [Ti-N] 

1 3329 1620 - 1058 842 654 546 -- 463 
335 

295Sb 
387 

2 3339 1616 - 1075 846 650 537 - 471 
327 

290Sb 
391 

3 3341 1604 - 1036 878 692 529 961 485 
330 

294Sb 
396 

4 3328 1619 - 1067 842 647 549 957 467 
325 

302Sb 
389 

5 3329 1623 - 1068 832 662 538 948 468 
327 

300Sb 
387 

6 3339 1621 - 1069 832 656 548 978 460 
321 

298Sb 
381 

7 3336 1614 - 1073 832 646 529 - 463 
326 

295Sb 
384 

8 3328 1618 - 1052 898 658 546 - 471 
321 

297Sb 
393 

9 3328 1619 - 1073 833 649 537 968 470 
325 

298Sb 
394 

10 3340 1620 - 1067 824 664 546 947 472 
329 

302Sb 
387 

11 3328 1612 - 1078 835 648 529 958 463 
328 

297Sb 
390 

 

12 3342 1617 - 1058 836 648 547 973 467 
331 

298Sb 
395 

13 3329 1621 1025 1059 892 657 533 - 466 
335 

301Sb 
383 

14 3327 1623 1022 1065 872 669 539 - 469 
322 

294Sb 
382 

15 3338 1618 1015 1076 835 650 546 940 470 
321 

301Sb 
389 

16 3325 1619 1030 1062 894 649 529 965 474 
324 

300Sb 
393 

17 3331 1623 1023 1064 898 673 537 948 468 
331 

298Sb 
391 

18 3327 1614 1017 1076 826 659 546 965 463 
329 

295Sb 
381 

19 3345 1618 - 1050 835 663 528 - 469 
321 

299Sb 
388 

20 3343 1619 - 1074 843 653 537 - 466 
326 

301Sb 
380 

21 3329 1620 - 1058 834 659 530 955 465 
322 

294Sb 
394 

22 3330 1612 - 1072 826 660 531 953 461 
324 

298Sb 
387 

23 3340 1623 - 1057 899 670 537 961 474 
329 

293Sb 
386 

24 3346 1622 - 1078 887 658 542 970 475 
320 

302Sb 
383 
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Table 3. NMR data (δppm) for Ti2(C15H12N2OH)2[S6P2(OR)4]. 
 

S. No. Compound 
Chemical shift (δ ppm) 

 1H NMR 13C NMR 31P NMR 

1 
 
Ti2(C15H12N2OH)2[S6P2(OCH2CH2CH3)4] 
 

7.65-6.80 (m, 18H,  
Ar-H) 
5.12 (m, 8H, -OCH2-) 
0.92 (t, 12H, -CH3) 
1.68 (m, 8H, -CH2) 
5.18 (s, 2H, NH) 
3.32 (t, 2H, -CH) 
2.15 (d, 4H, -CH2) 

- 106.10 

2 

 
 
 
Ti2(C15H12N2OH)2[S6P2(OC6H5)4] 
 

7.47-6.89 (m, 18H,  
Ar-H) 
7.14 (s, 20H, -C6H5) 
4.87 (s, 2H, -NH) 
3.18 (t, 4H, -CH) 
2.49 (d, 8H, -CH2) 

- 92.40 

3 

 
 
 
 
Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 
 

7.59-6.85 (m, 18H,  
Ar-H) 
2.97-2.60 (m, 22H, -CH3, 
-CH2) 
4.19 (m, 2H, -OCH) 
5.14 (s, 24H, -NH) 
3.52 (t, 2H, -CH) 
2.18 (d, 8H, -CH2) 

91.52 (-OC, dtp) 
24.64 (-CH3, dtp) 
76.93 (-OCH, dtp) 
26.46 (-CH2, dtp) 
136.82 (Ar-C) 
167.43 (C=N) 
43.05 (-CH) 
25.97 (-CH2) 

93.60 

4 

 
 
 
 
Ti2(C15H12N2OH)2[S6P2{OCH2C(CH3)2CH2O}2] 

7.64-6.83 (m, 18H,  
Ar-H) 
0.98 (s, 12H, -CH3) 
4.24 (d, 8H, -OCH2-) 
4.84 (s, 4H, NH) 
3.03 (t, 2H, -CH) 
2.25 (d, 8H, -CH2) 

21.95 (CH3, dtp) 
32.72 (q C,  dtp) 
76.02 (d, -OCH2, 
dtp) 
136.74 (Ar-C) 
27.63 (-CH2)  
42.31 (-CH) 
165.56 (C=N) 

 
 
 
 
 

91.50 

5 

 
 
 
Ti2(C15H12N2OH)2[S6P2[OC(CH3)2C(CH3)2O}2] 
 

1.02 (s, 24H, -CH3) 
7.69-6.82 (m, 18H, ArH) 
4.89 (s, 4H, -NH) 
3.15 (t, 2H, -CH) 
2.25 (d, 4H, -CH2) 

24.45 (-CH3, dtp) 
91.92 (-OC, dtp) 
27.42 (-CH2) 
136.81-123.12 
(Ar-C) 
43.08 (-CH) 
163.65 (C=N) 

104.82 

6 

 
 
 
Ti2(C15H12N2OH)2[S6P2{OCH2CH2CH(CH3)O}2] 
 

4.12-3.35 (m, 6H,  
-OCH2, OCH) 
2.65-1.09 (m, 10H, -CH3, 
CH2) 
7.68-6.42 (m, ArH) 
5.16 (s, 4H, -NH) 
3.07 (t, 2H, -CH) 
2.17 (d, 8H, -CH2) 

23.95 (-CH3, dtp) 
76.34 (-OCH,  
-OCH2, dtp) 
27.72 (-CH2) 
135.57-123.19  
(Ar-C) 
43.19 (-CH) 
162.94 (C=N) 

107.00 

7 

 
 
 
 
Ti2(C15H12N2OCH3)2[S6P2(OCH2CH2CH3)4] 
 

7.63-6.65 (m, 16H,  
Ar-H) 
1.34 (m, 8H, -CH2) 
4.25 (m, 8H, -OCH2-) 
0.96 (t, 12H, -CH3) 
5.10 (s, 2H, NH) 
3.42 (t, 2H, -CH) 
2.10 (d, 4H, -CH2) 
0.97 (s, 6H, -CH3) 

- 105.82 

8  7.61-6.87 (m, 16H,  - 92.72 
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Ti2(C15H12N2OCH3)2[S6P2(OC6H5)4] 
 

Ar-H) 
7.21 (s, 2H, -C6H5) 
5.12 (s, 2H, -NH) 
3.26 (t, 4H, -CH) 
2.17 (d, 8H –CH2) 

9 

 
 
 
 
 
Ti2(C15H12N2OCH3)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 
 

7.52-6.72 (m, 16H,  
Ar-H) 
2.56-2.09 (m, 22H, -CH3, 
CH2) 
4.94-4.58 (m, 2H, -OCH) 
5.15 (s, 4H, -NH) 
3.27 (t, 2H,-CH) 
2.12 (d, 8H, CH2) 
0.96 (s, 6H, -CH3) 

91.23 (-OC, dtp) 
25.91 (-CH3, dtp) 
76.85 (-OCH, dtp) 
24.04 (-CH2, dtp) 
136.85-129.15 
(Ar-C) 
163.83 (C=N) 
42.19 (-CH) 
24.62 (-CH2) 
13.51 (-CH3) 

110.00 

10 

 
 
 
 
Ti2(C15H12N2OCH3)2[S6P2{OCH2C(CH3)2CH2O}2] 
 

7.87-6.59 (m, 16H,  
Ar-H) 
0.97 (s, 12H, -CH3) 
4.12 (d, 8H, -OCH2-) 
5.27 (s, 4H, NH) 
3.82 (t, 2H, -CH) 
2.15 (d, 8H, -CH2) 
0.94 (s, 6H, -CH3) 

22.79 (-CH3, dtp) 
31.52 (q C,  dtp) 
75.91 (d, -OCH2, 
dtp) 
43.26 (-CH) 
165.81 (C=N) 
26.56 (-CH2) 
136.72 (Ar-C) 
13.56 (-CH3) 

91.82 

11 

 
 
 
Ti2(C15H12N2OCH3)2[S6P2{OC(CH3)2C(CH3)2O}2]  
 

1.42 (s, 24H, -CH3) 
7.52-6.78 (m, 16H, ArH) 
4.62 (s, 4H, -NH) 
3.42 (t, 2H, -CH) 
2.19 (d, 4H, -CH2) 
0.96 (s, 6H, -CH3) 
 

26.19 (-CH3, dtp) 
92.05 (OC, dtp) 
136.76-123.16 
(Ar-C) 
165.63 (C=N) 
45.62 (-CH) 
25.71 (-CH2) 
13.51 (-CH3) 

107.62 

12 

 
 
 
Ti2(C15H12N2OCH3)2[S6P2{OCH2CH2CH(CH3)O}2] 
 

4.23-3.27 (m, 6H,  
-OCH2, OCH) 
2.10-1.09 (m,14H, -CH3, 
CH2) 
7.82-6.79 (m, 16H, ArH) 
5.04 (s, 4H, -NH) 
2.82 (t, 2H, -CH) 
2.02 (d, 8H, -CH2) 

136.19-123.72  
(Ar-C) 
76.85 (-OCH, 
OCH2, dtp) 
165.76 (C=N) 
13.60 (-CH3) 
43.19 (-CH) 
24.35 (CH3, dtp) 
27.04 (-CH2) 

96.50 

13 

 
 
 
Ti2(C15H12N2O2CH3)2[S6P2(OCH2CH2CH3)4] 
 

7.42-6.78 (m, 16H,  
Ar-H) 
1.02 (t, 12H,-CH3) 
1.51 (m, 8H, -CH2) 
5.07 (m, 8H, -OCH2-) 
5.17 (s, 2H, NH) 
3.81 (t, 2H, -CH) 
2.27 (d, 4H,  -CH2) 
4.29 (s, 6H, -OCH3) 

- 105.95 

14 

 
 
 
Ti2(C15H12N2O2CH3)2 [S6P2(OC6H5)4] 

7.56-6.83 (m, 16H,  
Ar-H) 
7.19 (s, 12H, -C6H5) 
4.78 (s, 2H, -NH) 
3.12 (t, 4H, -CH) 
2.05 (d, 8H -CH2) 
4.00 (s, 6H, -CH3) 

- 
 

108.20 

15 
 
 
 

7.68-672 (m, 16H, Ar-H) 
2.32-1.97 (m, 22H, -CH3, 
CH2) 

91.89 (-OC, dtp) 
24.82 (-CH3, dtp) 
76.52 (-OCH, dtp) 

95.00 
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Ti2(C15H12N2O2CH3)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 
 

4.63-4.21 (m, 2H, -OCH) 
5.07 (s, 3H, -NH) 
3.18 (t, 2H, -CH) 
2.23 (d, 8H, -CH2) 
4.13 (s, 6H, -OCH3) 

23.29 (-CH2, dtp) 
136.76 (Ar-C) 
167.18 (C=N) 
43.17 (-CH) 
24.18 (-CH2) 
57.51 (-OCH3) 

16 

 
 
 
 
Ti2(C15H12N2O2CH3)2 [S6P2{OCH2C(CH3)2CH2O}2] 

7.54-6.75 (m, 16H,  
Ar-H) 
1.13 (s, 12H,-CH3) 
4.08 (d, 8H, -OCH2-) 
 5.37 (s, 4H, NH) 
 3.16 (t, 2H, -CH) 
 2.53 (d, 8H, -CH2) 
4.05 (s, 6H, -OCH3) 

22.83 (CH3, dtp) 
32.02 (q C,  dtp) 
75.86 (d, -OCH2, 
dtp) 
137.43 (Ar-C) 
167.54 (C=N) 
42.92 (CH) 
27.32 (CH2) 
57.29 (-OCH3) 

94.72 

17 

 
 
 
Ti2(C15H12N2O2CH3)2[S6P2{OC(CH3)2C(CH3)2O}2] 
 

1.37 (s, 24H, -CH3) 
7.63-6.81 (m, 16H, ArH) 
2.08 (d, 4H, -CH2) 
3.41 (t, 2H, -CH) 
4.19 (s, 6H, -OCH3) 
5.21 (s, 4H, -NH) 

23.17 (CH3,dtp) 
90.76 (dtp) 
42.17 (CH) 
57.45 (-OCH3) 
26.73 (CH2) 
164.68 (C=N) 
136.31-122.43  
(m, Ar-C) 

 
 
 
 

94.06 
 

18 

 
 
 
 
Ti2(C15H12N2O2CH3)2[S6P2{OCH2CH2CH(CH3)O}2] 
 

2.69-1.29 (m, 10H, -CH3, 
CH2) 
4.10-3.82 (m, 6H,  
-OCH2, OCH) 
7.65-6.70 (m, 16H, ArH) 
5.12 (s, 4H, -NH) 
3.14 (t, 2H, -CH) 
2.23 (d, 8H, -CH2) 
4.12 (s, 6H, -OCH3) 

 
22.71 (CH3, dtp) 
76.14 (-OCH, 
OCH2, dtp) 
42.76 (CH) 
162.76 (C=N) 
27.92 (CH2) 
136.75-123.18 
(Ar-C) 
57.21 (-OCH3) 

91.29 

19 

 
 
 
Ti2(C15H12N2OCl)2[S6P2(OCH2CH2CH3)4] 
 

0.94 (t, 12H, -CH3) 
7.51-6.76 (m, 16H,  
Ar-H) 
2.19 (d, 4H, -CH2) 
1.61 (m, 8H, -CH2)  5.13 
(s, 2H, NH) 
5.51 (m, 8H, -OCH2-) 
3.75 (t, 2H, -CH) 
 

- 106.20 

20 

 
 
 
Ti2(C15H12N2OCl)2 [S6P2(OC6H5)4] 
 

7.57-6.79 (m, 16H,  
Ar-H) 
7.04 (s, 20H, -C6H5) 
4.73 (s, 2H, -NH) 
3.09 (t, 4H, -CH) 
2.18 (d, 8H, -CH2) 

- 

 
 
 

101.2 
 
 

21 

 
 
 
 
Ti2(C15H12N2OCl)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 
 

7.82-6.85 (m, 16H,  
Ar-H) 
4.74-4.19 (m, 2H, -OCH) 
2.42-1.62 (m, 22H, -CH3, 
CH2) 
5.11 (s, 2H, -NH) 
3.16 (t, 2H, -CH) 
2.27 (d, 8H, CH2) 

91.83 (-OC, dtp) 
23.72 (-CH3, dtp) 
77.35 (-OCH, dtp) 
24.62 (-CH2, dtp) 
136.73 (Ar-C) 
167.48 (C=N) 
42.73 (-CH) 
27.32 (-CH2) 

93.25 
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13C NMR spectra analysis 
 

The signals observed in the proton decoupled 13C NMR spectra are in good agreement with 
reference to dithiophosphates and pyrazolines ligands. A complex pattern of signals detected in 
the region δ 136.19-123.18 ppm could be ascribed to aromatic carbon atoms. The downfield 
shifting of the imino carbon of C=N from δ 167.45-163.78 ppm to δ 143.50-142.80 ppm (free 
pyrazoline) suggests that the imino nitrogen of pyrazoline is coordinated to the metal centre. 
The peaks due to –CH2 and –CH are observed at 27.72-24.62 ppm and 45.75-43.09 ppm, 
respectively. The peaks due to –OC and –OCH group of dithiophosphates are observed at 91.23-
93.09 ppm and 75.86-77.35 ppm. The NMR (1H, 13C and 31P) data are summarized in Table 3.  
 
Table 4. FAB mass spectral data for Ti2(C15H12N2OH)2 [S6P2{OCH2CH2CH(CH3)O}2]. 

S.No. Compound m/z py 2py dtp 2dtp 
 
6 

 
Ti2(C15H12N2OH)2[S6P2{OCH2CH2CH(CH3)O}2] 

1059 882 585 375 163 

 
12 

 
Ti2(C15H12N2OCH3)2[S6P2{OCH2CH2CH(CH3)O}2] 
 

 
1085 

 
834 

 
582 

 
372 

 
161 

 
18 
 

 
Ti2(C15H12N2O2CH3)2[S6P2{OCH2CH2CH(CH3)O}2] 

 
1165 

 
897 

 
629 

 
418 

 
207 

 
24 

 
Ti2(C15H12N2OCl)2[S6P2{OCH2CH2CH(CH3)O}2] 

 
1124 

 
893 

 
582 

 
371 

 
160 

dtp = O,O’-alkylene and dialkyl dithiophosphates. Py = 3(2'-hydroxyl phenyl)-5-(4-substituted phenyl) 
pyrazolines. 
 

FAB Mass spectra analysis 
 

The FAB mass spectra of the synthesized metal complexes have been recorded to determine the 
molecular weight. The molecular ion peak confirms that the metal complexes exist in dimeric 

22 

 
 
 
Ti2(C15H12N2OCl)2[S6P2{OCH2C(CH3)2CH2O}2] 
 

7.52-6.69 (m, Ar-H) 
1.10 (s, 12H, -CH3) 
4.12 (d, 8H,-OCH2-) 
 4.79 (s, 2H, NH) 
3.29 (t, 2H,-CH) 
2.07 (d, 8H, -CH2) 

22.63 (CH3, dtp) 
36.27 (q C,  dtp) 
76.32 (d, -OCH2, 
dtp) 
135.29 (Ar-C) 
167.76 (C=N) 
42.23 (CH) 
26.22 (CH2) 

96.49 

23 

 
 
 
Ti2(C15H12N2OCl)2[S6P2{OC(CH3)2C(CH3)2O}2] 
 

1.42 (s, 24H, -CH3) 
7.85-6.63 (m, 16H, ArH) 
4.92 (s, 2H, -NH) 
3.20 (t, 2H, -CH) 
2.13 (d, 4H, -CH2) 

23.67 (CH3, dtp) 
91.92 (OC, dtp) 
137.81-123.47 
(Ar-C) 
167.23 (C=N) 
43.21 (CH) 
27.73 (CH2) 

107.70 

24 

 
 
 
Ti2(C15H12N2OCl)2[S6P2{OCH2CH2CH(CH3)O}2] 

2.27-1.19 (m, 10H, -CH3, 
CH2) 
4.09-3.82 (m, 6H, -
OCH2, OCH) 
7.54-6.72 (m, 16H, ArH) 
5.12 (s, 2H, -NH) 
3.08 (t, 2H, -CH) 
2.07 (d, 8H, -CH2) 

23.76 (CH3, dtp) 
76.38 (-OCH, 
OCH2, dtp) 
43.12 (CH) 
165.27 (C=N) 
27.35 (CH2) 
136.72-123.51 
(Ar-C) 
 

91.52 
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form. FAB mass spectra of compound numbers 6, 12, 18 and 24 with different substituted 
pyrazoline ligands in each series have been reported in Table 4. 
 
XRD   and   SEM   studies 
 

These crystalline/amorphous natures of the complexes have been examined through XRD. The 
morphology of the complexes was studied by employing XRD which shows that all the 
complexes are amorphous solid. The average diameter of the complexes has been calculated 
using “Debye Scherrer” expression (Eq. 9). 

Particle size = D = 0.9 λ / β cos θB                                                                                                                                                      (9) 

where, λ is the X-ray wavelength (1.5418Å), β is corrected band broadening (full width at half 
maxima), θB is the diffraction angle, D is the average nanocrystal domain diameter. 

The value of full width at half maximum intensity (β) and corresponding diffraction angle 
(θB) is calculated using an X-ray diffractogram. The average particle size thus obtained was 
found to be in the range of 41-62 nm, which is further confirmed by the SEM studies (Table 5). 
The SEM image and X-Ray diffractogram of 
Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] are shown in Figure 3 and Figure 4, 
respectively. 
 
Table 5.  Average diameter of particles determined by XRD and SEM. 
 
S.No. Compound 2θ Average 

particle size 
(nm)* 

Average 
particle size 

(nm)† 
 
3 

 
Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2] 

 
38.50 

 
55 

 
48 

 *Determined by XRD technique. †Determined by SEM technique. 
 

 
 
Figure 3. SEM image of Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2. 
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Figure 4. X-Ray diffractogram of Ti2(C15H12N2OH)2[S6P2{OC(CH3)2CH2CH(CH3)O}2. 
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Figure 5. Proposed structure of [Ti2(C15H12N2OX)2(RO)4P2S6]. 
  

Molecular weight measurement, elemental and spectral analysis confirms the dimeric nature 
of the synthesized metal complexes and proposes octahedral geometry (Figure 5). 
 

CONCLUSION 
 
The present study describes the new route for the synthesis of Ti(IV) mixed ligand complexes  
with dithiophosphate and substituted pyrazoline ligands.Molecular weight measurements, 
elemental analysis in conjugation with spectroscopic (IR, 1HNMR, 13C NMR and 31P NMR) 
studies reveal thedimeric nature of the complexes in which pyrazoline and dithiophosphate are 
bidentate. Scanning electron microscopic image and XRD indicate that the particles are in the 
nano range (50 nm). Coordination number six is proposed for titanium with octahedral 
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geometry.This class of compound may prove to be a useful precursor for the formation of TiS2 
by sulphide sol-gel due to reduced acidity of the metal centre. Further studies regarding sulphide 
sol-gel of these derivatives are under investigation. 
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