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ABSTRACT. Nanoparticles of CuS, TiO2 and CuS/TiO2 composites were prepared by template free 
hydrothermal method. Prepared nanoparticles were characterized by X-ray diffraction (XRD) and electron 
dispersive X-ray spectroscopy to confirm the formation of nanoparticles. Field emission scanning electron 
microscopy (FESEM) was applied to investigate the morphology and particle size of the nanoparticles which were 
measured in the range of 30–40 nm. Photocatalytic performance of CuS, TiO2 and Cus/TiO2 were measured by 
degradation of methyl orange (MO) under solar light irradiation. Coupling of n-type TiO2 (3.2 eV) with p-type 
CuS (1.9 eV) showed efficient degradation of the contaminants under the solar light irradiation. Photocatalytic 
performance of CuS/TiO2 composite improves 1.4 times than CuS for the degradation of methyl orange (MO) 
under solar light irradiation. 
  
KEY WORDS: CuS/TiO2 composites, Photocatalytic performance, Hydrothermal growth, Solar light, 
Irradiation 

 
INTRODUCTION 

 
TiO2 is widely used as a photocatalyst due low toxic, highly stable and of being low cost 
material. For the performance of photocatalytic reaction, TiO2 have to interact with the photons 
of light having energy equal or greater than the band gap of TiO2. Irradiation of each photon 
causes to excite the electron from valance band to the conduction band leaving behind the hole 
in valance band and one electron in the conduction band. For the best performance of TiO2, two 
reactions occurred simultaneously, oxidation reaction of absorbed H2O by the photogenerated 
hole and secondly reduction of oxygen molecule absorbed in the solution by photogenerated 
electron. Both oxidation and reduction reactions provide hydroxyl and superoxide radicals 
anion, respectively [1].    

These charge carriers can transfer Ti+4 to Ti+3 and O  defects. Electron-hole can recombine 
and dissipate the energy. The most effective way for photocatalyst is that charge carriers appear 
on the surface of catalyst and start redox reaction [2]. Holes at the valance band oxidize the 
absorbed water molecules and produce hydroxyl radicals which are more active. These hydroxyl 
radicals oxidize the organic species and produce mineral salts, CO2 and H2O [3]. Electron in the 
conduction band reduces the molecular oxygen absorbed in the solution to super oxide radical 
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anion (O2
) which further act with H+ to give hydroperoxyl radical (OOH). This reactive 

oxygen further interacts with the organic pollutants to oxidize the molecules and degrade the 
pollutants.         

Electron-hole pairs recombination is a main challenge for the limitation of photocatalytic 
reactions. For recombination, electron from the conduction band reverts to the valance band 
without reacting with absorbed species or reducing oxygen molecule. This recombination of 
electron-hole pairs dissipates the energy. It has been reported that reduction of Ti+4 to Ti+3 by 
excited electron takes place only for 30 ps and ninety percent of these electrons recombine 
within 10 ns [4]. Retardation for electron-hole recombination can improve the photocatalytic 
performance. Separation of electron-hole recombination can be controlled by doping of ions [5-
9], hetrojunction coupling [10-13], such as coupling with naturally p-type semiconductors and 
nanosized structures. For example, TiO2 in the form of Evonik (Degussa) P 25 has the 
combination of rutile (20%) and anatase (80%). As the potential level of rutile is more positive 
than anatase so it works as a sink for photogenerated electron and inhibits the recombination of 
electron-hole pairs, results in the improvement of photocatalytic performance of TiO2 [14].  

Titania has a band gap of 3.2 eV which is active under UV-light region. UV region is 4-5% 
of solar light [15] while 45% of solar light lies in the visible light region. Efforts have been 
made to extend the activity of TiO2 in visible light region. Following steps have been made to 
make it active under visible light region, i.e. non metal doping, metal deposition, coupled 
semiconductors, and defect induced visible light active photocatalyst. 

In order to enhance the solar efficiency and make TiO2 photocatalytic under visible light 
region, non metal doping shows great promising achievement in this regard. Nitrogen doping is 
considered to be the most promising dopant [16]. Nitrogen is considered most suitable and 
stable dopant for the substitutional position of oxygen of being comparable in size with oxygen 
and small ionization energy. 

Fluorine doping to TiO2 does not make the material photoactive under visible light but it 
reduces the Ti+4 to Ti+3 due to the charge exchange between Ti+4 and F-. This causes to increase 
the acidity of surface. Compensation of charge between Ti+4 and F- results in the separation of 
charges and increase the photocatalytic activity. Insertion of F also transforms the anatase phase 
of TiO2 to rutile phase. Titanium isopropoxide was modified by using triflouroacetic acid during 
sol-gel process by Padmanbhan [17]. The proposed material showed more photocatalytic 
activity than Evonik (P25) and also retained the anatase phase up to 900 oC.     

Carbon, phosphorous and sulfur doping to TiO2 have also reported for their photoactive 
response under visible light region [18, 19]. Doping of non metals changes the lattice sites and 
produces the trap sites within the conduction and valance band. These sites results in the 
formation of new energy levels above the valance band or below the conduction band. These 
shallow levels result in the reduction of band gap [20-22] and increase the life time of photo 
excited electrons due to the trap sites.  

Co-doping of cationic sulfur (S+6) and anionic nitrogen is reported by simple sol-gel 
technique [23] for its photoactive performance under visible light region and retained for the 
anatase phase up to 800 oC. TiO2 is modified in oxygen rich atmosphere by the decomposition 
of titania peroxide to make the material active under visible light region [24]. Increased oxygen 
causes to strengthen the Ti–O–Ti and upward shifting of VB maximum. Upward shifting of VB 
is responsible for its activity under visible light.  

Deposition of metal ions V, Cr, Co and Fe [25-28] on the surface of TiO2 increase the 
spectral response of material to visible light region and improve the photocatalytic performance. 
But the transition metals on the surface themselves provide the recombination sites for charge 
carriers which cause to increase the electron-hole recombination ratio. The transition metal 
deposition also has low stability.  

Photocatalytic performance can also be improved by introducing the defects inside the 
material [29]. These defects can be introduced by thermal treatment of TiO2 in vacuum which 
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induce oxygen vacancies and reduced Ti+4 to Ti+3 providing new energy levels inside the band 
gap of TiO2 to make it active under visible light region. Nowadays, an interesting and powerful 
tailoring of new energy levels is done by hydrogenation of TiO2 at high temperature. Annealing 
at high temperature in hydrogen atmosphere extract the oxygen atoms from the surface level and 
reduced Ti+4 to Ti+3 and make it active under visible light [30].  

Semiconductor coupling is another interesting tool. Large band gap and electron-hole 
recombination ratio are the main hindrances for the visible light response and high 
photocatalytic performance. Coupling of TiO2 with low energy band gap semiconductors and p-
type semiconductors make the material active for visible light rigion and improved 
photocatalytic performance such as ZnO/TiO2, Bi2S3/TiO2 [31] and CdS/TiO2 [32]. 

Titanium dioxide (TiO2) due to its high binding energy of 458.6 meV at room temperature 
has achieved extensive attention of researchers. Practically performance of titanium dioxide as 
photocatalyst is very low due to several factor including limited quantum efficiency, slower 
photocatalysis rate and larger band gap. TiO2 has large band gap of 3.2 eV which shows 
activation under UV light region. Only ultraviolet light with frequency shorter than 385 nm can 
be used for the activation of TiO2 photocatalyst and is a major challenge. Noble metal loading is 
one of the techniques used for visible light activation of TiO2. Noble metals such as silver, gold 
and platinum can trap electrons, thus photocatalytic properties are improved by enhancing holes 
electron separation by the development of Schottkey barrier at the interface of semiconductor- 
noble metal interface. Though noble metal loading can improve visible light activity of 
photocatalyst but high cost of these metals limit the chances for industrial use. One of the 
promising techniques is combining this large band gap semiconductor with small band gap 
semiconductors, i.e. CdSe, CdS, PbS which can enhance the absorption range toward visible 
light. But unfortunately environmental effects of Cd and Pb are uncompromisable due to 
toxicity. One of the major candidates is CuS which is cost effective and environment friendly. 

TiO2 has band gap of 3.2 eV which is too large for visible light activation while band gap of 
CuS is 1.9 eV that is too short to inhibit efficient recombination of electron-hole pairs 
immediately after their formation. Composite of CuS/TiO2 semiconductors is prepared to 
investigate the improved photocatalytic performance for visible light region. A junction is 
formed at interface between CuS p-type and TiO2 n-type. Electron-hole pair production in CuS 
causes to disturb the equilibrium of p-n junction which results in the transfer of electron to 
conduction band of TiO2 and holes to the valance band of CuS. Photocatalytic activity of 
CuS/TiO2 increases due to better electron-hole separation. CuS/TiO2 composites can serve as a 
visible light active photocatalyst because of low band gap (1.9 eV) of CuS. Photoactivity of 
TiO2 and CuS checked separately and after formation of junction. It is checked that CuS/TiO2 
composites show better visible light activity rather than TiO2 and CuS separately.  
 

EXPERIMENTAL 
 

Fabrication of CuS/TiO2 composites 
 
Fabrication of CuS, TiO2, and CuS/TiO2 composites is done by using template free 
hydrothermal method. Chemicals used for the fabrication of TiO2, CuS and their composites are 
titanium tetra isopropoxide (TTIP) Ti[OCH(CH3)2]4, Cu(NO3)2.2H2O, Na2S.9H2O, reducing 
agent KOH and deionized (DI) water. All these chemicals were purchased from Sigma Aldrich 
up to 97% pure and were used for fabrication without further purification. 
 First of all nanoparticles of TiO2 and CuS are prepared by template free hydrothermal 
method. 0.05 M solution of TTIP is prepared in deionized water and 10 mL 0.02 M solution of 
reducing agent KOH is mixed in the solution of 30 mL solution of 0.05 M TTIP which is stirred 
at 60 oC for 30 min to get homogeneous and clear solution of TTIP. After getting clear and 
homogeneous solution of TTIP, precursor is transferred to 60 mL Teflon autoclave of stainless 
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steel. Autoclave is heated at 180 oC for 24 hours in an oven. At room temperature, material is 
taken out of the autoclave and washed several times with ethanol and water to remove the 
impurities and organic contents from the synthesized material. Final washed product is dried at 
80 oC for six hours in air atmosphere to remove all other impurities and contents.     
 15 mL of 0.05 molar of Cu(NO3)2.2H2O and Na2S.9H2O solutions were prepared separately 
and then mixed drop wise during stirring. 10 mL of 0.02 M reducing agent KOH solution was 
used and mixed drop wise. After that precursor is stirred for few minutes and transferred to the 
60 mL Teflon autoclave of stainless steel which is heated at 180 oC for 24 hours to get 
nanoparticles of CuS. Obtained material was washed with ethanol and water to remove the 
impurities and organic contents. Material was dried at 80 oC for six hours in air atmosphere. 
 CuS/TiO2 composites were prepared by mixing the both final solutions before the transfer to 
Teflon autoclave of stainless steel. The solution was stirred for few minutes and transferred to 
100 mL Teflon autoclave of stainless steel which is heated at 180 oC for 24 hours. Obtained 
material was washed and annealed in air atmosphere at 80 oC for six hours.  
 
Characterization  
 
X-ray diffraction analysis with CuKα radiation (λ = 0.154 nm) was applied to characterize the 
structure of prepared nanoparticles. Field emission scanning electron microscopy (FESEM) and 
energy dispersive X-ray spectroscopy (EDS) was applied to analyze the morphology and 
composition of the prepared nanoparticles. UV-Vis-NIR spectroscopy for absorption spectrum 
was applied at room temperature to measure the band gap of the nanoparticles. 
 
Photocatalytic activity 
 
Photocatalytic performance of CuS, TiO2 and CuS/TiO2 composite was checked by preparing 
the 20 mg/L solution of methyl orange (MO). 0.05 g of catalyst was used in 20 mL solution of 
20 mg/L. Solution was kept under constant stirring in darkness for 30 min to get equilibrium 
among the solution and catalyst. After that solution was put under solar lamp and stirred 
continuously. For checking the degradation of the pollutants, samples were taken from the 
solution with the interval of 20 min. 
 

RESULTS AND DISCUSSION 
 

Crystalline nature and purity of CuS, TiO2 and CuS/TiO2 composites were characterized by 
XRD with CuKα radiation (λ = 0.154 nm). It was found that peaks of CuS were in complete 
agreement with JCPD no. 06-0464 and no impurity peaks were observed and also confirmed the 
tetragonal crystalline structure. XRD pattern also confirmed the formation of TiO2 and 
hexagonal structure of TiO2. No impurity peaks were observed in the composites of CuS/TiO2, 
all peaks were related to CuS and TiO2.    

Crystalline size of the particles was calculated by using the data of XRD peaks with the help 
of Debye-Scherrer formula: Dc = K/Cos, where K is constant and called shape factor with 
value of 0.9 for tetragonal structure, λ stands for the wavelength of X-rays which is 1.5406 Å for 
CuKα, β stands for the full wave half maximum (FWHM) of the peak and  indicates the 
Bragg’s angle. Average crystalline size calculated for our synthesized material is 32 nm for CuS 
/TiO2 composites. Figure 1 depicts the XRD pattern for CuS, TiO2 and CuS/TiO2 composite. 
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Figure 2. (a) EDS spectrum for CuS, TiO
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Band gap engineering for improved photocatalytic performance of CuS/TiO2 composites 

Bull. Chem. Soc. Ethiop. 2019, 33(3) 

 

XRD pattern for CuS, TiO2 and CuS/TiO2 composites. 

(a) EDS spectrum for CuS, TiO2 and CuS/TiO2 composites and (b) elemental 
composition data of O, Ti, Cu and S atoms. 
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Chemical decomposition of the materials 
spectroscopy (EDS). EDS spectrum indicates that synthesized material has only the peaks of Ti, 
O, Cu and S which confirms tha
is shown in the Figure 2(a) along with the composition data of Ti, O, Cu and S atoms in 
2(b). 

Morphology of the synthesized material is characterized by field emission scanning electron 
microscopy. Large surface area is required for the photocatalytic performance which is only 
possible with nanoparticle size growth. FESEM images for CuS, TiO
is shown in Figure 3. 

 

F

Figure 3. (a) FESEM images for CuS, (b) FESEM 
for CuS/TiO2 composites

All the particles are in the range of 30 nm to 40 nm size. Small size of these particles causes 
to produce large surface area to interact with photons of solar light which in return 
photocatalytic performance of synthesized material.
 Band gap is an important parameter to characterize the semiconductors to investigate their 
photoactive response under solar light irradiation. CuS is a p
gap of 1.9 eV while TiO2 is an n
large band gap semiconductor active under UV region and works as a stable photocatalyst. CuS 
is small band gap material active under visible light region but it has hig
recombination. Composites of CuS/TiO
semiconductors results in lowering the electron
1.9 eV and has different NHE potential than TiO
resultant composite by introducing new 
CuS/TiO2 composites is shown 
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Chemical decomposition of the materials was investigated by energy dispersive 
spectroscopy (EDS). EDS spectrum indicates that synthesized material has only the peaks of Ti, 
O, Cu and S which confirms that no impurity mixed in the synthesized material. EDS spectrum 
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Morphology of the synthesized material is characterized by field emission scanning electron 
icroscopy. Large surface area is required for the photocatalytic performance which is only 

possible with nanoparticle size growth. FESEM images for CuS, TiO2, and CuS/TiO2 composite 

 
(a) FESEM images for CuS, (b) FESEM images for TiO2, (c) and (d) FESEM images 

composites. 
 

All the particles are in the range of 30 nm to 40 nm size. Small size of these particles causes 
to produce large surface area to interact with photons of solar light which in return improved the 
photocatalytic performance of synthesized material.  

Band gap is an important parameter to characterize the semiconductors to investigate their 
photoactive response under solar light irradiation. CuS is a p-type semiconductor having band 

is an n-type semiconductor having band gap of 3.2 eV. Titania is a 
large band gap semiconductor active under UV region and works as a stable photocatalyst. CuS 
is small band gap material active under visible light region but it has high rate of electron
recombination. Composites of CuS/TiO2 induce a pn-junction at the interface of both 
semiconductors results in lowering the electron-hole recombination rate. As band gap of CuS is 
1.9 eV and has different NHE potential than TiO2 which cause to reduce the band gap of 
resultant composite by introducing new Fermi level inside the band gap. Schematic diagram of 

composites is shown in Figure 4. 
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Band gap plays key role for 
calculated from UV-Visible spectroscopy. UV
from 480 nm to 800 nm which shows absorbance in visible light range. For calculation of band 
gap of the composite material CuS/TiO
relation: (h)2 = B(h  Eg). 

Above relation is called Tauc relationship, α shows the absorption coefficient, E
the band gap while h stands for the photon energy of the incident light beam. Figure 
the UV-Vis spectrum in visible light range and calculated band gap of the synthesized material 
which is 1.89 eV. 

Figure 5. (a) UV-Vis spectrum under visible light and (b) band 
composite. 

Figure 6 shows the photodegradation of the methyl orange under solar light irradiation. 
Figure 6(a), 6(b) and 6(c) shows the absorption peaks of UV
samples of TiO2, CuS, and CuS/TiO
solar light irradiation while Figure 6(d) shows the comparison of the degradation of pollutants 
for CuS, TiO2 and CuS/TiO2 composites. 
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Figure 6. (a) Photodegradation of MO under solar light irr

photodegradation of MO under solar light irradiation with CuS, (c) 
of MO under solar light irradiation with CuS/TiO
photodegradation of MO under solar light irradiation with TiO

 
From Figure 6 degradation of the pollutants can be observed TiO

composite. Titania degraded the MO upto 15% in solar light irradiation, CuS degraded the MO 
up to 60% in solar light irradiation while CuS/TiO
in solar light irradiation.  

CuS is low band gap semiconductor, in which electro
When photon of light excites the electron from valance band to the conduction band, excited 
electron interacts with the absorbed oxygen molecule and reduces it to oxygen super oxide 
(O2

) which is more active and react with the organic pollutants. Hole in the valance band 
interact with water molecule to transform the hydroxyl ion. A series of ox
reactions occur due to the electron
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(a) Photodegradation of MO under solar light irradiation with TiO2

hotodegradation of MO under solar light irradiation with CuS, (c) photodegradation 
of MO under solar light irradiation with CuS/TiO2 and (d) comparison of 
photodegradation of MO under solar light irradiation with TiO2, CuS and CuS/TiO

6 degradation of the pollutants can be observed TiO2, CuS and CuS/TiO
composite. Titania degraded the MO upto 15% in solar light irradiation, CuS degraded the MO 

to 60% in solar light irradiation while CuS/TiO2 composite degraded the pollutant up to 80

CuS is low band gap semiconductor, in which electron-hole recombination rate is very high. 
When photon of light excites the electron from valance band to the conduction band, excited 
electron interacts with the absorbed oxygen molecule and reduces it to oxygen super oxide 

which is more active and react with the organic pollutants. Hole in the valance band 
interact with water molecule to transform the hydroxyl ion. A series of oxidation and reduction 
reactions occur due to the electron-hole pairs: 
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semiconductors. Depletion region at the interface is formed due to the formation of pn
which is because of p-type nature of CuS and n
interface inhibits the electron
performance. 

CuS, TiO2 and composites of CuS/TiO
Synthesized nano particles were characterized by X
radiations to confirm the crystal structure and formation of required material. Purity of the 
nanoparticles was investigated by energy dispersive spectroscopy (EDS) which confirms that no 
impurity peak exists in the material.
checked by field emission scanning electron microscopy (FESEM) which confirms the partic
size upto 30-40 nm that provides the large surface area to interact with the incident photons of 
light to improve the photocatalytic performance. UV
of semiconductor and observed the absorption in the visible lig
TiO2 with low band gap p-type CuS make the material photoactive under visible region. A 
depletion region is formed at the interface of both semiconductors which inhibits the electron
hole recombination and improved the photoc
solar light irradiation up to 80%.
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A major challenge for electron-hole pairs is the recombination without interaction with solvent 
and organic pollutants which is controlled by inducing depletion region at the interface of both 
semiconductors. Depletion region at the interface is formed due to the formation of pn-junction 

type nature of CuS and n–type nature of TiO2. Depletion region at the 
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CONCLUSION 
 

and composites of CuS/TiO2 were prepared by template free hydrothermal method. 
Synthesized nano particles were characterized by X-ray diffraction (XRD) by using CuKα 
radiations to confirm the crystal structure and formation of required material. Purity of the 

stigated by energy dispersive spectroscopy (EDS) which confirms that no 
impurity peak exists in the material. Morphology and size of the synthesized nanoparticles were 
checked by field emission scanning electron microscopy (FESEM) which confirms the partic

40 nm that provides the large surface area to interact with the incident photons of 
light to improve the photocatalytic performance. UV-Vis-spectroscopy calculated the band gap 
of semiconductor and observed the absorption in the visible light range. Composite of n

type CuS make the material photoactive under visible region. A 
depletion region is formed at the interface of both semiconductors which inhibits the electron
hole recombination and improved the photocatalytic performance of CuS/TiO2 composite under 

to 80%. 
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