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ABSTRACT. Carbofuran, a pesticide applied in farmlands, often gets washed away into water bodies due to 
heavy rainfall and renders the water toxic. In this study, Borassus aethiopum shells-based activated carbon (BAS-
AC) was prepared using CO2 and KOH as physical and chemical activating agents, respectively, which was 
employed as an adsorbent for the removal of carbofuran from an aqueous medium. The adsorbent was produced 
using the impregnation ratio of 3.28, activation temperature of 800 oC and activation time of 90 min. Textural 
properties and available functional groups in the adsorbent were determined using N2 adsorption-desorption 
isotherm and Fourier transform infrared spectroscopy, respectively. The removal efficiency was performed after 
optimizing the adsorption parameters and kinetics of the adsorption process was examined using a batch system. 
The surface area, average pore diameter and adsorption capacity of the BAS-AC were obtained as 632 m2/g, 2.97 
nm and 160 mg/g, respectively. Equilibrium adsorption isotherms were fitted better by the Langmuir model than 
the Temkin and Freundlich models. The adsorption kinetics follow the pseudo-second-order model and the 
adsorbent diffusion mechanism was further studied using the intraparticle diffusion model. 
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INTRODUCTION 

The continuous application of chemical pesticides on agricultural crops enhances the availability 
of good crops round the year. However, the excess use of these pesticides result in numerous 
environmental challenges through poisoning of water, both surface and ground, with their toxic 
effects  thus bringing numerous difficulty to the non-target beings including human and aquatic 
organisms [1]. The presence of pesticides in the environment and in reasonable quantity has 
recently become increasingly alarming since their discovery in various water sources as well as 
soil have severally been reported [2]. Carbofuran, a derivative of carbamate pesticides, also 
named 2,3-dihydro-2,2-dimethylbenzofuran-7-yl methyl carbamate, is often  used as pesticides 
on potatoes, fruits, vegetables, soybeans and rice [3]. The intense use of carbofuran for this 
process has become an environmental problem resulting from its toxic and carcinogenic 
properties [3]. Hence, it is very important to get rid of this toxic chemical from the contaminated 
water sources. The use of activated carbon (AC) by a process of adsorption is a frequent and 
effectual way of eliminating the toxic and dangerous pollutant from wastewater [4-6]. Recently, 
the use of less expensive and locally derived agricultural waste materials as AC precursor, and 
therefore, substituting the commercial AC have been reported [4, 7-13]. The commercial AC is 
known to be expensive and often difficult to regenerate [14-18]. 

In our previous work, we have demonstrated the potential of Borassus aethiopum (BAS) 
shell as an excellent source for generating AC [19]. However, there is rarely a research carried 
out for the removal of carbofuran by AC derived from the shells of BAS. Most of the reported 
studies concentrated more on the obliteration of dyes from wastewater. Therefore, the target of 
this work is to probe the effectiveness of BAS-AC in the adsorption of carbofuran from aqueous 
solution, determine the suitable isotherm and kinetic model parameters as well as adsorption 
mechanism. 
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EXPERIMENTAL 
Materials 

Potassium hydroxide (KOH) and carbofuran were ordered from Sigma-Aldrich. The chemical 
structure of carbofuran is demonstrated in Figure 1a. Deionized water was generated in-house. 
BAS shells were sourced from Chikun, Kaduna South, Kaduna State, Nigeria. 

Preparation of BAS-AC 

The BAS-AC was prepared following our previously reported methodology with slight 
modifications [19]. The modifications were done by impregnating BAS with KOH as chemical 
activating agent. The preparation was done at optimized activation temperature, time and 
impregnation ratio of 800 oC, 90 min and 3.28, respectively.  

Characterization of the BAS-AC 

The N2 adsorption-desorption isotherm performed using micromeritics ASAP 2020 was used to 
ascertain the textural properties of the developed BAS-AC. Fourier transform infrared (FT-IR) 
spectroscopy (Perkin Elmer, Model 4500 FT-IR, USA) was used to identify the functional 
groups available in the AC.  

Batch equilibrium and kinetic studies 

About 150 mL of aqueous solution of carbofuran at different initial concentration (30, 60, 100 
and 200 mg/L) were prepared in 250 mL flask. A 0.15 g of BAS-AC was added to each flask 
and the mixture was stirred for 18 h at 30 oC and 140 rpm speed. The change in carbofuran 
concentration was monitored using Helios γ UV-VIS spectrophotometer at wavelength of 615 
nm. The percentage removal of carbofuran at equilibrium (% R) was calculated using equation 
1. 

Carbofuran removal (% R) = 
�����

��
 × 100                 (1) 

where C� and C� represent the initial and equilibrium concentrations (mg/L) of carbofuran, 
respectively. The amount per unit mass of adsorbent, �� (mg/g) of carbofuran adsorbed at 
equilibrium, was calculated using the equation: 

�� =  
(�����)�

�
                         (2) 

where V (L) is the volume of the solution and W (g) is the mass of the adsorbent used, and the 
amount of carbofuran adsorbed at time t, ��  (mg/g) was calculated using equation 3: 

�� =  
(�����)�

�
                         (3)     

where �� (mg/L) represent the concentration of carbofuran at time t. The effect of initial pH (2–
12) on the adsorption of the carbofuran by BAS-AC was studied by adjusting the solution pH 
with 0.1 M HCl and 0.1 M KOH solutions. The initial concentration of carbofuran was 30 mg/L 
with BAS-AC dosage of 0.15 g at a temperature of 30 oC for 12 h. The % R was calculated 
using equation (1). 

RESULTS AND DISCUSSION 
Characterization of BAS-AC 

Porosity and surface area are among the major general properties that define a good adsorbent. 
The BET surface area, total pore volume and average pore diameter of the BAS-AC were 
obtained to be 632 m2/g, 0.39 cm3/g and 2.97 nm respectively. The obtained BAS-AC surface 
area compared very well with other adsorbents such as mesoporous activated carbon from 
coconut frond (484 m2/g) [1], rapeseed stalks activated carbon (490 m2/g), soya stalks activated 
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carbon (570 m2/g), olive kernels
(630 m2/g) [20] employed in the adsorption of other pesticides
strategy for BAS-AC was very successful. The presence of active functionality on the BAS
surface was confirmed by FT
carbofuran adsorption are shown in 

Figure 1. (a) Chemical structure of carbofuran and (b) FTIR spectra of BAS
carbofuran adsorption.

 

The possible interaction of active functional groups to enhance pesticide ions uptake was 
revealed by the shift of the peaks to 
disappearance after adsorption. Presence of O
between the broad bands of  3500
saturated C-H, while bands revealed at 1500
C≡N and C–C stretching, respectively 
1260-1050 cm-1 (iv) were assigned to C
alcohols [23].  

Effect of contact time and initial carbofuran concentration

The influence of contact time on the exclusion of carbofuran by BAS
concentrations at 30 oC is illustrated in 
start of the adsorption for all tested concentrations, then later followed by a much slower uptake 
till equilibration. The adsorption continued at a slower pace until unnoticeable adsorption was 
observed, that is the point where dynamic equilibrium exists: where the rate of adsorption onto 
the surface of the adsorbent is equivalent to the amount desorbed by the same surface. The 
dynamic equilibrium stage acts as the determinant time to examine  the degre
an adsorbent [24].  

It is observed that an increase in the pesticide initial concentrations results
adsorption capacity from 10.9 
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olive kernels activated carbon (600 m2/g) and corn cobs activated carbon 
employed in the adsorption of other pesticides, implying that our synthesis 
AC was very successful. The presence of active functionality on the BAS

surface was confirmed by FT-IR spectroscopy. The spectra of BAS-AC before and after 
carbofuran adsorption are shown in Figure 1b.  

 

 

1. (a) Chemical structure of carbofuran and (b) FTIR spectra of BAS-AC before and after 
carbofuran adsorption. 

The possible interaction of active functional groups to enhance pesticide ions uptake was 
revealed by the shift of the peaks to different bands, reduced peak intensity or their 
disappearance after adsorption. Presence of O-H or N-H functional groups, were obtained 
between the broad bands of  3500-3200 cm-1 (i) those from 3000-2800 cm-1, (ii) are assigned to 

ds revealed at 1500-1600 cm-1 and 1500-1400 cm-1 and (iii) were for 
respectively [21, 22]. In addition to this, the bands existing between 

(iv) were assigned to C–O stretching in phenols ,carboxyl acids, esters  and 

Effect of contact time and initial carbofuran concentration 

The influence of contact time on the exclusion of carbofuran by BAS-AC for four distinct initial 
C is illustrated in Figure 2a. It was characterised by a quick increase at the 

start of the adsorption for all tested concentrations, then later followed by a much slower uptake 
till equilibration. The adsorption continued at a slower pace until unnoticeable adsorption was 

d, that is the point where dynamic equilibrium exists: where the rate of adsorption onto 
the surface of the adsorbent is equivalent to the amount desorbed by the same surface. The 
dynamic equilibrium stage acts as the determinant time to examine  the degree of adsorption by 

It is observed that an increase in the pesticide initial concentrations results in sudden rise in 
 to 115 mg/g. As shown in Figure 2a, the rate of carbofuran 
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adsorption was very high in the 
attained within 8 h. By extending the contact time from 8 h to 18 h, no significant increase in the 
adsorption was noticed, rather the 
observed after 18 h contact time. It was further observed that samples of higher carbofuran 
concentrations takes longer contact time to reach equilibration. An approximate of 5 h contact 
time was used by carbofuran solutions with initial concentrations of 30 and 60 mg/L to reach 
equilibrium, and 8 h contact time for solution of higher initial concentrations. This means higher 
carbofuran concentration will experience fast adsorption phenomenon by BAS
26]. 

Figure 2. (a)Effect of contact time and initial concentration and (b)
of carbofuran (%) onto BAS

Effect of pH on carbofuran adsorption

The solution pH was varied from 2
BAS-AC. The result obtained is shown in Fig
solution pH does not cause any major difference in the carbofuran adsorbed amount which was 
attributed to the non-ionic nature of the adsorbate (pK
difficulty in dissolving carbofuran in solution because of it having low acidic or basic 
functionalities [1] confirming the interaction
non-electrostatic. 
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in the first 24 min, and then decreased gradually until equilibrium was 
attained within 8 h. By extending the contact time from 8 h to 18 h, no significant increase in the 
adsorption was noticed, rather the desorption of carbofuran molecules into the solution was 
observed after 18 h contact time. It was further observed that samples of higher carbofuran 
concentrations takes longer contact time to reach equilibration. An approximate of 5 h contact 

d by carbofuran solutions with initial concentrations of 30 and 60 mg/L to reach 
equilibrium, and 8 h contact time for solution of higher initial concentrations. This means higher 
carbofuran concentration will experience fast adsorption phenomenon by BAS-AC [1, 19

 

 

Effect of contact time and initial concentration and (b) solution pH on the removal  
of carbofuran (%) onto BAS-AC at 303 K. 

Effect of pH on carbofuran adsorption 

The solution pH was varied from 2-12 to study its effect on the carbofuran adsorption onto 
AC. The result obtained is shown in Figure 2b. As observed in  Figure 2b, increase in 

solution pH does not cause any major difference in the carbofuran adsorbed amount which was 
ionic nature of the adsorbate (pKa = 11.90) [27]. Other researchers reported 

dissolving carbofuran in solution because of it having low acidic or basic 
confirming the interaction between BAS-AC surface and carbofuran to be 

first 24 min, and then decreased gradually until equilibrium was 
attained within 8 h. By extending the contact time from 8 h to 18 h, no significant increase in the 

desorption of carbofuran molecules into the solution was 
observed after 18 h contact time. It was further observed that samples of higher carbofuran 
concentrations takes longer contact time to reach equilibration. An approximate of 5 h contact 

d by carbofuran solutions with initial concentrations of 30 and 60 mg/L to reach 
equilibrium, and 8 h contact time for solution of higher initial concentrations. This means higher 

19, 25, 
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Effect of solution temperature on carbofuran adsorption 

The influence of solution temperatures (30, 40 and 50 oC) on the carbofuran adsorption onto the 
prepared BAS-AC was investigated with other parameters kept constant. The carbofuran 
maximum adsorption capacities were affected by the solution temperatures as can be seen to be 
decreasing slightly as the solution temperature was raised from 30 to 50 oC, indicating that the 
adsorption process was exothermic in nature. The physical bonding between the adsorbent 
active sites and organic compounds (including pesticides) was justified to be weakened with an 
increase in temperature. Moreover, the interaction forces between the solvent and solute 
becomes greater which was related to the observed increase in  the solubility of carbofuran, 
hence making it more challenging for  the solute to be  adsorbed [28]. 
 

Adsorption isotherm 

Three popular isotherms of adsorption (Langmuir, Freundlich and Temkin) were applied in this 
work to analyse the equilibrium data generated. They are mathematically described as: 
[29-31]. 

��

��
 =  

�

� �∙��
�  +  

��

��
�                             (4) 

logq� = logK� +
�

�
logC�                           (5) 

q� =
��

�
In A +

��

�
InC�                           (6) 

where C� (mg/L) is the equilibrium concentration of the adsorbates, q�  stand for the adsorbates 
amount adsorbed per unit adsorbent weight while ��

� (mg/g) and �� (L/mg) are Langmuir 
constants related to maximum adsorption capacity and rate of adsorption, respectively, KF 
(mg1−n/g Ln) is the adsorption capacity when the adsorbate equilibrium concentration equal to 
1.00 mg/L [32] with n related to adsorption intensity [33]. In general, n > 1 suggests that 
adsorbate is favourably adsorbed on the adsorbent [34]. The higher the n value the stronger the 

adsorption intensity. A (L/g) and 
��

�
 = B (J/mol) are Temkin constants, which are related to heat 

of sorption and maximum binding energy, respectively [35], R is the gas constant (8.31 
J/mol/K) and T (K) is the absolute temperature. Dimensionless separation factor, RL is essential 
characteristic of the Langmuir equation defined as [36]: 

��  =  
�

��  � ��� 
                         (7) 

where �� is the highest initial solute concentration. �� values indicate whether the adsorption is 
unfavourable (��> 1), linear (��= 1), favourable (0 < ��< 1), or irreversible (��= 0). Correlation 
coefficient (R2) alone was reported not to be reliable in determining the best model for analyzing 
the experimental data, for that we integrated normalized standard deviation (∆q) so as to be 
more certain in choosing the best adsorption model. ∆q was calculated using the below equation 

∆q (%) = 100� ∑�
���� � ����

����
�

�

� ��
                     (8) 

where experiment and calculated carbofuran adsorption capacities were represented by ����  and 

����, respectively. N is the number of experiments carried out. The isotherm with lower ∆q 
value is the best to describe the equilibrium data as confirmed by the literature [37]. The values 
of R2 and ∆q (%) with respect to the studied isotherm models were summarized in Table 1. 
Based on the high R2 values as well as lower percentage ∆q values, it can be seen clearly that 
Langmuir (Figure 3a) fits the data better than both Temkin and Freundlich isotherms connoting 



430

the adsorption process to be homogeneous on specific monolayer 
Table 1, better adsorption conditions for carbofuran in aqueous solution were further signified 
based on the n values from the Freundlich plot (Fig
1 at all the examined temperatures. The values of A and B were also obtained from Temkin plot 
(Figure 3c). 

Figure 3. (a) Langmuir isotherms
carbofuran adsorption ont
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the adsorption process to be homogeneous on specific monolayer [19]. Still as observed from 
Table 1, better adsorption conditions for carbofuran in aqueous solution were further signified 
based on the n values from the Freundlich plot (Figure 3b) which were found to be greater than 
1 at all the examined temperatures. The values of A and B were also obtained from Temkin plot 

 

 

 

Langmuir isotherms, (b) Freundlich isotherms and (c) Temkin isotherms
carbofuran adsorption onto BAS-AC at different temperatures. 

Still as observed from 
Table 1, better adsorption conditions for carbofuran in aqueous solution were further signified 

were found to be greater than 
1 at all the examined temperatures. The values of A and B were also obtained from Temkin plot 

Temkin isotherms of 
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Table 1. Langmuir, Freundlich and Temkin isotherm model parameters for the adsorption of carbofuran 
onto BAS-AC at different temperatures.  

Isotherms Parameters Temperature (K) 
  30 oC 40 oC 50 oC 
Langmuir ��

� (mg/g) 160 156 152 
 K � (L/mg) 0.314 0.122 0.121 
 R2 0.9949 0.9985 0.9992 
 ∆q (%) 2.86 2.97 3.07 
 K � (mg1−n/g Ln) 3.49 3.41 3.27 
Freundlich n 1.39 1.36 1.36 
 R2 0.9903 0.9797 0.9719 
 ∆q (%) 12.3 15.9 19.4 
 A (L/g) 1.41 1.23 1.22 
Temkin B (J/mol) 34.3 33.9 32.9 
 R2 0.9883 0.9959 0.9985 
 ∆q (%) 5.87 6.32 6.02 

Table 2. Comparison of Langmuir adsorption capacities for the adsorption of carbofuran on various ACs. 

Adsorbent Temperature (oC) ��
� (mg/g) Reference 

BAS-AC 30 160 This work 
BAS-AC 40 156 This work 
BAS-AC 50 152 This work 
Coconut frond AC 30 198 [1] 
Coconut frond AC 40 193 [1] 
Coconut frond AC 50 205 [1] 
Date seed AC 30 137 [38] 
Chestnut shells 30 2.39 [39] 
Banana stalk AC 30 156 [40] 
Commercial GAC 30 96.2 [41] 

 

The ��
� values obtained at 30, 40 and 50 oC were 160, 156 and 152 mg/g, respectively, 

confirming an excellent monolayer adsorption of the carbofuran on the BAS-AC surface which 
compared very well with other adsorbents (Table 2). 

Adsorption kinetic studies 

For better understanding of the adsorption process nature, the adsorption kinetics data generated 
were fitted by the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic 
model with their respective equations expressed as: 

log(q� − q�) = logq� −
��

�.���
t                    (9) 

�

��
 =

�

����
� +

�

��
t                      (10) 

q� = k��t�.� + C                                     (11) 

where q� and q� are the amounts of carbofuran (mg/g) adsorbed at equilibrium and at time t (h), 
respectively while k� (1/h) and k� (g/mg h) are the adsorption rate constants of pseudo first and 
second-order adsorption respectively, k�� is the rate constant of the intra-particle diffusion 

equation and C gives information about the boundary layer thickness: larger value of C is 
associated with the boundary layer diffusion effect.  

Figure 4 (a-c) shows the fitting curves for the models from where the kinetic parameters 
presented in Table 3 were evaluated. The R2 values for pseudo-first-order model (Figure 4a) 
were smaller when compared with the values obtained from pseudo-second-order model (Figure 
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4b) confirming pseudo-second-order model to be the best fit for the carbofuran adsorption onto 
BAS-AC adsorbent. Additionally, the linear lines of the intraparticle plots (Figure 4c) have an 
intercept not equal to zero signifying that other rate controlling steps are involved in the process 
in addition to the intraparticle diffusion. 

 
Table 3. Kinetic parameters at different initial concentrations for adsorption of carbofuran onto BAS-AC. 
 

C�  
(mg/L) 

q� ��� 

(mg/g) 

Pseudo-first-order kinetic model Pseudo-second-order kinetic model 

  k� (1/h) q� ��� (mg/g) R2 k� (g/mg h) q� ��� (mg/g) R2 
30 28.8 0.043 9.81 0.4159 0.178 23.6 0.9996 
60 57.4 0.072 15.4 0.5179 0.073 52.4 0.9997 
100 86.0 0.116 28.0 0.7235 0.023 83.3 0.9992 
200 119 0.178 39.8 0.7776 0.014 120 0.9987 

 

The suitability of pseudo-second-order model in describing the kinetic adsorption data 
implies that the adsorption rate plays a key role more than the carbofuran concentration in 
making the adsorption sites more available in the solution [1]. This is consistent with what other 
researchers reported for the adsorption of the same adsorbate onto coconut frond as well as date 
seed AC [1, 38].  

Intraparticle diffusion study 

The pseudo-first-order and pseudo-second-order kinetic models could not ascertain the sorption 
mechanism[42] the kinetic results were further examined for the diffusion mechanism by 
utilizing the intraparticle diffusion model (equation 11). Based on the non linearity of the 
intraparticle plots over several concentrations examined as can be observed from the origin as 
well as low R2 values for intraparticle diffusion model as presented in Table 4, it can be assumed 
that several processes controls the adsorption process. k��, Ci values where inserted alongside R2 

values in Table 4. The increase in the thickness of the boundary layer as well as greater driving 
force were the reason for the improvement in k��, C2 and C3 with an upsurge in the initial 

carbofuran concentration [43]. 

Table 4. Intraparticle diffusion model parameters for the adsorption of carbofuran onto BAS-AC. 
 

C�  (mg/L) k�� (mg/g ho.5) k��  (mg/g h0.5) C2 C3 (R2)
2 (R3)

2 

30 6.52 0.0078 9.79 23.1 0.7322 0.3020 
60 14.1 0.0024 21.8 51.3 0.8106 0.0034 
100 21.2 0.0078 29.1 80.3 0.8161 0.3020 
200 29.0 0.0078 41.4 115 0.8882 0.3020 

Carbofuran adsorption thermodynamic studies 

The thermodynamic parameters studied in this work were Gibb’s free energy change (∆G), 
enthalpy change (∆H) and entropy change (∆S). They were related to each other by Van’t Hoff 
equation [44, 45] expressed as:  
 

lnK � =
∆�

�
−

∆�

��
                                      (12) 

 
where R (8.314 J/mol/K) is the universal gas constant; T (K) is the absolute temperature; 

K� =
��

��
 is the distribution coefficient; q� (mg/g) is the amount of adsorbate adsorbed on the 

sorbent per unit mass. ∆G was evaluated from the relation below: 
 
∆G =  − RT lnK�                                      (13) 
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Figure 4. (a) Pseudo first order
plots for carbofuran adsorption onto BAS

 
Table 5. Thermodynamic parameters 
 

∆H(kJ/mol) ∆S  (J/mol K)
  
-0.084 44.1
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Pseudo first order, (b) pseudo second order and (c) intraparticle diffusion kinetic 

plots for carbofuran adsorption onto BAS-AC at 303 K. 

Thermodynamic parameters for the adsorption of carbofuran onto BAS-AC.  

S  (J/mol K) ∆G (kJ/mol) 
30 oC 40 oC 50 oC

44.1 -5.51 -5.40 -5.39
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intraparticle diffusion kinetic 

C 
5.39 
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Negative and positive values were obtained for both ∆H (-0.084) and ∆S (44.1), respectively 
(Table 5) further implying that the carbofuran adsorption process was exothermic with random 
characteristics. Furthermore, the ∆G values for physical adsorption lies between −20 to 0 kJ/mol 
which is smaller than that of chemical adsorption ranged from −80 to −400 kJ/mol [46]. From 
the values obtained at both temperatures, it can be inferred that the nature of adsorption here is 
physisorption 
 

CONCLUSION 
 
The adsorption of carbofuran by AC obtained from Borassus aethiopum and activated by KOH 
was examined. Effect of different factors such as temperature, contact time, initial carbofuran 
concentration and solution pH were studied. Among the parameters studied, equilibrium 
adsorption capacity was revealed to have a linear relation with carbofuran concentration but 
indirect relation with solution pH and temperature having the maximum carbofuran adsorptive 
capacity of 160 mg/g. The equilibrium and kinetics of the carbofuran adsorption process on the 
BAS-AC were best described by Langmuir and pseudo-second-order kinetic models, 
respectively. Results from the study affirmed that BAS-AC has a high tendency to be used as an 
effective and alternative adsorbent for the adsorption of pesticides. 
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