Bull. Chem. Soc. Ethiop. **2014**, 28(3), 469-473. Printed in Ethiopia DOI: <u>http://dx.doi.org/10.4314/bcse.v28i3.16</u>

SHORT COMMUNICATION

A CONVENIENT METHOD FOR LACTONIZATION OF α-ALLYL ESTERS USING IODINE IN DIMETHYLSULPHOXIDE

Beena R. Nawghare, Sunil V. Gaikwad, Bharati V. Pawar and Pradeep D. Lokhande*

The Centre for Advanced Studies, Department of Chemistry, University of Pune, Pune 411007, India

(Received April 10, 2013; revised May 13, 2014)

ABSTRACT. A simple method for the synthesis of α - γ -disubstituted- γ -butyrolactones by cyclization of α -allyl esters using iodine in dimethylsulphoxide is reported. This method is efficient and operationally simple in comparison to methods using transition metal complexes.

KEY WORDS: γ-Butyrolactones, α-Allyl esters, Iodine, Dimethyl sulphoxide

INTRODUCTION

 γ -Butyrolactones are important building blocks in the synthesis of many natural products [1]. Saturated γ -lactones are encountered frequently in large number of natural products especially flavour components and plant growth regulators [2]. γ -Lactones are also very useful in the synthesis of nucleosides and related bioactive compounds. In particular, some aryl substituted γ -lactones have shown cancer preventive and anti-inflammatory properties [3].

Several routes to prepare γ -lactones and lactone derivatives have been reported [4]. Numerous synthetic methods [5] have been developed for the synthesis of chiral α -methylene butyrolactones, often using transition metals or their [6].

Yamazaki *et al.* reported the use of the allyl group as a protecting group for the acidic hydrogen in malonic ester [7]. Iodine is available as a crystalline solid and is easy to handle and not particularly toxic. The DMSO-I₂ reagent has been used in the oxidative cyclization of 2^{-} hydroxy chalcones to flavones [8], the oxidation of flavanones to flavones [9], isoxazolines to isoxazoles [10], and pyrazolines to pyrazoles [11]. It has also been used for the deprotection of allyl carboxylic esters [12]. Very recently we reported the selective deallylation of allyl ethers and esters using iodine in polyethylene glycol-400 [13]. Allyl ethers of phenols are selectively deprotected using iodine in dimethyl sulphoxide [14].

Initial results of the use of iodine in dimethylsulphoxide for oxidative cyclization of 2'allyloxy chalcones to flavones encouraged us to use this reagent system for the cyclization of α allyl esters. 2'-Allyloxy chalcones with iodine (20%) in dimethylsulphoxide result in attack of the allyloxy oxygen towards reactive alkene group. This results in the deallylation of 2'-allyloxy chalcones followed by cyclization to give six membered flavone rings. In α -allylphenyl acetate, the allyl group is attached to a carbon which is bonded to an aryl ring and a carbonyl group. This carbon is sufficiently acidic to give the deallylated product. To study C-deallylation, α -allyl esters were reacted with iodine (20%) in dimethylsulphoxide reagent. But under the initial conditions, it was observed that the oxygen of the ester group attacks the allyl group to form the corresponding γ -butyrolactone. We herein report the results of a study involving the reaction of α -allyl esters with I₂-DMSO to yield α - γ -disubstituted- γ -butyrolactones.

^{*}Corresponding author. E-mail: pdlokhande@chem.unipune.ernet.in

Beena R. Nawghare et al.

EXPERIMENTAL

General procedure for cyclization of α -allyl esters to α - γ -disubstituted- γ -butyrolactones (**2a**-o). To a solution of α -allyl ester **1** (1 mmol) in dimethylsulphoxide (3 mL) was added iodine (0.2 mmol). The reaction mixture was heated in an oil bath at 80-90 °C for 2 hours. After cooling, the reaction mixture was diluted with water and iodine was removed by addition of a saturated solution of sodium thiosulphate followed by a water wash. The product was extracted into ethyl acetate, washed with water, dried over anhydrous Na₂SO₄, and the solvent removed using a rotary evaporator. The product was purified by column chromatography (hexane/ethyl acetate, 9:1).

Compound **2a**. Colorless oil, ¹H NMR (300 MHz, CDCl₃) δ 1.46 (d, J = 7.5 Hz, 3H), 2.61 (m, 2H), 3.88 (t, 4.42 (t, J = 7.2 Hz, 1H), 4.6 (m, 1H), 7.18 (d, J = 7.2 Hz, 2H), 7.32 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 144.3, 134.5, 134.8, 131.2, 121.3, 77.1, 22.8; IR 1763, 1610, 1511 cm⁻¹; MS(*m*/*z*) 176 (M⁺ ion).

Compound 2c [15]. White crystals, yield 74%, m.p. 103–106 °C. IR(KBr pellet): 1764, 1611, 158 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.13 (d, J = 6.9 Hz, 2H), 7.43 (d, J = 6.9 Hz, 2H), 4.65 (m, 1H), 3.8 (t, J = 6.9 Hz, 1H), 2.61 (m, 2H), 1.46 (d, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 175.44; 147.12; 143.93; 128.65; 123.93; 75.15; 45.07; 37.21; 20.99. B: 175.16; 147.12; 143.44; 128.97; 123.79; 75.20; 47.28; 39.23; 20.71.

Compound 3c [15]. Yellow crystals, yield 56%, m.p. 130–133 °C. IR (KBr pellet): 3074, 1743, 1600, 1511, 856 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.20 (d, J = 6.9 Hz, 2H), 8.09 (d, J = 6.9 Hz, 2H), 7.78 (d, J = 1.7 Hz, 1H); 5.23 (m, J = 1.7 Hz, 1H); 1.56 (d, J = 6.9 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃): δ 170.51; 152.14; 147.86; 135.43; 129.53; 127.82; 123.73; 77.08; 18.99; calcd for C₁₁H₉NO₄: C, 60.28; H, 4.14; N 6.39; found: C, 60.28; H, 4.08; N 6.39.

RESULTS AND DISCUSSION

Earlier we reported the use of DMSO-I₂ for the synthesis of flavones from 2'-allyloxy chalcones [16] in which the allyl group is first deprotected and the resulting 2'-allyloxychalcones then oxidatively cyclized to flavones. We thought this type of cyclization would be possible in α -allyl esters using the same reagent. To test this hypothesis, α -allyl carboxylic esters (1) were reacted with iodine (20%) in dimethyl sulphoxide in order to generate the γ -butyrolactone. The reaction was complete in 3-4 hours at 80-90 °C. It was observed that the reaction resulted in cyclization to give the product α - γ -disubstituted- γ -butyrolactone (2) (Scheme 1).

Scheme 1. Cyclization of α -allyl carboxylic esters.

Bull. Chem. Soc. Ethiop. 2014, 28(3)

Short Communication

Table 1. Cyclization of α -allyl esters to α - γ -disubstituted- γ -butyrolactones by using I₂-DMSO.

Entry	Substrate	R	R ₁	Yield % 2(a-o) ^{a,b}
1	1a	C ₆ H ₅ -	C ₂ H ₅	78
2	1b	$2-NO_2-C_6H_4-$	C ₂ H ₅	71
3	1c	$4-NO_2-C_6H_4-$	C ₂ H ₅	74
4	1d	CH ₃ -	CH ₃	61
5	1e	C ₂ H ₅ -	CH ₃	63
6	lf	C ₄ H ₉ -	C ₂ H ₅	71
7	1g	C ₁₀ H ₂₁ -	CH ₃	59
8	1h	C ₆ H ₅ -	CH-(CH ₃) ₂	70
9	1i	$2-NO_2-C_6H_4-$	CH-(CH ₃) ₂	67
10	1j	2-NO ₂ -C ₆ H ₄ -	CH ₃	72
11	1k	C ₆ H ₅ COCHCOOC ₂ H ₅	C ₂ H ₅	60
12	11	4-(OCH ₃)C ₆ H ₄ COCHCOOC ₂ H ₅	C ₂ H ₅	58
13	1m	3,4-(OCH ₃) ₂ C ₆ H ₃ COCHCOOC ₂ H ₅	C ₂ H ₅	54
14	10	4-ClC ₆ H ₄ COCHCOOC ₂ H ₅	C ₂ H ₅	52

^aIsolated yields of the product. ^bProducts are characterized by spectral analysis.

There are different methods reported for allyl cyclization using iodine. In most cases, iodocyclization gives the desired product [17]. In the synthesis of flavones from 2'-hydroxychalcones, Silva and co-worker reported that traces of HI were observed [18]. In the presence of HI, our cyclization method results in generation of γ -methyl-butyrolactones. Presumably, this reaction is initiated by the HI which is formed in situ [19]. The generation of HI can be explained by the following reaction (Scheme 2).

Scheme 2. Formation of HI.

A possible mechanism for cyclization of α -allyl carboxylic esters (1) to α - γ -disubstituted- γ -butyrolactone (2) is presented below (Scheme 3).

Scheme 3. A proposed mechanism for lactonization of α -allyl carboxylic esters.

 α -Substituted- γ -methyl-butenolides are very important compounds in the synthesis of natural products. α -Phenyl- γ -methyl-butenolide has antifungal activity [20] against filamentous fungi.

Bull. Chem. Soc. Ethiop. 2014, 28(3)

Beena R. Nawghare et al.

 α -Butyl- γ -methyl-butenolide can be used as a precursor for the synthesis of blastmycinone, blastmycinolactol.

Previous studies reported the synthesis of flavones from 2'-allyloxy chalcones [16]. In this reaction, deallylation with oxidative cyclization of 2'-allyloxy chalcones gives flavones at 130 °C in 30 min. The same reaction can be accomplished at 60 °C in presence of a drop of concentrated sulphuric acid. In order to examine the effect of acid in reducing the temperature of the cyclization reaction of α -allyl carboxylic esters (1), a drop of concentrated sulfuric acid was added to the iodine in dimethylsulphoxide (Scheme 2). The reaction was completed in 3 h giving 40% yield. The plausible mechanism for the formation of α -substituted- γ -methylbutenolide from α -allyl carboxylic esters (1) is shown in Scheme 4.

Table 2. Cyclization of α -allyl esters to α -substituted- γ -methyl-butenolide by using I₂-DMSO/H⁺.

Entry	Substrate	R	R ₁	Yield % 3(a-e) ^{a,b}
1	1a	C ₆ H ₅ -	CH ₃	40
2	1b	2-NO ₂ -C ₆ H ₄ -	CH ₃	35
3	1c	4-NO ₂ -C ₆ H ₄ -	CH ₃	30
4	1d	CH ₃ -	CH ₃	15
5	1e	C ₄ H ₉ -	CH ₃	25

^aIsolated yields of the product. ^bProducts are characterized by spectral analysis.

Table 3. Effect of Quantity of iodine.

Entry	Compound	Iodine (mmol)	Yield $2a(\%)^{a,b}$
1	1a	0.10	35
2	1a	0.15	52
3	1a	0.20	78
4	1a	0.25	79

^aIsolated yields of the product. ^bProducts are characterized by spectral analysis.

Scheme 4. The plausible mechanism for the formation of α -substituted- γ -methyl-butenolide.

In conclusion, we report a method for preparing α - γ -disubstituted- γ -butyrolactones by cyclization of α -allyl esters using iodine in dimethylsulphoxide. The efficiency, ready availability, and ease of handling encourages using the reagent for lactonization of various α -allyl- esters. The DMSO-I₂ reagent in the presence of a catalytic amount of H⁺ is useful for the synthesis of α -substituted- γ -methyl-butenolides.

REFERENCES

- 1. Boukouvalas, J.; Loach, R.P. J. Org. Chem. 2008, 73, 8109.
- 2. Koch, S.S.C.; Chamberlin, A.R. J. Org. Chem. 1993, 58, 2725.
- 2a. Dabs, P.; Stussi, R.; *Helv. Chim. Acta* **1978**, 61, 990. Jambert J.D.: Rice, J.F.: Hong, J.: Hou, **7**: Yang, C.S. *Biogr*
- Lambert, J.D.; Rice, J.E.; Hong, J.; Hou, Z.; Yang, C.S. *Bioorg. Med. Chem. Lett.* 2005, 15, 873.

Bull. Chem. Soc. Ethiop. 2014, 28(3)

Short Communication

- Roberto, B.; Enrico, M.; Silvia, P. J. Org. Chem. 1999, 64, 2954 and references therein. (a) Carosi, L.; Hall, D.G. Can. J. Chem. 2009, 87, 650.
- For review papers see: Grieco, P.A. Synthesis 1975, 2, 67. 5a. Lee, E.; Lim, J.L.; Yoon, C.H.; Sung, Y.S.; Kim, Y.K. J. Am. Chem. Soc. 1997, 119, 8391.
- 6. Drewes, S.E.; Hoole, R.F.A. Synth. Commun. 1985, 15, 1067.
- 7. Yamazaki, T.; Kasatkin, A.; Kawanaka, Y.; Sato, F. J. Org. Chem. 1996, 61, 2266.
- 8. Ghiya, B.J.; Soni, P.A.; Doshi, A.G. Ind. J. Chem. 1986, 25B, 759.
- 9. Wasim, F.; Jawaid, F.; Manchanda, W.; Shaidawara, R.W. J. Chem. Res. 1984, 9, 298.
- Gaikwad, D.D.M. Synthesis of Oxygen, Nitrogen Heterocyclic Compound, M. Phil. Thesis, University of Pune, Pune, India, 2003.
- 11. Lokhande, P.D.; Waghmare, B.Y.; Sakate, S.S. Indian J. Chem. 2005, 44B, 2338.
- 12. Lokhande, P.D.; Taksande, K.N.; Sakate, S.S. Tetrahedron Lett. 2006, 47, 643.
- 13. Lokhande, P.D.; Konda, S.G.; Humne, V.T. Green Chemistry 2011, 13, 2354.
- 14. Lokhande, P.D.; Nawghare, B.R. Indian J. Chem. 2012, 51B, 328.
- 15. Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Kubanova, P.; Buchtab, V. *Bio. Med. Chem.* **2003**, 11, 2843.
- Lokhande, P.D.; Sakate, S.S.; Taksande, K.N.; Nawghare, B.R. *Tetrahedron Lett.* 2005, 46, 1573. (a) Lokhande, P.D.; Nawghare, B.R; Sakate, S.S. *J. Heterocycl. Chem.* 2011, DOI: 10.1002/jhet.1580.
- Mphahlele, M.J. *Molecules* 2009, 14, 4814. (a) Maeda, K.; Miller, R.A.; Szumigala, R.H.; Shafiee, A.; Karady, S.; Armstrong, J.D. *Tetrahedron Lett.* 2005, 46, 1545. (b) Inoue, T.; Kitagawa, O.; Ochiai, O.; Taguchi, T. *Tetrahedron: Asymmetry* 1995, 6, 691. (c) Tsuboi, S. *J. Org. Chem.* 1998, 63, 1102. (d) Liu, J.T.; Yun, L. *Tetrahedron Lett.* 2006, 47, 6075. (e) Paolucci, C.; Righi, P. *Tetrahedron Lett.* 2007, 63, 12763.
- 18. Silva, A.M.S.; Pinto, D.C.G.A.; Cavaleiro, J.A.S. Tetrahedron Lett. 1994, 35, 5899.
- Floyd, M.B.; Du, M.T.; Fabio, P.F.; Jacob, L.A.; Johnson, B.D. J. Org. Chem. 1985, 50, 5022. (a) Zoretic, P.A. J. Org. Chem. 1975, 40, 1867. (b) Schipper, E.; Cinnamon, M.; Rascher, L.; Chiang, Y.H.; Oroshnik, W. Tetrahedron Lett. 1968, 6201.
- 20. Amonkar, C.P.; Tilve, S.G.; Parameswaran, P.S. Synthesis 2005, 2314.