THE EFFECTS OF RARE EARTHS ON ACTIVITY AND SURFACE PROPERTIES OF Ru/γ-AL₂O₃ CATALYST FOR WATER GAS SHIFT REACTION

Laitao Luo^{*}, Yan Ouyang, Xun Lu and Qingbo Chen

Department of Chemistry, Nanchang University, Nanchang, Jiangxi, P.R. China, 330031

(Received July 11, 2006; revised November 13, 2006)

ABSTRACT. A series of Ru-RE/ γ -Al₂O₃ (RE = Ce, Pr, La, Sm, Tb or Gd) and Ru/ γ -Al₂O₃ catalysts were prepared by impregnation method. The influence of rare earths on the catalytic performance of Ru/ γ -Al₂O₃ catalyst for the water gas shift reaction was studied. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD), and CO chemisorption. The results show that the addition of rare earths increases the catalytic activity of Ru based catalyst. Among these cerium is the most remarkably. The addition of cerium increases the active surface area, improves the dispersion of ruthenium, and weakens the interaction between ruthenium and the support. Cerium also affects the adsorption and reduction properties of Ru/ γ -Al₂O₃ catalyst.

KEY WORDS: Rare earths, Ruthenium-based catalyst, Water gas shift reaction

INTRODUCTION

The water gas shift reaction (WGSR) is one of basic processes in the chemical fertilizer industry and the key step in H_2 production by reforming of hydrocarbons for fuel cells. The conventional iron-chromium WGSR catalysts do not work well at low steam-to-gas ratios and hence its application is restricted [1, 2]. Meanwhile the copper- and manganese-based catalysts have a good performance on activity at low steam-to-gas ratios [3, 4], but the copper catalysts are easily sintered and the manganese catalysts are not easily produced. Noble metal catalysts, relatively, possess high activity and good thermal stability [5-9]. This paper describes the synthesis and characterization of a series of Ru-based catalysts modified by rare earths (RE).

EXPERIMENTAL

Preparation of $(RE)(NO_3)_{3.}$

Calculated amounts of La₂O₃, CeO₂, Pr₂O₃, Tb₂O₃, Sm₂O₃ or Gd₂O₃ (supplied by the Institute of Rare Earths, Nanchang University, China) were added to concentrated nitric acid. Then H_2O_2 was added slowly to the hot suspension until the rare earth oxide was fully dissolved.

Preparation of the catalyst

Ru/ γ -Al₂O₃ catalyst was prepared by impregnation method. γ -Al₂O₃ powder (2 g, surface area 167 m²·g⁻¹), calcined in air at 773 K for 2 h, was impregnated by the required amount of a 0.10 M aqueous solution of RuCl₃ for 24 h. The catalyst was dried at 383 K for 2 h, and calcined at 773 K for 4 h afterward.

Ru-RE/ γ -Al₂O₃ catalysts were prepared by stepwise impregnation. Firstly, γ -Al₂O₃ powder was impregnated by the calculated amount of 0.14 M RE(NO₃)₃ solution, and the samples were

^{*}Corresponding author. E-mail: luolaitao@163.com

dried at 383 K and calcined at 773 K for 4 h. Then the RE/γ -Al₂O₃ was impregnated with 0.10 M RuCl₃ solution, dried at 383 K and calcined at 773 K.

RE-Ru/ γ -Al₂O₃ catalysts were impregnated in the reversed order. Other steps are the same as the preparation of Ru-RE/ γ -Al₂O₃ catalysts.

In all cases the Ru loading was 1.0 mol %, and the RE loading 1.4 mol %.

Measurement of catalytic activity

Measurement of catalytic activity was carried out in a flow microcatalytic reactor. Catalyst loading was 0.6 g. The samples were heated from room temperature to 673 K at a rate of 5 K·min⁻¹ and then reduced at 673 K for 2 h in a flow of H₂ (50 mL·min⁻¹). After that a gaseous mixture of steam and CO was fed to the catalyst bed. The activities of the catalysts were evaluated under the following condition: reaction temperatures 473-773 K, pressure 1.62 x 10^5 Pa, gas hourly space velocity (GHSV) 2000 h⁻¹, ratio of steam to CO 0.75:1. The reaction products were analyzed by on-line gas chromatography equipped with a thermal conductivity detector and a TDX-01 column. The activities of the catalysts were expressed by CO conversion.

Characterization

CO chemisorption is an efficient method for the determination of active surface areas, which is calculated using the following formula.

$$S = \frac{V_0 N A_m}{W_{cat} \times 22.4 \times 10^8} (m^2 g^{-1})$$

where V_0 is the total adsorption volume of CO (mL) under standard condition, A_m the effective cross section of a CO molecule (13 x 10^{-16} cm²), N the Avogadro constant, and W_{cat} the weight of catalyst (g).

X-ray diffraction (XRD) patterns of the samples were recorded with a scanning speed of 4°·min⁻¹ on a D-Max-3B diffractometer using Cu Kα radiation at 40 kV and 40 mA.

Temperature-programmed reduction (TPR) analysis of the catalyst was carried out in a conventional TPR reactor with the catalysts of 0.1 g. The samples were heated from room temperature to 673 K at a rate of 10 K·min⁻¹ in Ar (40 mL·min⁻¹) to remove adsorbed water and solvents. After being cooled down to room temperature under Ar, 10 % hydrogen in nitrogen was introduced and temperature of the reactor was increased from room temperature to 673 K at a rate of 10 K·min⁻¹. The water produced by the reduction was trapped by a 5 A molecular sieve. The rate of hydrogen consumption was measured by a TCD.

For temperature-programmed desorption, the samples of 0.1 g were reduced at 673 K for 2 h in H₂ (50 mL·min⁻¹), then heated to 873 K at a rate of 8 K·min⁻¹ in N₂ (40 mL·min⁻¹), and cooled down to the room temperature. Water (1 μ L, each time) was injected into the reactor until the catalysts adsorption be saturated. Finally the catalysts were heated from room temperature to 873 K at a rate of 8 K·min⁻¹.

The number of active atoms and the degree of dispersion were shown as in reference [10].

RESULTS AND DISCUSSION

Effects of rare earths on the activity of Ru/y-Al₂O₃ catalyst

Table 1 shows that in all case the presence of rare earths in Ru/ γ -Al₂O₃ catalyst increases activities for WGSR. The increasing extend, however, are discrepant with different rare earths in Ru-RE/ γ -Al₂O₃ catalyst. The activity was found in the following order: Ru-Ce/ γ -Al₂O₃ > Ru-Pr/ γ -Al₂O₃ > Ru-La/ γ -Al₂O₃ = Ru-Sm/ γ -Al₂O₃ > Ru-Tb/ γ -Al₂O₃ > Ru-Gd/ γ -Al₂O₃.

Catalysts	CO conversion (%)						
	473 K	523 K	573 K	623 K	673 K	723 K	773 K
Ru/γ - Al_2O_3		4.37	14.29	16.18	13.79	10.03	7.90
Ru-La/ γ -Al ₂ O ₃	2.10	8.98	18.50	26.80	26.13	24.23	20.17
Ru-Ce/γ-Al ₂ O ₃	2.31	9.34	19.79	38.10	37.70	37.40	34.31
Ru-Pr/γ- Al ₂ O ₃	2.23	9.30	19.98	37.18	36.98	35.10	31.31
Ru-Tb/y- Al ₂ O ₃	1.63	8.34	16.16	23.13	21.32	18.89	16.10
$Ru-Sm/\gamma-Al_2O_3$	2.13	9.13	18.50	26.76	26.01	25.99	20.59
$Ru-Gd/\gamma-Al_2O_3$	1.45	8.10	15.34	19.96	19.10	18.23	17.93

Table 1. Effects of rare earths on catalytic activity of Ru/y-Al2O3 catalyst.

All the activity are influenced by temperature and increased with temperature raised from 473 to 623 K, but the conversion of CO dropped slightly when the reaction temperature was over 623 K. Because the shift reaction is exothermic, lower temperatures favour high CO conversion [6]. Compared to activities of the catalysts at 623 K, activities of Ru / γ -Al₂O₃, Ru-Ce / γ -Al₂O₃ and Ru-Pr / γ -Al₂O₃ catalysts at 773 K declined to 51.2 %, 10 % and 15.8 %, respectively. Addition of rare earth also enhances the stability of Ru/ γ -Al₂O₃ catalyst and cerium achieves the best effects on both activity and stability.

The catalytic activities of the catalysts are associated with the difference of the ionization potentials between rare earths and ruthenium (Table 2). The greater the difference in ionization potential the better the activities. In the course of reduction, a part of RE^{n+} (n = 3 or 4) which migrated to the Ru surface are reduced to RE^{m+} (m < 3 or 4), 4d vacant levels of ruthenium atoms can simultaneously accept electrons [9], which causes the increase of the electronic density of ruthenium atom. The increase of the electron density promotes the dissociation of water and strengthens the interaction between water and adsorbed CO [11], both advantageous to WGSR.

Elements	Φ (eV)	$\Phi_{RE} - \Phi_{Ru}$ (eV)
Ru	7.37	0.00
La	5.58	-1.79
Ce	5.47	-1.90
Pr	5.42	-1.95
Tb	5.85	-1.52
Sm	5.63	-1.74
Gd	6.14	-1.23

Table 2. The ionization potential (Φ) of RE and Ru.

Effects of impregnation order and cerium contents on catalytic activity

The activity of the ruthenium catalysts is also related to the metal dispersion and interaction between metal and support. Figure 1 shows that the activity of Ru-Ce/ γ -Al₂O₃ is higher than that of Ce-Ru/ γ -Al₂O₃. For RuO₂-CeO₂/ γ -Al₂O₃ catalysts, γ -Al₂O₃ was firstly impregnated with CeO₂. It weakens the interaction of ruthenium and γ -Al₂O₃, probably promotes dispersion of Ru particles and restrains the aggregation of Ru particles at high calcination temperatures [7]. Table 3 indicates that the addition of CeO₂ increases the number of active Ru atoms from 2.44 x 10¹⁹ to 3.48 x 10¹⁹ per g of catalyst, and the dispersion of Ru particles from 41 % to 58 %, as well. In Ce-Ru/ γ -Al₂O₃ catalysts, cerium may displace ruthenium from active sites.

Figure 1. Effects of impregnation order on activities of the catalysts.

Table 3. The surface performance of Ru/\gamma-Al₂O₃ and Ru-Ce/γ-Al₂O₃ catalysts.

Catalysts	Active surface area $(m^2 g^{-1})$	Active atom number*	Dispersion degree (%)
Ru/γ-Al ₂ O ₃	2.18	2.44×10^{19}	41.0
Ru-Ce/γ-Al ₂ O ₃	3.10	3.48×10^{19}	58.5
Ce-Ru/γ-Al ₂ O ₃	3.01	3.37×10^{19}	56.6

*From CO adsorption.

Figure 2 presents the effects of cerium content on the activities of Ru-Ce/ γ -Al₂O catalysts. Addition of cerium increases the catalytic activity and the effect is maximum at 1.4 mol %. Under the condition of higher loadings, crystalline particles of cerium oxide occupy active sites and reduce the surface area (Table 4).

The XRD diffraction peaks of RuO₂ and CeO₂ was not observed in Ru/ γ -Al₂O₃ and Ru-Ce/ γ -Al₂O₃ catalysts (Figure 3.), which indicates that RuO₂ and CeO₂ are highly dispersed on the γ -Al₂O₃ carrier [12].

Figure 3. The XRD patterns of catalysts a: Ru/γ -Al₂O₃ b: Ru-Ce/ γ -Al₂O₃.

Cerium contents (mol %)	Active surface area (m ² g ⁻¹)	Active atom number	Dispersion degree (%)
0	2.18	2.44×10^{19}	41.0
0.7	2.40	2.70×10^{19}	45.3
1.4	3.10	3.48×10^{19}	58.5
2.1	2.85	3.21×10^{19}	53.7
2.8	2.73	3.08×10^{19}	51.8
3.5	2.54	2.90×10^{19}	48.3

Table 4. Effects of cerium contents on the performance of Ru-Ce/γ-Al₂O₃ catalysts.

Effects of cerium on surface properties of Ru/γ - Al_2O_3 catalyst

The TPR profiles of Ru/ γ -Al₂O₃ and Ru-Ce/ γ -Al₂O₃ catalysts are shown in Figure 4. The TPR curves of Ru/ γ -Al₂O₃ catalyst shows one peak at 587 K whereas the reduction of bulk RuO₂ displays only one peak at about 490 K [13]. H₂-consuming peaks at about 753 K and 913 K can be related to the reduction of surface and lattice oxygen of CeO₂, respectively. [14]. The peaks at 510 and 602 K in the TPR curve of the Ru-Ce/ γ -Al₂O₃ catalyst can be attributed to reduction of RuO₂ and CeO₂. Reduction of RuO₂ in Ru-Ce/ γ -Al₂O₃ occurs at lower temperature than that in Ru/ γ -Al₂O₃, showing that the addition of CeO₂ decreases the interaction between the ruthenium and the γ -Al₂O₃ support. The presence of ruthenium also promotes the reduction of CeO₂, therefore the peaks of CeO₂ are shifted to lower temperature.

The desorptions of dissociative, coordinated, hydrogen-bonded and physically adsorbed water are given in previous work as at > 573 K, 473-573 K, 373-473 K and 373 K, respectively [15]. Figure 5 shows that there are four forms of dissociative, coordinated and hydrogen-bonded desorption on the Ru/ γ -Al₂O₃ and Ru-Ce/ γ -Al₂O₃ catalysts. Because the samples were dried at 383 K before the TPD experiments, so that physical desorption can be excluded. The addition of cerium causes the temperature of the H₂O desorption peak shift to higher temperature. The higher the temperature of H₂O desorption is, the stronger the Ru–OH₂ bond at the surface of the catalysts and the greater the dissociation of H₂O become. The shift reaction needs the dissociative of adsorption H₂O to break OH–H and O–H bonds. Therefore the increase of the adsorbing intensity of H₂O is associated with greater catalytic activity.

Figure 4. The TPR profiles of Ru/γ -Al₂O₃ and Ru-Ce/ γ -Al₂O₃ catalysts, a: Ru/γ -Al₂O₃ and b: Ru-Ce/ γ -Al₂O₃.

Figure 5. The TPD profiles of Ru/γ -Al₂O₃ and Ru-Ce/ γ -Al₂O₃ catalysts, a: Ru/γ -Al₂O₃ and b: Ru-Ce/ γ - Al₂O₃.

CONCLUSIONS

This study showed that the catalytic activity of a Ru/ γ -Al₂O₃ catalyst can be improved by the addition of rare earths (Ce, Pr, La, Sm, Tb or Gd) and of which modification effect of cerium is the best. The addition of cerium increases the active surface area and the dispersion of ruthenium, and impairs the interaction between ruthenium and the support. Cerium also has effect on the adsorption and reduction properties of Ru/ γ -Al₂O₃ catalyst. Consequently it can be understood that cerium acts as both electronical and morphological promoter.

REFERENCES

- Kappen, P.; Grunwaldt, J.D.; Hammershøi, B.S.; Tröger, L.; Clausen, B.S. J. <u>Catal.</u> 2001, 198, 56.
- 2. Costa, J.L.R., Marchetti, G.S.; Rangel, M.C. Catal. Today 2002, 77, 205.
- 3. Tanaka, Y.; Utaka, T.; Kikuchi, R.; Takeguchi, T.; Sasaki, K; Eguchi, K. J. Catal. 2003, 215, 271.

- 4. Marban, G.B.; Fuertes, A. Appl. Catal. B. 2005, 57, 43.
- Utaka, T.; Okanishi, T.; Takeguchi, T.; Kikuchi R.; Eguchi, K. Appl. <u>Catal. A. 2003</u>, 245, 343.
- 6. Zerva, C.; Philippopoulos, C.J. Appl. Catal. B. 2006, 67, 105.
- 7. Yang, S.X.; Feng, Y.J.; Wan, J.F.; Zhu, W.P.; Jiang, Z.P. Appl. Surf. Sci. 2005, 246, 222.
- Luukkanen, S.; Homanen, P.; Haukka, M.; Pakkanen, T.A.; Deronzier, A. <u>Appl. Catal. A</u> 1999, 185, 157.
- 9 Hua, N.P.; Wang, H.T.; Du, Y.K.; Shen, M.; Yang, P. Catal. Commun. 2005, 6, 491.
- 10. Gaspar, A.B.; Dieguez, L.C. Appl. Catal. A. 2000, 201, 241.
- 11. Jakdetchai, O.; Nakajima, T. J. Mol. Struc. (Theochem) 2002, 619, 51.
- 12. Luo, L.T.; Guo, J.J.; Gu, Zh.H. Chin. Environ. Chem. 2004, 23, 366.
- Betancourt, P.; Rives, A.; Hubaut, R.; Scott, C.E.; Goldwasser J. <u>Appl. Catal. A. 1998</u>, 170, 307.
- 14. Wang, J.A.; Chen, L.F.; Li, Ch.L. J. Mol. Catal. A 1999, 139, 315.
- 15. Luo, L.T.; Li, K.; Li, F.Y. Chin. Rare Earths 1997, 18, 45.