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ABSTRACT 

 

Maize, a staple food in most African countries, is prone to contamination by aflatoxins, 

toxic secondary metabolites mainly produced by Aspergillus flavus and A. parasiticus. 

Aflatoxins are known to cause liver cancer, and chronic exposure has been linked to other 

adverse health outcomes including growth faltering in children. To mitigate exposure in 

maize-dependent populations, there is need to identify the factors associated with 

aflatoxin contamination. This is difficult, however, because of high sampling cost and 

lack of affordable and accurate analytical methods. Publicly available, remotely-sensed 

data on vegetation, precipitation, and soil properties could be useful in predicting 

locations at risk for aflatoxin contamination in maize. This study investigates the utility 

of publicly available remotely-sensed data on rainfall, vegetation cover (indicated by 

normalized difference vegetation index or NDVI), and soil characteristics as potential 

predictors of aflatoxin contamination in Kenyan maize. Aflatoxin was analyzed in maize 

samples (n=2466) that were collected in 2009 and 2010 at 243 local hammer mills in 

eastern and western Kenya. Overall, 60% of maize samples had detectable aflatoxin. 

Global positioning system coordinates of each mill location were linked to remotely-

sensed, spatially explicit indicators of average monthly NDVI, total monthly rainfall, and 

soil properties. Higher rainfall and vegetation cover during the maize pre-flowering 

period were significantly associated with higher prevalence of aflatoxin contamination. 

Conversely, higher rainfall and vegetation cover during the maize flowering and post-

flowering periods (not including harvest) were associated with lower prevalence of 

aflatoxin contamination. Water stress throughout the growing season may cause 

increased plant susceptibility to fungal colonization and aflatoxin accumulation. Soil 

organic carbon content, pH, total exchangeable bases, salinity, texture, and soil type were 

significantly associated with aflatoxin. In conclusion, this study shows that remotely-

sensed data can be regressed on available aflatoxin data highlighting important potential 

predictors that could reduce the cost of data collection and the cost of aflatoxin risk 

forecasting models. 

 

Key words: Aflatoxin, GIS, NDVI, soil characteristics, rainfall, mycotoxins, East 

Africa, Kenya   
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INTRODUCTION 

 

It is estimated that approximately 4.5 billion people, predominantly those living in 

developing countries, are at risk of being exposed to dietary aflatoxins, with many 

chronically exposed at high levels [1]. Aflatoxins B1 (AFB1), B2, G1 and G2 are toxic 

secondary metabolites mainly produced by Aspergillus flavus and A. parasiticus, and are 

common contaminants of staple foods such as maize and groundnuts [2]. Aflatoxins have 

been most widely studied as causative in the etiology of liver cancer [2]. Chronic 

exposure has been linked to other adverse health outcomes, including growth faltering in 

children and immunomodulation, and acute exposure through ingestion of highly 

contaminated food can cause death [2–5]. Aflatoxin contamination is particularly 

concerning in developing countries, such as Kenya, where mycotoxins are not effectively 

controlled in the food system and consumption of high-risk foods, such as maize, is high. 

In Kenya, 477 cases of acute aflatoxicosis were reported between 2004 and 2011, 40% 

of which were fatal [6, 7]. 

 

To deliver effective reduction in human aflatoxin exposure, there is need to identify the 

geographical locations at high long-term and seasonal risk. Since aflatoxin accumulation 

in food is highly dependent on environmental factors such as moisture, temperature, 

nitrogen availability, and plant density [8], it may be possible to identify locations at risk 

through models that predict aflatoxin contamination based on these variables. These 

factors may change drastically from year to year. Aflatoxin accumulation predictive 

models which are based on laboratory experiments and field trials have been used in 

identifying the conditions for biosynthesis of the toxin [9, 10], but because of multiple 

environmental factors, such models may not be useful in natural field conditions. There 

is need to utilize field data from non-experimental sources in establishing aflatoxin 

predictive models. Publicly available, remotely-sensed, spatially-explicit indicators of 

vegetation, precipitation, and soil properties could be used in establishment of aflatoxin 

risk prediction models to facilitate surveillance and timely interventions. 

 

The extent of aflatoxin accumulation varies both spatially and temporally, depending on 

biotic and abiotic factors that affect interactions between the maize host and the 

aflatoxigenic fungi. Differential resistance to fungal infection and aflatoxin 

contamination in maize can be attributed to genetic components associated with 

resistance per se and with resistance-associated traits (for example, kernel characteristics, 

stress tolerance, pest resistance), but these genetic resistances are highly influenced by 

the environment [11–16]. Aflatoxigenic fungi populations are present in soils worldwide 

and their strain composition and aflatoxigenicity are also highly sensitive to 

environmental conditions [17, 18]. Drying and threshing practices can also influence the 

further growth of existing fungal colonists, as well as exposing grain to new sources of 

inoculum [19]. Improper grain storage has been associated with aflatoxin contamination 

in maize grain [7, 20, 21]. 

 

Water and nutrient availability greatly affect the maize-fungi pathosystem. Drought 

stress, especially during the flowering and early grain-filling stages, has been associated 

with increased aflatoxigenic fungal infection and aflatoxin accumulation in maize [22–

25]. After physiological grain maturity, excess moisture in the field and in storage can 
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also lead to increased fungal colonization and aflatoxin production [26]. Sub-optimal 

nitrogen availability and high planting density have been associated with aflatoxin 

contamination [27–29]. Soil properties can affect water retention and nutrient 

availability, thereby influencing plant health and susceptibility to fungal colonization and 

aflatoxin production [27–29].  

 

Previous research describing spatial variability of aflatoxin levels in Kenyan maize used 

agroecological zone (AEZ) as an explanatory factor associated with variability in 

aflatoxin levels [7]. Agroecological zone provides only a coarse classification based on 

broad, aggregated features such as climate patterns and soil quality; the authors 

hypothesized that finer analysis of potential drivers of aflatoxin accumulation could be 

of greater utility in identifying risk zones. Here the authors used publicly available 

metrics from geographic information systems (GIS) that contribute to AEZ classification 

to further dissect spatial and temporal variability in aflatoxin contamination of Kenyan 

maize, specifically normalized difference vegetation index (NDVI), rainfall, and soil 

characteristics. In addition to being efficiently measured via remote sensing, NDVI is an 

accurate predictor of vegetative cover [30] and has been suggested to be an indicator of 

plant stress, although it may be less accurate at the canopy level [31, 32]. Rainfall and 

soil quality are known determinants of crop vigor and fungal growth [23, 33]; this study 

used rainfall estimates as indicators of environmentally-driven water availability and soil 

properties to characterize soil quality.  

 

METHODS 

 

Field sampling data  

The aflatoxin data that were used in this analysis were from maize samples (n=2466) 

collected in 2009 in eastern Kenya and in 2010 in western Kenya at local hammer mills 

(n=243) (locally called posho mills). Posho mills are the last point before human 

consumption in the value chain, and are a reasonable proxy for human exposure because 

maize is milled shortly before consumption [7]. Methods for sample collection and initial 

results were published previously [7, 34]. Briefly, sample sites and hubs were identified 

based on a GIS overlay of administrative locations and AEZ data. Approximately 30-45 

maize flour samples were collected from patrons of local hammer mills, and 

quantification of aflatoxin was conducted at the Biosciences eastern and central Africa 

(BecA) laboratory in Nairobi using enzyme-linked immunosorbent assay (ELISA, Helica 

Biosystems Inc., Santa Ana, CA ). The ELISA kit used has 1-20 ppb quantification limits, 

and samples with aflatoxin concentration above 20 ppb in the first assay were diluted and 

retested. Analysis was limited to maize that was reported to be self-grown from nearby 

the mill. Values of aflatoxin greater than 1 ppb were considered detectable in analyses.  

 

Retrieval and synthesis of remotely-sensed data 

Global positioning system coordinates of each posho mill location were linked to 

remotely-sensed, spatially-explicit indicators of vegetation, precipitation, and soil 

properties. 

 

Normalized Difference Vegetation Index (NDVI) is a measure of the density of 

chlorophyll contained in vegetative cover and is defined as (NIR-RED)/ (NIR+RED), 
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where NIR is the near-infrared reflectance and RED is the visible-red reflectance. 

Normalized Difference Vegetation Index data for Kenya in 2009 (eastern Kenya) and 

2010 (western Kenya) were obtained from the Famine Early Warning System Net Africa 

data portal (FEWS NET, http://earlywarning.usgs.gov/fews/africa/index.php) as raster 

files containing five-day average NDVI at 250 m2 resolution (six files per month). 

Rainfall estimates for 2009 (eastern Kenya) and 2010 (western Kenya) were also 

downloaded from FEWS NET, as raster files containing 10-day total rainfall at 8 km2 

resolution (three files per month). Rainfall rasters were re-projected into the 

longitude/latitude coordinates system for further analysis. Responses were extracted as 

the average values for a 5-km buffer around each individual mill location, a distance 

determined to be representative of the geographic dispersion of the customer base of each 

mill [7]. Individual NDVI values were aggregated as monthly averages and rainfall 

values aggregated as monthly rainfall totals. Monthly values were further aggregated into 

values for periods of agronomic interest (pre-flowering, flowering, post-flowering, 

flower + post-flowering, and the total growing season) according to the location specific 

timing reported by in each study location (Supplemental Table S1). Geographic 

information systems data were extracted from the raster files using the raster package in 

R (v. 2.0-12 in R. v. 2.15.1, http://www.r-project.org/). Aggregation of variables was 

performed with an R script. 

 

Soil data were obtained from the Harmonized World Soil Database (HWSD, [35]), which 

used a 2003 FAO published Digitized Soil Map of the World as the source data for 

Kenya. Soil properties for the HWSD were contained in a Microsoft Access database that 

is linked to a world raster file according to a Soil Mapping Unit (SMU) value for each 

pixel. Each SMU corresponds to a series of 1-10 records in the database table, each record 

comprising a component of the aggregate soil, with the proportions of each component 

identified in the database as the ‘share’ of each component in the SMU. Each component 

record has unique soil properties. Soil Mapping Unit values were extracted for each pixel 

in a 5-km radius around each mill and used to calculate aggregate soil properties values 

for each location as follows: (a) for properties with continuous values, the average 

property value over all soil components listed was taken for each pixel, weighted by the 

share of each component, and (b) for properties with categorical values, the majority 

class after adding the class values was taken for each pixel weighted for the share of each 

component. Food and Agriculture Organization of the United Nations (FAO) soil type 

(FAOSOIL) categories were extracted from the Digital Soil Map of the World (DSMW, 

FAO, ver. 3.6, January 2003) corresponding to the coordinates of each mill. 

 

Due to high correlation between many of the soil variables, the following soil variables 

were chosen for subsequent analyses: topsoil organic carbon content (% wt), topsoil pH 

(measured in H2O), topsoil cation exchange capacity (CEC), topsoil total exchangeable 

bases (TEB), topsoil salinity (dS/m), soil texture, and soil type. These variables were 

chosen because they encompass a wide range of soil characteristics and are relatively 

common soil measurements. Soil organic carbon content can influence several soil 

characteristics that are relevant for plant health, including soil structure, water dynamics, 

aeration, nutrient holding capacity, nutrient availability, and biological activity. Soil pH 

affects nutrient availability and is a very common soil measurement. Cation exchange 

capacity represents the soil’s potential nutrient holding capacity; TEB is a measure of the 
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total base cations that are actually present and can be exchanged from the soil. Salinity 

can influence soil structure, water availability, and plant uptake of nutrients and toxic 

ions. 

 

Statistical analysis 

Maize samples were collected from the patrons of each mill, whilst the GPS coordinates 

were for the mill, requiring the analysis to adjust for the cluster effect of the mill. First, 

the environmental variables (NDVI, rainfall and soil characteristics) were examined 

across the mills (n=243) to assess whether there were differences between highly 

contaminated areas and less contaminated areas (defined as the percent of samples with 

detectable aflatoxin). The percent of maize with detectable aflatoxin was calculated for 

each mill. Tertiles of contamination were calculated (T1=10-44%; T2=45-71%; T3=72-

100%). None of the continuous variables were normally distributed, as indicated by a 

Shapiro-Wilk test of normality. Therefore, association between the predictor and the 

severity of mill contamination was assessed using a Kruskal-Wallis test. Categorical 

variables (soil type and soil texture) were tested for association with the binary predictor 

using a chi-squared test. Although these tests do not take the trend (low contamination to 

high contamination) into account, it is possible that the relationship between predictors 

and aflatoxin contamination would be non-linear, and this test allows analysis of both 

linear and non-linear trends.  

 

Secondly, multivariable analysis was conducted using multi-level modeling to assess the 

variability in aflatoxin contamination that could be explained by location (mill) and by 

environmental predictor variables. Multi-level modeling was used to account for the non-

independence of maize samples collected from the same mill, and allow separation of the 

relative explained variance within the mill from the variance between mills. Multi-level 

models have significant advantage over complete pooling of data (aggregation to mill 

level) because they recognize the appropriate hierarchical structure of the data and give 

more appropriate effect estimates and standard errors [36]. To analyze the relationship 

between aflatoxin contamination and rainfall, NDVI and soil characteristics, a two-level 

model was used with mill identified as a random effect at the second level with 

independent maize samples nested within the mill. Standardized coefficients were 

reported for continuous variables. Initially, separate models were run for samples 

collected in eastern and western Kenya respectively, but relationships were consistent; 

therefore, in reported models, samples were pooled with east vs. west included as a 

covariate. Effect estimates, odds ratios (OR) and confidence intervals (CI) are reported 

in Table 3. All statistical analyses were performed in STATA 12.0. Multilevel-mixed-

effects models were built with xtmelogit and xtmixed commands in STATA 12.0.  

 

To illustrate how these GIS analyses could be used to determine regions with higher and 

lower risk of aflatoxin presence and levels, we plotted the survey results for each mill on 

a map of the flowering and post-flowering rainfall during the growing season using map 

and raster packages in R (v. 2.0-12 in R. v. 2.15.1, http://www.r-project.org/).  
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RESULTS 

Descriptive statistics of the aflatoxin data 

Overall, 60% of samples analyzed for aflatoxin had detectable levels of the toxin. 

Considering the regulatory limits of 10 ppb, 28% of samples exceeded regulatory limits. 

Toxin levels were non-normally distributed, with heavy skew towards higher 

concentrations. To take account of the negative samples, we conducted a two-part 

analysis: (1) detectable (>1ppb) vs. non-detectable and (2) log transformed toxin level if 

aflatoxin>1ppb.  

 

Relationship between rainfall, NDVI and aflatoxin contamination 

Univariate analyses of remotely-sensed data suggest that many plant stress and soil 

properties were associated with aflatoxin occurrence (Tables 1 and 2). In areas with 

greater aflatoxin contamination (percent contaminated per mill), there were slightly 

higher rainfall (6 mm difference between low and high tertiles) and NDVI (4% difference 

between low and high tertiles) during the pre-flowering time period, whereas these areas 

had lower rainfall (139 mm difference between low and high tertiles) and NDVI (6% 

difference between low and high tertiles) during the flowering and post-flowering time 

periods.  

 

The overlay of aflatoxin contamination with the flowering and post-flowering rainfall 

during the growing season illustrates that areas with lower rainfall showed higher 

prevalence of aflatoxin; this effect was roughly correlated with the known lower rainfall 

in eastern Kenya relative to western Kenya (Figure 1).   

 

 
Figure 1: Flowering and post-flowering rainfall during the growing seasons for the 

maize collected in eastern Kenya in 2009 (top) and western Kenya in 

2010 (bottom). Points are mill locations colored by the prevalence of 

aflatoxin in samples collected at those mills  
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Relationship between soil characteristics and aflatoxin contamination 

Univariate analysis showed that several topsoil characteristics were significantly 

associated with aflatoxin (Table 1; results for subsoil characteristics were similar and are 

not reported here). In areas with high prevalence of aflatoxin, soils had higher pH and 

total exchangeable bases (TEB) (P<0.001). In areas with low prevalence of aflatoxin, 

soils had higher organic carbon content (P<0.001). Cation exchange capacity (CEC) was 

not significantly associated with aflatoxin. Fine and coarse textured soils were associated 

with lower prevalence of aflatoxin contamination, whereas medium textured soils were 

associated with higher prevalence of aflatoxin contamination (Table 2; P<0.0001). Of 

the FAO soil classification types, there were significant differences in the prevalence of 

aflatoxin contamination and soil type with a chi squared test (P<0.0001). This association 

was likely driven by Orthic Ferralsols and Humic Nitosols, which were negatively 

associated with aflatoxin contamination, and Rhodic Ferralsols and Eutric Nitosols, 

which were positively associated with aflatoxin contamination (P<0.0001). 

 

The association between rainfall, NDVI, soil characteristics and aflatoxin contamination 

Overall, 25% of variation in the level of aflatoxin and 32% of the variability in the odds 

of aflatoxin presence was due to the mill location, while 28% of the variance in aflatoxin 

levels and presence between mills was explained by the chosen predictor variables. 

Vegetation cover (NDVI) was significantly associated with the presence of aflatoxin and 

level of aflatoxin if detected. Pre-flowering NDVI was associated with increased 

aflatoxin presence (for an increase in one standard deviation OR=1.66, P<0.01) and level 

(coeff=0.16, P<0.01). Increased flowering and post-flowering NDVI was protective, 

associated with decreased presence (OR=0.60, P=0.04) and level (coeff=-0.14, P=0.05). 

Rainfall was not significantly associated with aflatoxin in the combined models. The 

NDVI and rainfall were highly correlated, and it is likely that NDVI captures the effect 

of rainfall observed in univariate analyses. Multi-level regression analysis showed that 

soil texture was not significantly associated with aflatoxin contamination (Table 3). 

Organic carbon content was negatively associated with aflatoxin contamination (for 

increase in one standard deviation OR=0.64, P=0.03). The CEC was positively 

associated with aflatoxin contamination (one standard deviation OR=1.55, P<0.01).  

 

DISCUSSION 

 

There is significant variation in aflatoxin accumulation across time and space, driven by 

a host of environmental conditions as well as harvest and post-harvest practices. This 

analysis explores potential relationships between remotely-sensed environmental data 

and aflatoxin accumulation to examine its utility in future risk prediction models. This 

analysis is limited to discrete geographical areas in eastern and western Kenya during 

two calendar years, but provides the foundation for developing further prediction models.  

 

One important finding is that the timing of rainfall, rather than the total amount of 

rainfall, might be important in determining spatial risk of aflatoxin accumulation. 

Normalized Difference Vegetation Index was positively associated with aflatoxin during 

the pre-flowering stage and negatively associated with aflatoxin at the flowering and 
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post-flowering stages. The NDVI represents vegetative cover and could be a proxy for 

both plant health and plant density. However, reduced NDVI could also indicate 

decreased plant health due to biotic and abiotic stress, which has been linked to aflatoxin 

accumulation in maize [37, 38]. In univariate analyses, rainfall was also positively 

associated with aflatoxin levels before flowering and negatively associated with aflatoxin 

at the flowering and post-flowering stages; this effect was attenuated with the addition 

of NDVI to the multivariate models. Days to maturity varied among the sampling areas 

(6 months in Uasin Gishu and Trans Nzoia and 3-4 months in other study areas), which 

could contribute to some of the unexplained variability in the models because different 

types of maize have different susceptibility to aflatoxin contamination [37]. Additionally, 

NDVI and rainfall was based on a monthly aggregation. Flowering occurs over a period 

shorter than a month and we were unable to determine the exact week in the month that 

flowering occurred, potentially introducing error into the effect estimates. However, we 

examined the correlation between total rainfall in each month (used in our estimates) and 

rainfall during each 10-day period within the month, and found these values were highly 

correlated (r=0.60-0.94), indicating that total rainfall for the month is a suitable proxy 

for rainfall during the growing season. The NDVI is relatively stable within a month 

period with an average of a 3% coefficient of variation among the 5-day periods within 

each month, further indicating that data aggregated by month are suitable in these models. 

 

The significant association between NDVI and aflatoxin, controlling for rainfall, 

suggests that NDVI was also influenced by other environmental factors; soil organic 

carbon content may mediate the effect of rainfall on NDVI because it affects the water-

holding capacity of the soil [39]. These relationships among rainfall, NDVI, and aflatoxin 

suggest that the timing of precipitation may affect maize susceptibility to aflatoxigenic 

fungal infection and subsequent aflatoxin production. Excess rainfall during the 

vegetative growth period (pre-flowering) may lead to high canopy density, which is 

favorable for fungal growth [40]. Drought stress (represented by low rainfall conditions 

in this study) during the flowering and early grain-filling stages has previously been 

associated with increased aflatoxigenic fungal infection and aflatoxin accumulation [23–

25].  

 

Except for NDVI, the remotely-sensed environmental data examined are only associated 

with the presence of aflatoxin, not the level of aflatoxin, which may be more greatly 

influenced by harvest and post-harvest practices. The models explain 28% of the 

variation in aflatoxin across mill location; although this is lower than the variance 

explained in simulation models [9, 10], this type of model has utility. One limitation of 

the environmental data reported here is they are only representative of environmental 

conditions during the maize growing season while the maize samples were collected at 

the mill. Aflatoxin can continue to accumulate in grain post-harvest. The majority of 

maize samples in this study were collected from smallholder farmers who have limited 

and suboptimal grain drying and storage options. For example, excess, unregulated 

moisture in storage has been linked to increased post-harvest aflatoxin accumulation in 

maize [41–43]. Further work could investigate the impact of environmental conditions 

on the accumulation of aflatoxin in maize post-harvest. Although modeling 

environmental drivers of aflatoxin accumulation does not take into account farming, 

harvest and storage practices, it could be used to target geographically riskier areas.  
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This analysis also explored soil characteristics that may influence plant stress including 

indicators of texture, nutrient availability, organic carbon content and pH because plant 

stress is thought to favor pre-harvest fungal infection and aflatoxin production. Findings 

indicate that total exchangeable bases (TEB), organic carbon content and pH as well as 

soil types may be useful in contributing to prediction of areas at risk for aflatoxin 

accumulation. It should be noted, however, that the soil data used here represent a 

relatively narrow range of values and that the differences between tertile median values 

within most variables are so small that they may not represent agronomically meaningful 

changes. Furthermore, these data do not reflect site-specific management practices, 

which influence soil fertility, water-holding capacity, and other important characteristics. 

 

Previous studies have linked pre-harvest aflatoxin levels with suboptimal nitrogen 

fertilization, drought conditions, and increased soil temperatures [22, 24, 27]. Univariate 

analyses showed that other soil characteristics were also significantly associated with 

aflatoxin contamination, but there were few clear trends. For example, soil organic 

content (SOC)—an important component of soil fertility—was negatively associated 

with aflatoxin, potentially supporting the hypothesis that increased soil fertility is 

protective. However, increased pH (from 5.86 to 6.03, which is still acidic but slightly 

more optimal for maize) and increased TEB (from 9.9 to 10.9, representing a slight 

increase in available nutrients) were associated with a higher percent of contaminated 

maize samples, contradicting this hypothesis. The role of soil texture was also somewhat 

equivocal—fine and coarse textured soils were negatively associated with aflatoxin 

prevalence, while medium textured soils were positively associated with aflatoxin 

prevalence. Once rainfall, NDVI, and select soil characteristics were accounted for in a 

mixed model, soil texture was no longer significantly associated with aflatoxin 

contamination. In this model, SOC was still protective against aflatoxin, and greater CEC 

was not, confirming that these characteristics may be useful in aflatoxin risk assessments, 

and that the relationship between soil fertility and aflatoxin accumulation is complex. 

 

CONCLUSION 

 

In conclusion, publicly available, spatially-explicit environmental data on rainfall, NDVI 

and soil properties could provide a foundation for future models to predict areas at risk 

of aflatoxin exposure (Figure 2). This analysis was limited to regions in eastern and 

western Kenya during 2009 and 2010 and provides the methodological foundation for 

building more robust models to predict risk in other locations across time. Future work 

should include long-term sampling strategies over greater geographical areas.  
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Figure 2: Conceptual framework of interactions between indicators of sound 

management practices, soil quality, water availability, maize health, and 

A. flavus prevalence and colonization. *Phenomena not assessed in this 

study; CFU=colony forming units; +Positive relationship; -Negative 

relationship; ±Positive or negative relationship; NDVI= normalized 

difference vegetation index; SOC= soil organic content; TEB= total 

exchangeable bases 
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Table 1: Rainfall, NDVI and soil characteristics of mills by low, medium and high 

aflatoxin contamination  

 

Variable Units Percent of Contaminated maize in each mill (Tertiles) 

Low (10-44%) Medium (45-71%) High (71-100%) 

Median (IQR) p-value 

Average NDVI for the pre-
flowering period 

% dmnl 56.5 
(50.3, 62.3) 

59.4 
(53.9, 67.8) 

61.0 
(58.1, 68.7) 

<0.001** 

Total rainfall for the pre-
flowering period 

Mm 226  
(206, 259) 

224  
(176, 259) 

232  
(203, 324) 

<0.001** 

Average NDVI for flowering + 
post-period 

% dmnl 59.8 
(57.4,65.4) 

59.2  
(52.0, 65.0) 

54.5  
(49.4, 63.0) 

<0.001** 

Total rainfall for flowering + 
post-period 

Mm 201  
(56, 288) 

79  
(57, 205) 

62  
(39, 80) 

<0.001** 

Topsoil organic carbon % wt 1.17  
(0.96, 1.58) 

1.29  
(0.82, 1.79) 

1.03  
(0.67, 1.4) 

<0.001** 

Topsoil pH (H2O) -log[H+] 5.86  
(5.42, 6.00) 

5.90  
(5.60, 6.09) 

6.03  
(5.86, 6.12) 

<0.001** 

Topsoil CEC cmol(+)/kg 16 (14, 19) 18 (14, 25) 16 (15, 24) 0.202 

Topsoil TEB cmol(+)/kg 9.9 (8.7, 12.3) 10.7 (8.4, 12.8) 10.9 (9.4, 12.8) <0.001** 

Topsoil salinity dS/m 0.00 (0.00, 0.002) 0.00 (0.00, 0.00) 0.00 (0.00, 0.009) <0.001** 

* 0.05>P>0.01; ** P<0.01; CEC=cation exchange capacity; TEB=total exchangeable 

bases; dmnl=dimensionless; NDVI= normalized difference vegetation index; IQR= 

Interquartile range 

 

 

  



 
 

 10.18697/ajfand.75.ILRI09 11099 

Table 2: Soil classifications of mills by low, medium and high aflatoxin 

contamination 

 

Variable Percent of contaminated maize in each mill (Tertiles) 

Low (10-47%) Medium (45-71%) High (71-100%) 

Percent (n) Chi square p-value 

Dominant soil type    <0.0001** 

Chromic Cambisols 6.5 (160) 5.3 (130) 6.9 (170)  

Orthic Ferralsols 10.6 (260) 9.7 (240) 3.6 (90)  

Rhodic Ferralsols 3.0 (74) 6.6 (163) 6.0 (171)  

Lithosols 1.6 (40) 0.8 (20) 2.4 (60)  

Ferric Luvisols 0 (0) 1.2 (30) 1.2 (30)  

Eutric Nitosols 2.8 (70) 7.3 (180) 9.7 (240)  

Humic Nitosols 8.4 (206) 1.6 (40) 0 (0)  

Eutric Gleysols 0.4 (10) 1.2 (30) 0.4 (10)  

Mollic Andosols 0.4 (10) 0.8 (20) 0 (0)  

Pellic Vertisols 0.4 (10) 0 (0) 0 (0)  

Topsoil texture    <0.0001** 

Coarse 3.4 (84) 3.7 (91) 1.4 (34)  

Medium 4.9 (120) 4.1 (100) 6.5 (160)  

Fine 25.8 (636) 26.9 (662) 23.4 (557)  

** P<0.01 
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Table 3: Multilevel regression models of aflatoxin level in maize samples for 

rainfall (100mm increase), NDVI (1% increase) and soil characteristics 

 

* 0.05>P>0.01; ** P<0.01 

NDVI= normalized difference vegetation index  

 

 

 

  

Predictor  Parameter estimate (95% CI) for Aflatoxin 

 Presence [>1ppb] 
OR 

(N=936) 

Level [log(ppb)] | 
Presence [>1ppb] 

(N=589) 

Rainfall Total rainfall for the pre-
flowering period (std) 

1.03 (0.80, 1.33) 0.032 (-0.046, 0.109) 

 Total rainfall for flowering and 
post-flowering period (std) 

1.03 (0.61, 1.74) -0.025 (-0.200, 0.140) 

    
NDVI Avg. NDVI for the pre-

flowering period (std) 
1.66** (1.15, 2.4) 0.016** (0.051, 0.274) 

 Avg. NDVI for the flowering 
and post-flowering period (std) 

0.60* (0.34, 0.97) -0.143* (-0.287, 0.000) 

    
Soil Texture  
(ref Coarse) 

Medium 0.69 (0.22, 2.21) -0.150 (-0.507, 0.206) 

 Fine 0.79 (0.27, 2.30) -0.065 (-0.397, 0.267) 
    

Soil Organic 
Carbon Content 

(std) 
 

 0.64* (0.42, 0.97) -0.101 (-0.226, 0.024) 

Cation Exchange 
Capacity (std) 

 

 1.55* (1.04, 2.32) 0.104 (-0.019, 0.228) 

Region 
(ref= West) 

East 1.75 (0.50, 6.04) 0.261 (-0.084, 0.606) 
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Supplemental Table S1: Maize growing seasons in locations where maize was 

sampled for aflatoxin analysis between 2009 and 2010 

 

  Month 

Sub-county 

(formerly 

known as 

district)  March   April    May   June   July August  September 

Embu          

Mbeere        

Meru south        

Meru 

central        

Meru north        

Machakos        

Kathiani        

Mwingi        

Mwala        

Kitui        

Bungoma        

Rachuonyo        

Kisii        

Homa Bay        

Trans Nzoia        

Uasin Gishu        

 

 Planting 

 Flowering 

 Harvest 
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