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ABSTRACT 
 
An experimentally-based two yield surface constitutive model for cemented quick clay has been 
developed at NTNU, Norway, to reproduce the mechanical behavior of the stabilized quick clay in the 
triaxial p’-q stress space. The model takes into account the actual mechanical properties of the 
stabilized material, such as “attraction”, friction angle and destructuration. A further attempt has been 
made to extend the formulation into the full stress space, based on the Hardening Soil Model, the S-
Clay Model, the Koiter Rule and two Mapping Rules. A generalized 3D-constitutive model for stabilized 
quick clay has been formulated. This paper discusses the formulation process and presents the 
resulting generalized model.  
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INTRODUCTION  
 
 Engineering properties of stabilized 
materials depend on the fabric and particle 
cementation resulting from the chemical reaction 
of the binders. Such soils display a substantial 
amount of intrinsic stiffness and strength when 
subjected to an external loading. However, when 
the applied stress exceeds the bond strength, the 
bonds break and eventually the microstructure 
collapses; the phenomenon known as 
“destructuration”. Prediction of the mechanical 
behaviour of such materials has been formulated 
in form of a constitutive model (QUICKSTAB) as 
proposed by Bujulu and Grimstad (2012). 
However, the formulation was limited to the two-
dimensional triaxial (p’-q) stress space.  
 In order to get a generalized model, an 
attempt has been made to extend the model 

formulation into the full (3-dimensional) stress 
space. This paper discusses formulation of the 
generalized model based on the Hardening Soil 
Model (Brinkgreve et al. 2006), the S-Clay1 
model (Wheeler et. al. 2003), and formulations by 
Søreide (2002) and Dafalias and Manzari (2004). 
As a background for this extension, the p’- q 
formulation (Bujulu and Grimstad, 2012) is first 
summarized below, with the extension presented 
thereafter in the succeeding section. 
 
CONSTITUTIVE EQUATIONS IN TRIAXIAL 
STRESS SPACE 
In the p’- q stress space the model takes the form 
of two yield surfaces, appearing as a “cap” and a 
“wedge” in the two axes, respectively. The cap is 
mainly meant to model the volumetric 
(oedometric) behaviour and the wedge is meant 
to model the deviatoric behaviour.  
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Cap Yield Surface 
 
The cap surface is given in Equation (1) as: 

( )( )22 2 2' ' 0c c mF q p a p= + Μ ⋅ + − =   ……………………………………………… .            (1) 

 
 where Μ (Greek capital μ) is an internal 
parameter related to the earth pressure 
coefficient under virgin loading, K0

NC; pm’ is the 
size of the cap and ac is the attraction for the cap. 
 It may be shown, due to the strain 
requirement in oedometric condition and through 

an associated flow rule, that M will be given by 
Equation (2), assuming infinite elastic stiffness. 
K0

NC is in this case obtained by including the ac 
term for the stresses. Μ is easily obtained by a 
stress condition in which ac<< p’.  
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Hardening Rules for the Cap 
Two hardening rules are used for the cap 
surface. Firstly, an isotropic hardening rule which 

includes the possibility for a constant term. The 
expression takes the form:  
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where ζ and Ζa are parameters controlling the hardening of the cap. 
 
 
The second cap hardening rule is the attraction 
softening. Under oedometeric condition (isolating 
the cap behavior) two types of attraction 
softening may generally be experienced. Type I 
is given by a destructuration rule (Karstunen et 

al., 2006), whereas Type II is associated with the 
loss of the ac term in the yield criterion for the 
cap. The following softening rule for ac (Equation 
4) was proposed due to the cap type plasticity 
(Bujulu and Grimstad, 2012).  
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where μac is a hardening parameter. 
 
 
Wedge (cone) yield and potential surface 
The cone yield surface appears in the p’– q stress space as a wedge, as expressed by Equation(5).  

( ) ( )' ' 0w w wF q p a m p aα= − + ⋅ − ⋅ + =
 ……………………………………………… . (5) 

 
 where α is the rotation of the wedge in the p’– q space; m is the size of the wedge and aw is the 
attraction for the wedge. 
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 The size parameter m will be a small 
number and will be given a default value of 
0.01·Mc,f. Where Mc,f is the maximum value of 
q/(p’+ aw) in a triaxial compression test. The 

potential surface is not directly needed, only its 
derivatives with respect to the stress components 
(Equation (6)).  
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where fQ(q,p’,aw) is a dilatancy/contractancy parameter, which in general may be stress dependent. 
Equation (7) gives a suggestion for a possible mathematical expression for fQ. In contrast to other 
models, where a mobilization formulation is used, this is independent of q. 
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The kinematic hardening rule for the wedge is given as: 
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where fα may be determined by curve-fitting with the laboratory experiments or by choosing some basic 
functions. For fα we will have the following requirements 

  0fα =   when   ' f
w

q M
p a

=
+    (Mf is the failure criteria) 

  fα → ∞   for stress reversal or initial shearing 
 
 
The function given by Equation (9) may be used in triaxial stress-strain space. 
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where qb is the bounding deviatoric stress 
In the triaxial shearing tests the material shows “attraction softening” (cohesion softening), expressed by 
Equation (10). 
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where μaw is a hardening parameter. 

GENERALIZED CONSTITUTIVE MODEL FOR STABILIZED QUICK CLAY                                       69      



 

THEORY OF MULTIPLE YIELD SURFACE MODELING 
 
The rule for adding response from several yield criteria and plastic potential functions is known as the 
Koiter rule (Schanz et. al., 1999). This may be presented as Equation (11): 
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where the plastic multiplier, dλi, is given by Equation (12): 
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Let us assume two yield criteria are violated. We may now write: 
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where De is the elastic stiffness matrix. 
Using the equations above we get expressions for the two plastic multipliers: 
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A numerical scheme is used to activate the plastic multiplier for only the violated yield criteria. 
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GENERALIZATION TO 3D 
 
Cap surface 
The cap surface (yield and potential) is isotropic and Lode angle independent, hence a direct 
transformation to full stress space can simply be done by transformation of the derivatives by parts, as 
given by Equation (16)  
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Cone surface 
The cone yield surface and its potential surface 
have a slightly more cumbersome generalization 
procedure. In the π –plane the cone and the 
failure criteria will be as shown in Figure 1. First 

we need to decide on a mapping rule and normal 
to the potential surface, ∂Q/∂σ’.  The kinematic 
(rotational) parameter, α, must be replaced by a 
rotational tensor α. The generalized yield surface 
is given by Equation (17). 
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The kinematic hardening rule (previously presented as Equation (9)) could now be rewritten as:  
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Cone 

Failure 

 
Figure 1: Mohr Coulomb and cone surfaces in the π –plane 

 
 
 
The mapping rule 
 
 The bounding surface stress is mapped 
from the current stress condition through a 
mapping rule. Various mapping rules may be 
found in the literature (Andrianopoulos et al., 
2005). In this study two mapping rules are 
emphasised. For simplicity a constant J2 criteria 
is chosen for the presentation of the possible 
mapping rules. If we have a potential surface 

equivalent to the constant J2 criteria we may use 
Figure 2 directly to set up our equations. 
 Mapping rule (a) uses the same direction 
(Modified Lode angle) for the small cone and for 
the bounding surface (from isotropic state) to find 
the bounding stress. Mapping rule (b) maps the 
bounding stress directly through the stress 
direction on the cone. Several other mapping 
possibilities exist, involving, for instance, stress 
reversal points or mobilisation surfaces. 
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Figure 2: Two possible mapping rules 

 
 
Rule (a): The image stress point on the bounding surface, σb,d, are mapped through a locally modified 
Lode angle, θα. The locally modified Lode angle will follow the same direction as the normal to the cone 
yield surface. The locally modified Lode angle is calculated from the stress tensor sα given in Equation 
(20). 
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Rule (b): The image stress point is found by adding a vector to the current stress condition in the 
direction of the normal to the yield surface according to Equation (21). 
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The condition in Equation (22) must be satisfied, and thus gives the size of c. 
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For simple triaxial stress paths the mapping rule (a) and (b) will be equal. However in general loading 
conditions the mapping rule (b) could give more realistic results for the flow direction. Mapping rule (a) 
gives higher computational efficiency than mapping rule (b). 
 
Differentiation of the yield and potential surfaces are in principle performed as follows: 
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MODEL SIMULATION 
 
Model simulation was done using different 
combinations of parameters as shown in Bujulu 
and Grimstad (2012), The rule for adding 
response from several yield criteria and plastic 

potential functions, known as the Koiter rule 
(Schanz et al., 1999), was applied. An example 
of the simulation is given herein, as Figures 3 & 
4, for Mix 1, lime-wastepaper sludge ash (WSA), 
(50:50), 100 kg/m3 for 90 days curing period 
(Bujulu, 2008). 

 
 

Table 1: Model parameters (Source: Bujulu and Grimstad, 2012) 
________________________________________________________________________________________________________________ 
Mix     ν      κ*   Κa  φ aw0  μw μaw Μ ac0 ζ Ζ μac pm’ 
________________________________________________________________________________________________________________ 
           -      - kPa º kPa  -  -  - kPa - kPa  - kPa 
________________________________________________________________________________________________________________ 
1       .15       .0035 300 41 90 1500 20 .94 330 .19 2800 1.2  340 
2       .12     .01 3400 44 120 3200 55 1.02 303 .14 3800 48 350 
3       .01    .019 2100 37 210 2000 60 1.05 320 .18 5000 200 350 
4       .15     .005  2000          42 120 2500 22 1.2 300 .17 2600 5 330 
_________________________________________________________________________________________________________________ 
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Figure 3 shows typical results from simulation of 
undrained triaxial shearing for different isotropic 
consolidation cell pressure, whereas Figure 4 
shows typical results from oedometer 

simulations. The simulation curves are plotted 
against the respective experimental data for 
calibration purposes. It can be seen that the 
model simulations fit well to the laboratory data. 

 
 

0 100 200 300 400
0

100

200

300

400

500

600

p' [kPa]

q 
[k

Pa
]

 

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

eps1 [-]

q 
[k

Pa
]

 
 

Figure 3. Simulation of triaxial compression - Mix 1 
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Figure 4: Simulation of oedometer strain and modulus - Mix 1 
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CONCLUSION 
 
A constitutive model for L-(C)-WSA stabilized 
quick clay which was formulated in the triaxial p’ 
– q space (Bujulu and Grimstad, 2012) has been 
extended to cover the 3D free stress space. 
Simulations for the model were obtained by a 
single stress point integration algorithm. The 
model simulations show good agreement with 
laboratory results. However, an extensive 
parametric study should be done in order to 
thoroughly explain the behavior of the model. 
Extension to include an anisotropic cap-surface is 
recommended, e.g. using the approach found in 
Wheeler et al. (2003).  
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