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Abstract 

Linear Ordering is a problem of ordering the rows and columns of a matrix such that the sum of 

the upper triangle values is as large as possible. The problem has many applications including 

aggregation of individual preferences, weighted ancestry relationships and triangulation of input-

output tables in economics. As a result, many researchers have been working on the problem 

which is known to be NP-hard. Consequently, heuristic algorithms have been developed and 

implemented on benchmark data or specific real-world applications. Simulated Annealing has 

seldom been used for this problem. Furthermore, only one attempt has been done on the Tanzanian 

input output table data. This article presents a Simulated Annealing approach to the problem and 

compares results with previous work on the same data using Great Deluge algorithm. Three 

cooling schedules are compared, namely linear, geometric and Lundy & Mees. The results show 

that Simulated Annealing and Great Deluge provide similar results including execution time and 

final solution quality. It is concluded that Simulated Annealing is a good algorithm for the Linear 

Ordering problem given a careful selection of required parameters.  

Keywords: Combinatorial Optimization; Linear Ordering Problem; Simulated Annealing; 

Triangulation; Input Output tables 

Introduction 

Linear Ordering Problem (LOP) is a 

problem of ordering the rows and columns of 

a matrix in such a way that the sum of the 

upper triangle values is as large as possible. 

The problem has many applications including 

aggregation of individual preferences (Hurdy 

2008), weighted ancestry relationships 

(Glover et al. 1974), scheduling with 

preferences (Boenchendorf et al 1982), 

triangulation of input-output matrices in 

economics (Chenery and Watanabe 1958) and 

many others. In economics, the sectors of the 

economy are normally divided into   sectors. 

A matrix called input-output table is 

constructed in such a way that the entries 

represent the amount of deliveries from one 

sector to another. The ordering of rows and 

columns of the matrix in such a way as to 

maximize the sum of entries in the upper 

triangle is called triangulation problem and is 

a direct application of the LOP. The 

triangulated matrix provides interesting 

economic interpretations and comparisons 

between countries (Grötschel et al. 1984).  

LOP is normally modeled as a weighted 

directed graph where the task is to find a 

complete acyclic tournament with highest 

weight. That is, given a complete digraph 

           of   nodes with a non-negative 

weight function       , find an acyclic sub 

digraph of maximum total weight. 

Mathematically, it can be represented as an 

integer programming problem as in the 
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following formulation by Martí and Reinelt 

(2011):  

 

Since the solution is a diagraph, define 
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Where:     are weights in the matrix (input-

output table in this case) and the constraint 

ensures that only one of     or     is selected in 

a solution. However, the solution space is 

exponential, making the problem highly 

complex. Many researchers have been 

working on this problem through exact 

methods. The approach is to design a 

mathematical model and solve using available 

exact algorithms; the most common being 

cutting planes and branch and bound. Since 

the problem is NP-Hard, no algorithm is 

known that can solve a general problem to 

optimality within reasonable time. However, 

many efforts have been made in the exact 

methods to try and improve the size of 

problems that can be solved to optimality. 

The integer constraints are relaxed in the LOP 

model and cutting planes added to prune 

infeasibilities from the relaxation. The 

deepest cutting planes are called facets and 

once identified they can greatly improve 

performance of the cutting planes method. 

Reinelt (1985) presented a number of facets 

to the LOP and proposed a cutting plane 

method coupled with branch and bound. The 

cutting planes component involved the 

generation of facets that included 3-dicycles, 

k-fences and Mobius ladder. The relaxation 

then became;  
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A test was done on small size instances 

which demonstrated great reduction in the 

size of the resulting polyhedron and thereby 

increasing the chance for obtaining an optimal 

solution when solving the relaxation through 

Linear Programming methods. Mushi (2005) 

implemented this algorithm on a real life 

problem of the Irish input-output tables and 

managed to solve a problem of 41×41 sectors 

to optimality. Other researchers have also 

been working on the problem by following 

the same exact procedures. Méndez-Díaz et 

al. (2019) analyzed a general LOP through 

integer programming by defining the convex 

hull, proposed a set of facets and applied 

branch and cut algorithm which is a 

combination of branch and bound and cutting 

planes algorithms. They provided extensive 

experimental results for randomly generated 

data of different structures where the results 

performed well on the generated samples. 

Mitchel and Botchers (1996) applied the 

primal-dual interior point cutting plane 

method to solve real world problems. They 

applied their method to input output tables of 

countries in the European Community and 

USA from 1954 to 1979 and produced some 

good results. The challenges of the branch 

and cut methods include the branching 

strategy that heavily affects performance. 

Agrawal et al (2019) proposed a primal 

heuristic procedure to generate feasible 
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integer solutions to be applied in the branch 

and bound algorithm. They presented results 

on standard problems with improved 

performance. However, the problem is NP-

hard and therefore heuristic approaches are 

necessary for large problems which are 

typical of real-world situations.  

Many heuristic approaches have been 

proposed from early years of the problem 

studies including the work by Chenery and 

Watanabe (1958), Aujac and Masson 

heuristic, Becker heuristic and many others 

are described in Martí and Reinelt (2011) 

with applications to mostly randomly 

generated problems. Recent heuristic 

techniques have also been presented in 

various articles with some success. Laguna et 

al. (1999) presented a Tabu Search algorithm 

for the LOP and applied intensification and 

diversification strategies to improve 

performance where they managed to solve 49 

instances from LOP library (LOLIB). The 

results outperformed the work by Chanas and 

Kobylański (1996). Duarte et al. (2011) also 

applied Tabu Search to the LOP with 

cumulative costs. They experimented with 

218 instances and managed to show that the 

Tabu Search procedure performed better in 

terms of solution quality with reasonable 

computing-time. Garcia et al. (2006) applied 

the Variable Neighbourhood Search (VNS) 

algorithm which is based on systematic 

change of neighbourhoods in local search 

procedures in search for global convergence. 

Experimentation with 249 instances from 

LOLIB revealed that the strategy is capable of 

producing good solutions. Scatter search 

which is a population based method has been 

applied by Campos et al. (1999) to the LOP 

and compared the results with Tabu Search 

algorithm using the LOLIB Library. The 

results showed that a careful scatter search 

implementation compares well with Tabu 

Search in terms of performance. Garcia et al 

(2019) presented hybrid heuristics that 

combines iterated local search and exact 

methods to the LOP. They applied their 

results to 78 problems in the LOLIB and 

managed to obtain better results for 77 out of 

them. Other heuristic algorithms include 

Local Search (Sakuraba and Yagiuri 2010), 

Multi-level algorithm (Safro et al 2009), 

Genetic algorithm (Cergibozan and Taşan 

2019), Differential evolution algorithms 

(Baioletti et al 2020), Block-insertion (Qian et 

al 2020) and Memetic algorithms (Song et al 

2018). A survey of heuristic algorithms for 

the LOP is given by Martí et al. (2012) 

together with a benchmark library LOLIB for 

further exploration of methods.  

Simulated Annealing (SA) algorithm is a 

popular method which has been widely 

applied in combinatorial optimization 

problems. However, it has been hardly 

applied to the LOP; the author has been able 

to find one article which applied SA to the 

LOP and this is the work by Martí et al. 

(2012) when they surveyed heuristics and 

compared the results on the LOLIB Library. 

Furthermore, only one heuristic procedure has 

been applied to the Tanzanian Input-Output 

tables which have 79 sectors of the economy. 

That is the work by Amos and Mushi (2015) 

that applied the Great Deluge Algorithm. It is 

worth applying a different heuristic method 

and compare the results; a work that is the 

main objective of this article. Simulated 

Annealing has been chosen because of its 

popularity with many successful 

implementations to other combinatorial 

optimization problems.  

The rest of the paper is organized as 

follows: a description of the Simulated 

Annealing algorithm is provided with its 

adaptation to the LOP. Then Summary of 

results is presented with comparison to 

previous work on the same data and finally a 

conclusion and future research directions are 

presented.  

 

Simulated Annealing and the LOP 

implementation  

Simulated Annealing mimics the cooling 

process of an object from gaseous to solid 

state. The cooling curve follows a particular 

path which is not always decreasing and the 
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process is called annealing. SA is one of 

global heuristic techniques that try to avoid 

falling into a local solution by accepting bad 

solutions by a probability function that 

depends on temperature and solution 

improvement. A good description is provided 

by Reeves (1993) where a general algorithm 

is as shown in the following pseudo-code:  
 

Simulated_Annealing_Algorithm  

Initialize parameters (Temperature T, freezing 

point F); 

Get Initial Solution   ; 

While temperature T > freezing point F { 

Get Solution in the neighborhood of 

  (       ); 

Calculate             ; //  is 

the objective function  

If (   )  

Accept new solution 

(    ); 

Else {Generate a random value   

between 0 and 1; 

If (    
 

 ) 

Accept new solution (      ); 

Else 

Reject new solution  

} 

Update temperature (        ); 

} 

End Simulated Annealing 

 

The main challenges in the adaption of the SA 

to LOP are associated with the choice of 

solution structure, getting initial solution, 

neighbourhood structure, the kind of moves to 

be used, the cooling schedule, initial 

temperature, freezing point and choice of 

parameters in the cooling schedule as 

discussed next.  

Solution structure and initial solution  

A quick initial solution can easily be found by 

picking the upper triangle values of the 

original un-triangulated input-output table. 

This solution guarantees feasibility by making 

sure that it does not contain cycles and covers 

all nodes of the matrix. This is similar to the 

structures used in Amos and Mushi (2015) 

and is presented as follows:  
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Move selection  

The same move type as in Amos and Mushi 

(2015) is applied where two randomly 

selected nodes   and   are swapped to get a 

new configuration. The new move is then 

checked for violation of constraints and 

accepted when no violation is found, 

otherwise it is rejected and a new set is 

swapped randomly. The move is feasible it 

satisfies two sets of constraints;  

,1 allfor  ,1 njiyy jiij
   

ACy nin  C Dicycles-3 allfor  ,2)(   
 

The first set of constraints is always satisfied 

because of the structure of move selection 

which ensures that only one of     and     

becomes 1 in any solution. The second set of 

constraints (3-dicycles inequality) is 

expressed in the form;  

kjVkjiyyy nkijkij  ,,,,2 .  

Therefore, for any swapped indices  ,   the 

algorithm uses another index     and 

checks for violations. If no violations are 

found, then the move is feasible and is taken 

as a candidate move in the neighbourhood. 

Otherwise the move is rejected as soon as the 

first violation is detected. The process is 

repeated until a candidate move has been 

found.  

Cooling schedules  

A good cooling schedule must allow an 

ample time for exploration of solution space 

in the initial levels by accepting bad moves 
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and converges to an extreme point without 

wasting too much time on the final levels. 

Thus a cooling schedule that brings the 

temperature parameter from large initial value 

to freezing point too quickly may result into 

low solution quality because of the possible 

quick convergence to a local maximum 

without sufficient exploration of the search 

space. On the other hand, lowering the 

temperature too slowly may result into a large 

computation time which may not be 

necessary. Several authors have proposed 

different cooling schedules with different 

characteristics. Inspired by the arithmetic-

geometric progression which is defined as a 

recurrence affine relation between 

consecutive terms of the sequence, Mahdi et 

al. (2017) defined a function          . 

For convergence, the value of   must satisfy 

the relation | |    and converges to 
 

   
 

when the condition is satisfied. However, this 

is very similar to pure geometric progression 

with only a constant shift ( ) in the schedule. 

Geman and Geman (1984) introduced a 

logarithmic cooling schedule. The schedule 

follows logarithmic distribution that 

asymptotically converges towards the global 

minimum and is defined as       
 

         
. 

The value of   is a positive constant 

independent of   but should be greater than 

the largest energy barrier in the problem 

(Mahdi et al. 2017, Pepra et al. 2017). 

However, according to Mahdi et al. (2017), 

this schedule converges very slowly and 

therefore requires a long computation time. 

The choice of a cooling schedule is therefore 

essential in the performance of SA.  

In this article the following cooling 

schedules are compared due to their varying 

features and success in other SA 

implementations;  

Linear –was introduced by Kirkpatrick et al. 

(1983) and is described as follows: given an 

initial temperature   , the temperature is 

reduced linearly by following the function 

            , where   is a decay rate 

whose value must be positive but close to 

zero for slow reduction. Different values of   

are tested and results compared.  

Geometric–was introduced by van Laarhoven 

and Aarts (1987) and follows a geometric 

function          , where   is usually in the 

interval [0.8 – 0.9].  

Lundy & Mees–came from an observation by 

Lundy and Mees (1986) that the stationary 

distributions between successive temperatures 

must be closed and therefore calling for 

alternate decrementing rules for selecting 

cooling factor. They proposed the cooling 

schedule as      
 

       
 where   is a very 

small constant; Aarts and van Laarhoven 

(1985) applied   in the range [0.5, 0.9] but 

lower values are possible depending on the 

characteristics of the problem.  

 

Initial and final temperatures  

Initial temperature is set to high value and 

experimented for the best value. This 

temperature must be high enough to explore 

all solution space. Final temperature ( ) 

which is termed freezing point is chosen in 

such a way as to allow convergence without 

wasting unnecessary time. This is found 

through experimentation and may vary 

between cooling schedules.  

 

Summary of Results  

The algorithm was coded in C++ and run on a 

3GHz processor PC, where three cooling 

schedules were experimented with different 

sets of parameters. The best parameters for 

the linear cooling schedule were; initial 

temperature (   = 1,000) and freezing point 

(  = 0.1). The value of cooling rate ( ) was 

found to be 0.0001 as shown in Table 1.  

Table 1: Summary of results - Linear cooling  

  Solution Sec. Iterations 

1 585,481  0 1  

0.1 595,147  0.015 153  

0.01 669,890  0.022 1,604  

0.001 837,970  0.238 16,111  

0.0001 839,842  2.442 161,173  

0.00001 839,842  25.85 1,611,802  



Mushi - Simulated Annealing Algorithm for the Linear Ordering Problem:  

 

286 

 

The best solution found is 839,842 after 

161,173 iterations and 2.442 seconds which is 

a reasonable time. On geometric cooling 

schedule, the best initial temperature was 

1,000,000 with freezing point 0.0001 and 

cooling rate α = 0.999 as shown in Table 2.  

 
Table 2: Summary of results - Geometric cooling  

  Solution Sec. Iterations 

0.8 587,389  0 62  

0.85 591,352  0 86  

0.9 593,099  0 132  

0.95 600,440  0 270  

0.96 600,997  0 339  

0.97 603,530  0 454  

0.98 610,649  0.015 684  

0.99 656,452  0.02 1,375  

0.999 839,842  0.365 23,015  

0.9999 839,842  2.091 138,149  

0.99999 839,842  22.887 1,381,545  

 

The best solution is the same as in previous 

case; however, the solution was obtained after 

23,015 iterations with 0.365 seconds which is 

faster than linear cooling.  

 

The Lundy & Mees cooling schedule results 

are as shown in Table 3 and were obtained 

with initial temperature of 1,000,000 and 

freezing point of 0.0001 and   = 0.0004.  

 
Table 3: Summary of results – Lundy & Mees 

cooling 

  Solution Sec. Iterations 

0.1 591,708  0 100  

0.05 569,929  0 200  

0.001 796,929  0.14 10,000  

0.0005 839,693  0.31 20,000  

0.0004 839,842  0.37 25,000  

0.0003 839,842  0.5 33,334  

0.0002 839,842  0.75 50,000  

 

 

The convergence to the solution is similar in 

terms of iterations although linear schedule 

took more iterations and time to converge to 

the best solution. Figure 1 demonstrates the 

iteration steps during convergence to the best 

solution for the linear cooling schedule.  

 
Figure 1: Iterations during solution search – 

Linear cooling. 

 

In both cases the solution was obtained after 

very few seconds indicating that all three 

cooling schedules are useful for the Simulated 

Annealing to LOP. Figure 2 shows the 

solution search steps against time where 

Geometric and Lundy & Mees cases 

converged to the best solution within fractions 

of a second, while linear cooling converged 

after 2.4 seconds.  

 
Figure 2: Solution search versus time 

Although linear cooling is slightly slower 

than the other two cooling schedules it still 

performed well within tolerable range. The 

same solution is also found by Amos and 
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Mushi (2015) on great deluge algorithm, and 

therefore the same degree of linearity is 

observed with the same sector orders and 

similar time in seconds.  

Lundy & Mees cooling schedule showed a 

slight fall in solution before improvements to 

convergence, which is a typical characteristic 

of Simulated Annealing where bad moves 

may be accepted in anticipation of better 

moves in future (Figure 2).  

In general, the Simulated Annealing 

algorithm performed well for both cooling 

schedules, an evidence that it is a good 

algorithm for the LOP and has been able to 

provide a good solution to the Tanzanian 

input output tables within reasonable time.  

 

Conclusion and Further Research 

Directions  

The article intended to apply Simulated 

Annealing algorithm to the Linear Ordering 

Problem for the Tanzanian input output tables 

and compare results with previous work from 

Great Deluge Algorithm on the same data. To 

the best of knowledge, the algorithm has only 

been applied once to the standard library 

LOLIB data. The algorithm has been 

implemented and experimented with three 

different cooling schedules which are Linear, 

Geometric and Lundy & Mees. The results 

show that regardless of the choice of cooling 

schedule, the algorithm performed very well 

within a very short period of time. Linear 

cooling schedule is a little bit slower than the 

other two schedules but still gave a solution 

within 2.4 seconds which is tolerable. 

Simulated Annealing is therefore a good 

algorithm for the Linear Ordering Problem 

and has been able to generate the same 

solution as in the Great Deluge case. The 

results compare very well with the previous 

work including the solution, and therefore 

provide the same linear order and same 

degree of linearity (94.3%). More 

applications of LOP to real world problems 

are recommended such as aggregation of 

individual preferences and breaking ties in 

sports (Grötschel et al. 1984). There are 

variants of the LOP which have not been well 

explored, including Steiner Linear Ordering 

Problem (Magagnotti 2010), Checkpoint 

Ordering Problem (Hungerländer 2017) and 

Quadratic Linear Ordering Problem 

(Buchheim et al. 2010). Further studies in 

these variants especially applications of 

global heuristic techniques are recommended.  
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