LUMINOUS TRANSMITTANCE AND PHASE TRANSITION TEMPERATURE OF VO₂:CE THIN FILMS PREPARED BY DC REACTIVE MAGNETRON SPUTTERING

Ambonisye S^a, Samiji ME^b and Mlyuka NR^b

^aPhysics Unit, Faculty of Science, Dar es Salaam University College of Education, P.O. Box 2329, Dar es Salaam, Tanzania; E-mail: ambogib2005@yahoo.com

^bDepartment of Physics, College of Natural and Applied Sciences, University of Dar es Salaam, Tanzania; E-mail: esamiji@gmail.com

ABSTRACT

Vanadium dioxide (VO_2) and cerium-doped vanadium dioxide (VO_2 :Ce) thin films were prepared by DC reactive magnetron sputtering from vanadium metallic target and V-Ce alloy targets. Luminous transmittance and phase transition temperatures of the films were studied. The Shimadzu SOLIDSPEC-3700 DUV-VIS-NIR spectrophotometer was used to measure the transmittance and reflectance of the films. The phase transition temperature (τ_c) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO_2 films. Comparison between undoped and doped VO_2 films revealed that cerium inclusion altered both the visible and infrared transmittance of VO_2 thin films. Luminous transmittance was slightly enhanced while τ_c was slightly depressed by cerium inclusion in VO_2 . A two-step increase in transmittance observed in the cooling loop in pure VO_2 was found to be suppressed by cerium inclusion.

Keywords: vanadium dioxide, luminous transmittance, phase transition temperature

INTRODUCTION

Discovery of novel behavior of vanadium dioxide to undergo a metal-to-insulator phase transition at a temperature (τ_c) of ~68 °C accompanied by dramatic changes in electrical and optical properties has attracted intensive research in this thermochromic material. The phase transition in VO₂ has been tailored to suit various applications in devices such as smart windows, thermal sensors and switching devices (Miyazaki and Yasui 2006). However, the transition temperature is too high for smart window applications and it is therefore desirable for it to be reduced. Many studies have been conducted to lower τ_c to the vicinity of room temperature especially through doping with foreign atoms such as tungsten,

molybdenum, niobium and fluorine. Although tungsten (W) doping has shown incredible reduction in τ_c to room temperature (Batista *et al.* 2011), W-doped VO₂ films are reported to have lower infrared transmittance at room temperature compared with the undoped films (Wang *et al.* 2005), and hence unsuitable for high performance optical switching applications.

Several techniques have been reported for depositing VO₂-based thin films including, sputtering (Kivaisi and Samiji 1999), reactive evaporation (Golan *et al.* 2004), chemical vapor deposition (CVD) (Manning *et al.* 2005), pulsed laser deposition (PLD) (Lappalainen *et al.* 2009), molecular beam epitaxy (MBE) (Rata

et al. 2003) and sol-gel process (Lu *et al.* 1999). Despite requirement of expensive equipment, sputtering offers several advantages such as the ability to produce uniform films and efficient deposition (Kiri *et al.* 2010). It is also one of the most promising techniques for largearea and large-scale coating applications (Sobhan *et al.* 1996). This paper reports the luminous transmittance and τ_c of Ce-doped VO₂ (VO₂:Ce) thin films.

MATERIALS AND METHODS

 VO_2 and VO_2 :Ce thin films were prepared by reactive DC magnetron sputtering of metallic V target and V-Ce alloy targets (99.9 % purity) using the BALZERS BAE 250 coating unit. This preparation technique was also employed by Kivaisi and Samiji 1994. Both VO2 and VO₂:Ce thin films were deposited on normal microscope quartz glass substrates placed ~16 cm above the target. The alloy targets had varying percentage compositions of vanadium and cerium as V99 %-Ce1 %, V98 %-Ce2 % and V96 %-Ce4 %. Prior to the deposition, the vacuum chamber was evacuated down to a base pressure of $\sim 3.0 \times 10^{-5}$ mbar. The sputtering gas, Ar (99.999 % purity) and reactive gas, O_2 (99.999 % purity) were introduced in the chamber at the flow rates of 75 and 4.4 to 4.7 ml_n/min, respectively. The working pressure was maintained at about 3.8×10^{-3} mbar and the sputtering power was 200 watts. The substrate temperature at which the films were deposited was ~420 °C. Deposition rates were about 3.6 nm/min and 3.4 nm/min for VO2 and VO2:Ce films, respectively.

Electrical measurements were performed using a two-point probe and the JANDEL MODEL RM3-AR test unit which works in combination with the four-point probe. In order to determine temperature dependence of sheet resistance the films were placed on a temperature regulated hotplate whose temperature was varied within the interval $25 < T_e < 100$ °C. The heating and cooling rates were ~ 10 °C/min and ~ 0.5 °C/min, respectively near 25 °C, and ~7 °C/min and ~5 °C/min, respectively near 100 °C. For optical characterization, the Shimadzu SOLIDSPEC-3700 DUV-VIS-NIR spectrophotometer was used. A heating cell was used to change the film surface temperature between ~25 °C and ~100 °C when measuring the transmittance of the films as a function of temperature. The rate of heating was ~10 °C/min near room temperature and ~6 °C/min near 100 °C while the cooling rate was ~5 °C/min near 100 °C and ~0.8 °C/min near 25 °C. Integrated luminous (lum) and solar (sol) transmittance values were obtained from the equation,

$$T_{lum(sol)}(\theta) = \frac{\int_{a}^{b} \psi_{lum(sol)}(\theta, \lambda) T(\theta, \lambda) d\lambda}{\int_{a}^{b} \psi_{lum(sol)}(\theta, \lambda) d\lambda} \quad \dots \dots (1)$$

where the integral is evaluated from a = 0.38 to $b = 0.76 \ \mu\text{m}$ for luminous transmittance and from a = 0.25 to $b = 2.5 \ \mu\text{m}$ for solar transmittance, ψ_{lum} is the spectral sensitivity of the light-adapted human eye, and ψ_{sol} is the solar irradiance spectrum ASTM G-173 for air mass 1.5 (corresponding to the sun standing 37° above the horizon).

RESULTS AND DISCUSSION

a) Electrical Properties of VO₂ and VO₂:Ce Thin Films

Both VO₂ and VO₂:Ce thin films exhibited sheet resistance change of about three orders of magnitude across the phase transition. This is a typical behavior for VO₂ films deposited on amorphous substrates (Béteille *et al.* 1997). The variation of sheet resistance with temperature for undoped and cerium-doped VO₂ thin films measured using a two-point probe are shown in Figure 1. A two-step decrease in sheet resistance (i.e. with two points of inflexion) was observed in the heating loop for all the films, an observation that was also reported by Kivaisi and Samiji 1999. The sheet resistance determined by the JANDEL four point probe however, did not register the step. The drop in sheet resistance exhibited by all the films was

Figure 1: Variation of sheet resistance with temperature for VO_2 , VO_2 :Ce1, VO2:Ce2 and VO2:Ce4 thin films (~100 nm thick, deposited at 420 °C) measured using a two-point probe.

not very sharp (Figure 1). This could be caused by the presence of large number of microscopic crystals each characterized by its own τ_c and hysteresis loop, whose totality blurred and broadened the switching. The figure also shows a decrease in both the transition temperature and the hysteresis loop width with increasing cerium concentration. The loop widths were 20.31 °C, 13.43 °C, 16.68 °C and 12.96 °C for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films, respectively. Jin and Tanemura 1995 attributed such a change in hysteresis loop width to improvement of crystallinity and microstructure. It also appeared that increase in Ce content made the high temperature phase of VO₂ less conducting. Similar behavior was observed by Béteille et al. 1997 for titaniumdoped VO₂ thin films. For VO₂, VO₂:Ce1 and VO₂:Ce2 films, the temperatures at which the phase change occurred took a decreasing order. However, it appeared to go up again for VO₂:Ce4 film.

b) Optical Properties of VO₂and VO₂:CeThin Films (i) Luminous Transmittance

The inclusion of cerium in VO₂ influenced changes in luminous transmittance of VO₂ films. The low temperature phase of undoped VO₂ had a maximum transmittance of about 34 % at ~710 nm while it was ~40.6 % at ~651 nm for VO₂:Ce1, ~35.6 % at ~650 nm for VO₂:Ce2 and ~38.7 % at ~638 nm for VO₂:Ce4. Small transmittance values for the films in the visible region were considered to originate from the strong intra-band and inter-band absorption in the short-wavelength range for both the metallic and semiconductive phases as cited by Zhang et al. 2010. The increase in luminous transmittance for Ce-doped VO₂ was thought to be attributed to replacement of V^{4+} by Ce^{3+} which resulted into oxygen vacancies. The

Figure 2: Spectral transmittance for single VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films (~100 nm thick, deposited at 420 °C).

observed slight shift of the maximum transmittance in the visible region to lower wavelengths justified the small change in color of the films. There was a significant modulation in visible transmittance for low and high temperature phases for both undoped and Ce-doped VO_2 thin films owing to free career concentration differences. The high temperature

phase of undoped VO₂ had a maximum transmittance of about 26.5 % at 663 nm while it was ~33 % at 643 nm for VO₂:Ce1, ~29.3 % at 642 nm for VO₂:Ce2 and ~34 % at 650 nm for VO₂:Ce4 (Figure 2).

Integrated luminous transmittance (T_{lum}) values (at ~25 °C) computed using Equation 1 revealed a T_{lum} of 18.9 %, 27.9 %, 23.9 % and

Figure 3: Integrated luminous transmittance (T_{lum}) for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films (~100 nm thick, deposited at 420 °C)

Figure 4: Integrated solar transmittance (T_{sol}) modulation for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films (~100 nm thick, deposited at 420 °C).

28 % for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4, respectively. For the high temperature phase (at \sim 100 °C), the T_{lum} values

were 17.3 %, 24.3 %, 21.4 % and 24.5 % for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4, respectively. The differences in T_{lum} values for the low- and high-temperature phases of VO₂ compare with the results reported by Xu *et al.* 2004 for 50 nm VO₂ films on quartz glass. The T_{lum} values are shown in Table 1 and the general trend is represented in Figure 3. It could generally be suggested from Figure 3 that the inclusion of cerium increased the visible transmittance of VO₂ thin films.

(ii) Solar and Infrared Transmittance

Integrated solar transmittance (T_{sol}) values at ~25 °C were 26.5 %, 29.2 %, 26.7 % and 27.9 % for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films, respectively. Comparatively, Khan and Granqvist 1989 obtained a $T_{sol}=31$ % for a 75 nm thick VO₂ thin film at 25 °C. In this study, T_{sol} values at ~100 °C were 13.7 %, 18.6 %, 16.2 % and 18.5 % for VO₂, VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films, respectively. T_{sol} modulation shown in Figure 4 indicates that inclusion of cerium in VO₂ slightly decreased its solar modulation.

The near infrared (NIR) transmittance data extracted from Figure 2 give transmittance contrasts of 51.4 % for VO2, 54.3 % for VO₂:Ce1, 49.5 % for VO₂:Ce2 and 53.3 % for VO₂:Ce4 all at $\lambda = 2500$ nm. From Figure 2, VO₂:Ce1 is observed to be the most transmitting at 2500 nm and has the highest NIR transmittance contrast for all Ce concentration values studied. These data are supported by the transmittance-versustemperature curves at a wavelength of about 2500 nm shown in Figure 5. The infrared transmittance of the films dropped drastically to values below 3 %, an indication that the reflectivities of these films at 2500 nm were quite high as reported by Béteille et al. 1997. The transmittance hysteresis loop widths for VO₂ films appeared to decrease with increase in

Figure 5: NIR switching and hysteresis loops in VO₂ and VO₂:Ce thin films (~100 nm thick, deposited at 420 °C) obtained using the Shimadzu SOLIDSPEC-3700 DUV-VIS-NIR spectrophotometer.

Figure 6: Transition temperature for VO₂and VO₂:Ce thin films obtained from transmittance-vs-temperature and sheet resistance-vs-temperature curves. SDUVs = Shimadzu SOLIDSPEC-3700 DUV-VIS-NIR spectrophotometer, TPP = two-point probe, Jandel = JANDEL four-point probe unit.

cerium concentration. A two-step increase in transmittance was observed in the cooling loop in pure VO₂. This could be due to the formation of an intermediate metastable phase called M_2 , between the usual monoclinic (M_1) and rutile (R) phases (Béteille and Livage 1998). However, the two-step increase in

transmittance appeared to be suppressed by cerium inclusion.

c) Effect of Cerium Doping on Phase Transition Temperature of VO₂ Thin Films

From the sheet resistance versus temperature curves for VO₂ and VO₂:Ce samples, it was noted that dramatic changes in sheet resistance for VO₂ occurred at a phase transition temperature, $\tau_c \sim 69$ °C. This value is close to that of the bulk VO₂ (τ_c ~68 °C). The transition temperatures for VO₂:Ce films were about 65 °C, 63 °C and 66 °C for VO₂:Ce1, VO₂:Ce2 and VO₂:Ce4 thin films, respectively. The VO₂:Ce thin films had the τ_c slightly lower than that of undoped VO₂ thin films (Figure 6). The reduction in τ_c can be due to thermal expansion miss-match, intrinsic stress, presence of second phase (deviation from stoichiometry) or addition of impurities (doping). It was suggested in this case that inclusion of cerium induced a change in the V-O and V-V distances of the VO₂ structure due to the differences in ionic radii between Ce^{3+} (0.102 nm) and V^{4+} (0.059 nm). This caused phase transitions at lower temperatures than that for undoped VO_2 thin films as it was reported by Lu et al. 1996. This conforms to the findings by Kiri et al. 2010 who reported that dopants with atomic radii larger than the V^{4+} ion cause a decrease in τ_c whereas those with smaller ionic radii increase τ_{c} . Table 1 summarises major properties of VO₂ and VO₂:Ce thin films.

CONCLUSIONS

VO₂ and cerium-doped VO₂ thin films have been successfully prepared by reactive DC magnetron sputtering. The films had sheet resistance switching by 2 to 3 orders of magnitude. The maximum transmittances in the visible region, ranging from 34-40 % and 26-34 % were observed for $\tau < \tau_c$ and $\tau > \tau_c$

Property	Sample			
	VO_2	VO ₂ :Ce1	VO ₂ :Ce2	VO ₂ :Ce4
Max % $T_L(\lambda)$	34 (710)	40.6 (651)	35.6 (650)	38.7 (638)
Max % $T_{\rm H}(\lambda)$	26.9 (656.5)	29.3(639.5)	32.2 (638)	32.9 (645)
% T at 555 nm (H, L)	17.9,18.52	26.1, 28.27	22.8, 24.16	26.3, 28.88
T _{lum} at ~25 °C	18.89	27.88	23.93	28.00
T _{lum} at ~100 °C	17.28	24.33	21.42	24.54
T _{sol} at ~25 °C	25.43	29.35	26.34	28.29
T _{sol} at ~100 °C	13.73	18.60	16.24	18.53
τ_c (SolidSpec-3700 DUV)	66.16	65.10	63.32	65.36
τ _c (TPP)	69.40	65.10	63.00	65.70
τ_{c} (Jandel)	67.99	67.99	64.57	64.32
Hysteresis Width (TPP)	20.31	13.43	16.68	12.96
Hysteresis Width (Jandel)	10.64	6.58	6.84	7.85
Hysteresis Width (SOLIDSPEC-3700DUV)	21.14	14.90	20.86	18.01
% T Contrast	51.37	54.27	49.54	53.25

Table 1: Summary of the properties of undoped and Ce-doped VO₂ thin films

respectively. The integrated luminous transmittance (T_{lum}) increased as the result of cerium doping in VO₂. The integrated solar transmittance (T_{sol}) of the VO₂:Ce films increased as cerium concentration increased. The hysteresis loop widths decreased as the result of cerium inclusion in VO₂. A two-step increase in transmittance observed in the cooling loop in VO₂ was suppressed by cerium doping. On the other hand, cerium doping in VO₂ was observed to decrease its phase transition temperature.

ACKNOWLEDGEMENT

One of the authors, Ambonisye S, wishes to acknowledge the Dar es Salaam University College of Education (DUCE) for sponsoring the study. The partial sponsorship from MSSEESA and the Solar Energy Group in the Department of Physics (UDSM) by which the materials and equipment were accessed is also acknowledged.

References

Batista C, Ribeiro RM and Teixeira V 2011. Synthesis and characterization of VO₂-

thermochromic based thin films for energyefficient windows. Research Nanoscale Letters: 1-7 Béteille F and Livage J 1998. Optical switching in VO_2 thin films. J. Sol-Gel Sc. Tech. 13: 915-921 Béteille F, Morineau R, Livage J and Nagano M 1997. Switching properties of V_{1-x}Ti_xO₂ thin films deposited from alkoxides. Materials Research Bulletin 32(8): 1109-

1117

- Golan G, Axelevitch A, Sigalov B and Gorenstein B 2004. Investigation of phase transition mechanism in vanadium oxide thin films. J. Optoelectronics and Advanced Mater. 6(1): 189-195
- Jin P and Tanemura S. 1995. Relationship between transition temperature and x in V_{1-x}Mo_xO₂ films deposited by dualtarget magnetron sputtering. *Jpn. J. Appl. Phys.* 34: 2459-2460
- Khan KA and Granqvist CG 1989. Thermochromic sputter-deposited vanadium oxyfluoride coatings with low luminous absorptance. *Appl. Phys. Lett.* **55**: 4-6
- Kiri P, Hyett G and Binions R 2010. Solid state thermochromic materials. Adv. Mat. Lett. 1(2): 86-105
- Kivaisi RT and Samiji M 1999. Optical and electrical properties of vanadium dioxide films prepared under optimized rf sputtering conditions. *Solar Energy Materials and Solar Cells* **57**: 141-152
- Lappalainen J, Heinilehto S, Jantunen H and Lantto V 2009. Microstructure

dependent switching properties of VO₂ thin films. *J. Electroceram* **22**: 73-77

- Lu S, Hou L and Gan F 1996. Synthesis and phase transition of Cu^{2+} ion doped VO_2 thin films. *Journal of Mater. Science Letters* **15**: 856-857
- Lu S, Hou L and Gan F 1999. Surface analysis and phase transition of gel-derived VO₂ thin films. *Thin Solid Films* **353**: 40-44
- Manning TD, Parkin IP, Blackman C and Qureshi U 2005. APCVD of thermochromic vanadium dioxide thin films: solid solutions $V_{2-x}M_xO_2$ (M = Mo, Nb) or composites VO₂:SnO₂. J. Mater. Chem. **15**: 4560-4566
- Miyazaki H and Yasui I 2006. Substrate bias effect on the fabrication of thermochromic VO₂ films by reactive rf sputtering. J. Phys. D: Appl. Phys. **39**: 2220-2223
- Rata AD, Chezan AR, Presura C and Hibma T 2003. Electrical properties of epitaxially

grown VO_x thin films. *Surface Science* **532–535**: 341-345

- Sobhan MA, Kivaisi RT, Stjerna B and Granqvist CG 1996. Thermochromism of sputter deposited W_xV_{1-x}O₂ films. *Solar Energy Materials & Solar Cells* 44: 451-455
- Wang H, Yi X and Li Y 2005. Fabrication of VO₂ films with low transition temperature for optical switching applications. *Optics Communications* **256**: 305-309
- Xu G, Jin P, Tazawa M and Yoshimura K 2004. Tailoring of luminous transmittance upon switching for thermochromic VO₂ films by thickness control. Jpn. J. Appl. Phys. **43**: 186-187
- Zhang Z, Gao Y, Chen Z, Du J, Cao C, Kang L and Luo H 2010. Thermochromic VO₂ thin films: solution-based processing improved optical properties and lowered phase transformation temperature. *Langmuir* **26**(13): 10738-10744