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ABSTRACT 
This paper reports on the analysis of organochlorine pesticides pollution data obtained from 
samples collected from Vikuge farm, Coast Region, Tanzania between 2000 and 2003 by principal 
component analysis (PCA). PCA of the data sets for pesticide residues in water, soil and sediments 
samples from Vikuge has shown that the obsolete pesticides dumped at Vikuge pasture farm for a 
number of years undergo degradation with time and the distribution pattern of the pesticides in the 
three environments is similar. Strong outliers were also identified in the data by the use of PCA 
score plots. Further analysis of the data by the use of line plots has shown a decreasing trend of 
the concentrations of the pesticide residues with increasing distance from the point source (the 
place where obsolete pesticides were dumped). However, the data from sediment samples obtained 
from Vikuge farm has shown an increase of the residues concentrations with increasing distance 
from the nearest point to the area where the pesticides were dumped.  
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INTRODUCTION 
As in all branches of science, and in 
analytical chemistry in particular, 
researchers depend on statistical 
measurements for reporting their results. 
This is due to the increasing demand for 
higher specificity and sensitivity that has 
been facilitated by developments in 
instrumentation and computer systems. The 
field of chemometrics is founded on the 
border between chemistry and 
mathematics/statistics. The most prominent 
part of chemometrics is data analysis and 
interpretation by multivariate methods. 
Chemometrics finds out the hidden 
relationships, which exist between the 
available data and the desired information. 
Usually Principal Components Analysis 
(PCA) is used in the evaluation of 
environmental data. It provides a deeper 
insight into frequently voluminous tables of 
data and combines the properties of a data 
table into a small number of new variables, 

called principal components (PC). These are 
selected in a way that they capture most of 
the information contained in the original 
data. Because of the smaller number of the 
PCs, it is much easier to display the data 
graphically in the PC coordinates and thus 
notice the features of the data. The output of 
the PCA is usually presented as score plots, 
which show the relationships among the 
samples, and as loading plots, which show 
the effects of the originally measured 
variables on the PCs. Samples, which have 
similar PCs are similar and variables which 
have similar loadings on a PC are correlated. 
 
PCA decomposes a matrix of data, X, with 
N rows (observations) and p columns 
(variables) into a signal part and a noise part 
according to the equation: 

 ET += TPX  

where TPT is a matrix product of scores 
matrix T and loading matrix P, and E is the 
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 residual matrix which contain 
noise/residuals (Eriksson et al. 1999, Geladi 
et al. 1989, Wold et al. 1984a). 
 
One of the most important tasks in using 
PCA is determining the correct number of 
principal components. The PC residuals, eik, 

decrease when the number of parameters 
increases, i.e. when the number of 
significant principal components (PC) 
increases. This gives the model a better fit 
and a better power but beyond certain limits, 
the validity of the results decreases. Hence, 
‘PC’, the number of significant principal 
components must be carefully determined so 
that all information is extracted from the 
data but no spurious components are 
included in the model (Eriksson et al. 1999, 
Wold 1978, Wold et al. 1984b). 
 
Several methods are available for the 
determination of ‘PC’, however cross 
validation (Eriksson et al. 1999, Wold 1978, 
Wold et al. 1984b) which was first 
suggested by Mosteller and Wallace (Wold 
1978) then recently been explored mainly by 
Stone, Geisser and Allen (Wold 1978)  
thereafter by Wold, 1978, proved to be one 
of the most effective methods. 
 
In cross validation, a few of the data 
elements are kept out from the data matrix 
each round, and the PC model is fitted to the 
remaining data (Eriksson et al. 1999, Wold 
1978). This procedure is repeated until each 
data element is kept out once and only once. 
The values of the kept out elements are 
calculated from the resulting models with 
different PC and the deviations between 
calculated and predicted values are 
evaluated. When the squares of these 
deviations from the separate “rounds” are 
summed up, a Predictive Sum of Squares, 
PRESS, is obtained for each PC. The PC 
value corresponding to the minimum PRESS 
is chosen to be used in the model (Geladi et 
al. 1989).  
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is computed, where RSS is the residual sum 
of squares of the previous dimension. A 
component is considered significant if 

RSS

PRESS
 is statistically smaller than 1. 

 
The evaluation of the performance of a PC 
model is made by simultaneously 
considering the explained variation, R2 
(goodness of fit) and the predicted variation 
Q2 (goodness of prediction). 

 
SS

RSS
R −= 12  

 
SS

PRESS
Q −= 12  

where, SS is the total variation in data 
matrix after mean centering. R2 and Q2 are 
expected to be close to 1 for a significant 
principal component (Eriksson et al. 1999, 
Geladi et al. 1999, Massart et al. 1997). 
 
Pesticides are released into the environment 
through human activities. Once in the 
environment, pesticides may have many 
different fates. Volatile pesticides can move 
through the air and end up in other parts of 
the environment, such as in soil or water. 
Pesticides dumped or directly applied to the 
soil may be transported by surface water 
runoff into nearby bodies of surface water or 
may percolate through the soil to lower soil 
layers and groundwater (De Leeuw et al. 
2000). The dispersion of pesticides in the 
environment depends on their properties, 
that is, most volatile pesticides go into the 
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atmosphere, persistent ones move long 
distances, whereas pesticides soluble in 
water are easily carried off with rainwater as 
runoff or by leaching. Apart from the 
properties of pesticides, the soil 
characteristics, that is, soil type, organic 
matter, metal content, and acidity of the soil 
also affect the dispersion of pesticides in the 
environment. Similarly, surface waters vary 
in their properties such as acidity, depth, 
temperature, clarity (suspended soil particles 
or biological organisms), flow rate, and 
general chemistry and all these affect 
pesticide movement and fate (McEwen and 
Stephenson 1979). Pesticide degradation 
involves the reactions that change most 
pesticide residues in the environment to 
inactive and generally less toxic and 
harmless compounds. These reactions are 
usually beneficial to the environment 
(Brown and Hock 1990).  
 
Dechlorination of chlorinated pesticides, that 
is, the cleavage of C–Cl bond, is a highly 
important step in the degradation of these 
xenobiotic substances. Although the C-Cl 
bond is not absolutely foreign to 
microorganisims, some of the synthetically 
produced organic chemicals, including 
pesticides and their metabolites have 
structures, which are totally unfamiliar to 
microorganisms. The microorganisms lack 
enzymes needed for their degradation 
(Mansour 1993, Mihale 2002). This is why 
some pesticides, such as DDT, its 
metabolites and HCH 
(hexachlorocyclohexane), are very 
recalcitrant in the environment. This is the 
main reason for the general low 
biodegradability of organochlorine 
compounds and their persistence in the 
environment (Mansour 1993).  
 
Very little has been reported in the literature 
on the chemometric analysis of pesticide 
residues data. Chemometric methods are 
useful tools in interpreting pesticide residues 
data and interactions between the measured 

variables due to the fact that the data contain 
multiple variables (Flórián et al. 1995, 
Mujunen et al. 1996). Eriksson et al. 2000, 
showed that chemicals released to the 
environment can be modeled and predicted 
as a function of the chemical properties of 
the pollutants by chemometric methods. The 
chemometric study of the ‘spatial and 
temporal hydrochemical changes in 
groundwater under the contaminating effects 
of fertilizers and wastewater’ conducted in 
Galacia, North-west Spain, revealed that the 
spatial distribution of the environmental 
pollutants is dictated by the prevailing type 
of contamination (Vidal et al. 2000). 

 
This paper, therefore, reports on the analysis 
of organochlorine pesticides residues data 
obtained from samples collected from 
Vikuge farm, Coast Region, Tanzania 
between 2000 and 2003 by the use of 
principal components analysis to disclose 
their spatial patterns and trends in the 
environment.  
 
MATERIALS AND METHODS 
Materials 
The study involved the analysis of pesticide 
residues analytical data sets obtained from 
water, surface soil and sediment samples 
from Vikuge farm in Kibaha district, Coast 
region. The data analysed included those 
which were obtained from the study 
conducted by Mihale 2002 who analysed 
soil samples from the point source while 
sediments and water samples were from 
water streams and wells nearest to the point 
sources. We then extended the data 
collection by sampling soil, sediment and 
water samples moving away from the point 
source to cover a distance of 7 km following 
the drainage direction while sampling at 
intervals of 1 km.  The data analysed in this 
study therefore, were collected from the year 
2000 to 2003. These data were collected 
systematically starting from the source (the 
place where the obsolete pesticides were 
dumped many years ago) and then moving 
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 away to about 7 km north of the source. Below are the data Tables (Tables 1, 2 and 
3) analysed in this study. 

 
Table 1: Pesticide residues data from Vikuge water samples µg/L. 
 

S/N Sample 
α 

HCH 
β -

HCH 
γ  

HCH 
δ – 

HCH 
pp'- 

DDE 
pp'- 

DDD 
op- 

DDT 
pp'- 

DDT 
γ – 

CHL 
1 TD 0.48 0.82 0.04 0.01 nd 0.5 0.41 10.07 0.001 
2 S1 0.02 nd 0.001 0.013 nd 0.04 0.014 0.08 nd 
3 S2 0.64 0.04 0.28 0.016 nd 0.04 1.13 4.67 nd 
4 S3 0.01 nd nd nd 0.01 0.01 nd nd nd 
5 S4 0.12 0.26 0.01 nd 0.02 0.13 0.8 0.07 0.005 
6 G1 0.03 nd nd nd nd 0.02 nd 0.64 nd 
7 G2 0.04 0.002 nd nd nd 0.16 nd 6.4 0.002 
8 G3 0.07 0.1 0.01 nd 0.02 0.03 0.16 0.91 nd 
9 G4 0.01 nd nd nd nd 0.01 0.02 0.25 0.001 
10 G5 4.7 1.41 0.2 0.042 0.13 1.12 8.19 19.08 nd 
11 G6 3.19 2.44 0.2 0.12 0.13 1.09 4.27 nd nd 
12 G7 0.02 nd nd nd nd 0.04 0.03 0.22 0.004 

Note; TD = Tap water, S1 to S4 = Water samples collected from the surface (sampling point 1 to 
4), G1 to G7 = Water samples collected from the wells (well 1 to 7), nd = not detected. 
 
Table 2: Pesticide residues from Vikuge surface soil samples in mg/kg dry weight 
 

S/N Sample α-HCH β-HCH γ-HCH δ-HCH pp'-DDE pp'-DDD op-DDT pp'-DDT γ-CHL 
1 B 34227.3 4885.1 5053 776.8 306.33 21535 7446.7 29983.5 49.21 
2 C 231.1 1765.2 74.88 193.9 695.58 12240.2 6592.8 13764.1 139.5 
3 D 2851.9 343.66 153.4 93.33 144.35 4712.99 2012.1 5231.14 nd 
4 20 m 1125.01 2426.6 nd nd 269.52 12086.8 3756.9 16821.2 59.6 
5 100 m N 0.00033 nd 0.001 nd 0.0463 0.0288 0.03 0.3247 nd 
6 1 km N  nd nd nd nd 0.0011 0.00215 nd 0.00745 nd 
7 2 km N nd nd nd nd 0.0003 0.0004 nd 0.0016 nd 
8 3 km N nd nd nd nd 0.0002 0.0003 nd 0.0008 nd 
9 4 km N nd nd nd nd nd nd nd nd nd 
10 6 km N 0.0003 nd nd nd 0.0002 0.0005 nd 0.0027 nd 
11 7 km N nd nd nd nd nd 0.0003 nd 0.0004 nd 

 
Note; B = Sample from the point source, C = Sample from the point source, D = Sample from the 
point source, 20 m sample collected 20 m away from the point source, 100 m N = Sample 
collected 100 m away from the point source in North direction, similarly to 1 Km N, 2km N, 3 km 
N, 4 km N, 6 km N and 7 km N, nd = not detected 
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Table 3: Pesticide residues data from Vikuge Sediment samples in mg/kg dry weight 
 

S/N Sample α-HCH β-HCH pp'-DDE pp'-DDD 0p-DDT pp'-DDT 
1 1U nd 278.87 98.75 417.61 692.51 nd 
2 2U nd 402.38 267.5 1027.08 1684.84 nd 
3 3U 33.72 1549.5 675.3 2053.27 4610.27 nd 
4 4U 194.95 3832.99 1633 2778 7946.51 nd 
5 1d 1383.21 1158.93 1194 5737.33 6351.68 36420.6 
6 2d 276.91 1831.1 889 3812.67 7428.55 20652.79 
7 3d 841.59 6546.39 1812 11011.08 16680.5 nd 
8 4d 196.62 923.03 504.1 2065.87 3347.71 15444.09 
9 3 km N nd nd 0.0042 0.0122 0.0299 0.2095 
10 4 km N nd nd 0.0048 0.0191 0.0103 0.2169 

 
Note; 1U to 4U = Samples collected from point 1 to 4 of Uphill from the point source, 1d to 4d = 
Samples collected from point 1 to 4 of downhill from the point source whereas 3 km N and 4 km 
N = Samples collected at that distance from the point source in North direction, nd = not detected. 
 
Methods of Analysis 
The principal components analysis of the 
pesticide residues and their metabolites data 
was performed using SIMCA-P (Soft 
Independent Modeling of Class Analogy) 
program [Umetri AB, Umea, Sweden] 
software (Eriksson et al. 1999). Before 
fitting the PC model, the data were scaled to 
unit variance (autoscaling). The autoscaling 
of data provides equal weight of each of the 
variables to the PC model (Farnham et al. 
2002).  After auto-scaling the PC model was 
fitted to find out patterns, spatial distribution 
of the residues components, degradation 
profiles of pesticide residues and their 
metabolites, concentrations and relationships 
among the components. The obtained PCs 
were used to obtain score (t1 versus t2) and 
loading (p1 versus p2) plots. The similarity 
of samples within a class was assessed by 
the proximity of samples to each other in 
plots derived from the principal components 
models. Score and loading plots were then 
used to simplify the visualization of the data 
relationships and patterns, as well as for the 
detection of outliers. Graphs of variables 
against samples were drawn to show the 
concentration decrease or increase of some 
of the pesticide residues in different samples 
away from the source. 

 
Histograms of individual variable modeling, 
which show the values of goodness of fit, R2 
and goodness of prediction, Q2, were 
recorded and used to check the relevance of 
the model. In performing the multivariate 
data analysis, the data were grouped 
according to the media i.e. data from water, 
soil and sediment samples were separately 
analysed to reveal the behavior of pesticides, 
metabolites and residues in the respective 
media. 
 
RESULTS AND DISCUSSION 
Data from Water Samples 
After scaling to unit variance the PC model 
was fitted. This resulted into one significant 
principal component in accordance with the 
cross validation criterion (Eriksson et al. 
1999, Wold 1978). Due to the high 
percentage of the data variance explained by 
the first principal component alone (i.e 
80.3%), it is clear that the distribution and 
degradation patterns of these nine pesticide 
residues in water are strongly correlated 
(Eriksson et al. 1999). Fig. 1a and 1b show 
the overview of the PCA model with two 
principal components and the overview of 
the individual variables respectively. 
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Figure 1a: Overview of the PCA model. Figure 1b: Overview of the individual 
variable modeling. 

Note; a-, b-, g- and d- on HCH; stands for α-, β-, γ- and δ-, respectively; whereas g- on CHL 
stands for γ-, Fig. 1b. 
 
Fig. 1b shows the modeling of the individual 
variables, and shows that α-HCH, β-HCH, γ-
HCH, pp’-DDE, pp’-DDD, pp’-DDT and 
op’-DDT are well modeled while, δ-HCH 
and γ-chlordane are not well captured by the 
model. This may be due to the quantities of 
these residues in the water, i.e the values of 
δ-HCH and γ-chlordane in the samples were 
very low or not recorded at all as they were 
below detection limit. It was observed that 
all the variables are highly loaded in the first 
PC except γ-chlordane, which is highly 
loaded in PC2.  This implies that the 
distribution and degradation profile of these 
pesticide residues in water samples obtained 
from Vikuge is highly correlated (Eriksson 
et al. 1999). However, the loading of γ-
chlordane in PC2 unlike the other pesticides 
indicates the existence of dissimilarities in 
some of the chemical properties governing 
these compounds in the environment.  It has 
been reported that γ-chlordane binds tightly 
to soil particles and is not likely to enter into 
water column, hence its low levels in water 

samples (Cioce 2008, Wiberg 2001). This 
explains why only traces were obtained in 
water samples.  
 
The score and loading plots (Fig. 2a and 2b) 
were recorded to show the distribution 
pattern of the pesticide residues and their 
metabolites in the sampled water. The score 
plot shows that observations S2, G5 and G6 
are lying somewhat far from the rest of the 
data points but inside the Hotelling’s T2 
tolerance ellipse. It can be observed that the 
rest of the observations form one cluster 
within the Hotelling’s T2 tolerance ellipse, 
Fig. 2a. Hotelling’s T2 is the detection tool 
for strong outliers and is a multivariate 
generalization of student’s t-test. It provides 
a check for observations adhering to 
multivariate normality. When used in 
conjunction with a score plot, Hotelling’s T2 
defines the normal operating area 
corresponding to, for instance, 95% or 99% 
tolerance (Eriksson et al. 1999). 
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Samples G5 and G6 are among the ground 
water samples (Mihale 2002). These 
samples were observed to have the highest 
concentrations of all the measured pesticide 
residues in water at the studied site 
compared to the rest of the samples. 
Generally, ground water samples showed 
higher levels of pesticide residues and their 
metabolites than either tap or surface water 
samples. The extent of ground water 
contamination by pesticides is usually 
determined by the magnitude of the sources, 
opportunities for interaction through the soil, 
chemical properties of the pesticides and 
geological conditions. The interaction 

between the pollutant and environmental 
conditions controls the pollutant’s behavior 
and ultimately its effect on the environment 
(Barbash and Resek 1996). The water 
samples were collected following the 
drainage system of Vikuge and therefore the 
accumulation of pesticide residues observed 
in ground water samples G5 and G6 was 
probably due to the sloping nature of the 
site.  Observation S2 (surface water sample) 
showed relatively high concentrations of 
pp’-DDT and op-DDT.  The loading plot, 
Fig. 2b, shows two main groups of the 
pesticide residues variables.  
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Figure 2a: Score plot of data from water samples. Data point labels as defined on Table 1. 
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Figure 2b: Loading plot for data from water samples; Note; a-, b-, g- and d- on HCH; stands for 

α-, β-, γ- and δ-, respectively; whereas g-  on CHL stands for γ-. 
 
One group consists of α-HCH, op’-DDT and 
pp’-DDT, whilst the second group is 
comprised of β-HCH, δ-HCH, pp’-DDE and 
pp’-DDD. γ-HCH is somewhat far from 
these clusters. γ-chlordane, on the other 
hand, is positioned at the opposite side of the 
rest of the variables and is highly loaded into 
PC2. These pesticide residues in water 
samples (except γ-chlordane), therefore, 
indicate that they undergo degradation since 
they are clustered at the right hand side of 
the loading plot (Eriksson et al. 1999). The 
position of γ-chlordane in the loading plot, 
i.e. very far from the main cluster and at the 
opposite direction to the rest of the 
variables, means that, it is negatively 
correlated to the rest of the variables.  
 
A line plot (Fig. 3) for these data was 
recorded in order to study the variation of 
the concentrations of the pesticide residues 
and their metabolites in water with 
increasing distance from the point source 

and also their distribution trend in tap water 
(TD), surface water (S1 – S4) and well water 
(G1 – G7). The plot shows that, generally 
there is no clear trend of pesticide residues 
and their metabolites concentration with 
increasing distance from the source. Sample 
number 7 (G2, sample collected from well 
2) has shown high concentration of pp’-
DDT, while sample number 10 (G5) has 
shown to have high concentrations of pp’-
DDT, α-HCH and op’-DDT in the order; 
pp’-DDT > op’-DDT > α-HCH, with 
relatively increasing distance from the points 
nearest to the source. Pesticide residues are 
carried by volatilization and runoff water 
away from the source and deposited in the 
water and sediments. This makes the 
sediments to be a secondary contamination 
source by continuously releasing the 
residues in the aqueous media through 
sediment-water interface equilibration.  
Also, due to the sandy nature of Vikuge soil 
(Mihale 2002), leaching of pesticide 
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residues to the groundwater (wells) is 
favored. The concentration of the DDTs in 
groundwater samples (wells) is higher than 
that of HCHs. This may be due to the rapid 
mineralization and formation of volatile 
organic compounds by the HCHs.  This 
observation is similar to results obtained in a 
study done in India (Singh 2001). In the 
study of the comparison of organochlorine 
pesticide levels in soil and groundwater of 
Agra, India, conducted by Singh, it was 
observed that the concentration of DDTs 
was higher compared to those of HCHs, 
contrary to expectation. Due to higher 
solubility of HCHs, their concentrations 
were expected to be much higher than DDTs 
in groundwater (Singh 2001). The rest of the 
samples have shown a decreasing trend of 
the pesticide residues with increasing 
distance from the source. A similar trend of 
decreasing DDT and HCH levels has been 
reported in a study in the Baltic sea by Roots 

and Zitko (Roots and Zitko 2003). It was 
reported that the organochlorine pesticides 
and PCB concentrations were higher near 
Riga city, the only local pollution source in 
the Baltic countries, but decreased in a 
gradient to background values at Saaremaa, 
which is away from the city. The results 
showed that there was a fast decrease of the 
pollutant load with increasing distance from 
the supposed source area. A decreasing trend 
with increasing distance from pollution 
source has also been reported in a study 
conducted in the Norwegian and Russian 
Arctic by Lie et al (Lie et al. 2003). It was 
found that HCHs levels closer to the 
possible pollution sources along the coast of 
Russia were higher than the open parts of 
the East Arctic ocean. Thus, concentrations 
of organochlorine pesticides were lower in 
the samples from regions far away from the 
pollution source (Lie et al. 2003).  
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Figure 3: Line plot showing the distribution and variation of pesticide residues concentration 

in different water sampling points in relation to the distance from the source. Note; 
a-, b-, g- and d- on HCH; stands for α-, β-, γ- and δ-, respectively; whereas g- on 
CHL stands for γ-. Numbers on the x-axis corresponds to the sampling points on 
Table 1. 
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 Data from Surface Soil Samples 
The data collected from surface soil samples 
were first scaled to unit variance (auto 
scaling). The PCA model fitted to the data 
resulted into two significant principal 
components according to the cross 
validation criterion (Eriksson et al. 1999, 
Wold 1978). The obtained PCs explained 
97.6% of the total variation of the data (R2 = 
0.976 and Q2 = 0.745) (see model overview, 
Fig. 4a). 

 
The first principal component explains 
78.6% of the total variance of the data, and 
this implies that the degradation patterns of 
the pesticide residues in the surface soil 
environment are highly correlated. Thus, the 
rate of degradation and microbial activities 
for all the pesticide residues in the surface 
soil are similar.  
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Figure 4a: Model overview for data from 
surface soil samples 

Figure 4b: Model overview of individual 
variables 

Note; a-, b-, g- and d- on HCH; stands for α-, β-, γ- and δ-, respectively; whereas g- on CHL 
stands for γ-, Fig. 4b. 
 
Fig. 4b shows the modeling of each variable. 
It is observed that all the variables are well 
modeled since the values of R2 and Q2 for 
each variable match well (Eriksson et al. 
1999).  
 
The score plot (Fig. 5a) shows the data to be 
clustered at the origin with observations B 
identified as a strong outlier since it lies 
outside the Hotelling’s T2 tolerance ellipse. 
Observation B contain data from sample 
collected from the point source and it was 

found to contain very high concentrations of 
all the measured pesticide residues 
compared to the rest of the samples. The 
loading plot (Fig. 5b) shows three main 
groups of the variables. All the variables are 
located at the right hand side of the loading 
plot, indicating that they all undergo similar 
distribution and degradation patterns. The 
clustered variables have similar chemical 
behavior in this environment.  
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Figure 5a: Score plot for data from surface soil samples; data points labels as defined on Table 

2. 
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Figure 5b: Loading plot for data from surface soil samples.  Note; a-, b-, g- and d- on HCH; 

stands for α-, β-, γ- and δ-, respectively; whereas g- on CHL stands for γ- 
 
Fig. 6 shows the trend of the variation of the 
concentrations of the pesticide residues and 
their metabolites in the surface soil. The plot 
shows that the concentrations of the 
pesticide residues and their metabolites 

generally decrease with increasing distance 
from the source. A similar trend has also 
been reported by Mihale (Mihale 2002), 

Roots et al  (Roots and Zitko 2003) and Lie 
et al (Lie et al. 2003).  
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Figure 6: Variation of pesticide residues concentration with increasing distance from the 

source. Note; a-, b-, g- and d- on HCH; stands for α-, β-, γ- and δ-, respectively; 
whereas g- on CHL stands for γ-. Numbers on the x-axis corresponds to the 
sampling points on Table 2. 

 
Data from Sediment Samples 
The PC model was fitted to the scaled data 
and resulted into two significant principal 
components. The obtained principal 
components explained 95.7% of the total 
variance of the data.  The PC model 
captured well all the variables analysed as 
shown in Fig. 7a and 7b.  
 
All the variables were highly loaded into the 
first principal component except α-HCH, 
which was highly loaded into the second 
principal component 
 
In the score plot (Fig. 8a) one group of the 
data, which is clustered around the origin is 

observed, while observations 1d and 3d are 
away from this main cluster, but within the 
Hotelling’s T2 tolerance ellipse. It is 
interesting to note that α-HCH is located 
away from the rest of the variables in the 
loading plot (Fig. 8b). α-HCH has been 
observed to exhibit different characteristics 
in these samples and sample 1d contains 
very high concentration of α-HCH. Sample 
1d, is a sample collected down the hill along 
the drainage of Vikuge, and therefore 
accumulation of pesticide residues at this 
sampling site was expected. 
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Figure 7a: Model overview for sediment samples. Figure 7b: Modeling of individual variables 

for sediment samples. 
Note; a- and b- on HCH; stands for α- and β-, respectively, Fig. 7b. 
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Figure 8a: Score plot for the data from sediment samples. Data point labels as defined on Table 
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Figure 8b: Loading plot for the data from sediment samples. Note; a- and b- on HCH; stands 

for α- and β-, respectively. 
 
The loading plot also shows that five 
variables form a cluster on the first PC, 
verifying their similar behavior in the 
sediments. The line plot, Fig. 9, shows that 
there is an increase in the concentration of 
the pesticide residues with increasing 
distance from nearest point to the point 
source. This trend was not expected. 
However, it can be explained by the fact that 
the sediment samples were collected from 
the hill going downwards following the 
drainage of Vikuge. For example, 
observation number 7 (sample 3d) revealed 
a very high concentration of op-DDT, pp’-
DDD and β-HCH away from the source. 
 
This observation contained samples from 
down the hill, and pesticides washed from 
up hills are expected to accumulate at this 

location. Hence, an overall increase in 
concentrations of pesticide residues was 
recorded (Mihale 2002) along the ditch from 
uphill to downhill. This can be explained by 
the flowing water’s ability to carry the 
residues either in solution or in suspension 
downhill. Mihale, 2002 reported a similar 
trend of pesticide residues in sediments. This 
observation is also supported by a report by 
Aguilar et al (Aguilar et al. 2002), in a study 
of the geographical and temporal variation 
in levels of organochlorine contaminants in 
marine mammals. It was observed that 
organochlorine contaminant concentrations 
tended to decrease in the regions where 
pollution was initially high but increased in 
regions located far from the pollution source 
as a consequence of atmospheric transport 
and redistribution (Aguilar et al. 2002).  
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Figure 9: Line plot showing the variation of pesticide residues concentration in sediments 

samples. Note; a- and b- on HCH; stands for α- and β-, respectively. Numbers on 
the x-axis corresponds to the sampling points on Table 3. 

 
CONCLUSIONS AND 
RECOMMENDATIONS 
Principal Components Analysis of the water, 
soil and sediment data sets from Vikuge has 
revealed that the obsolete pesticides dumped 
at Vikuge pasture farm undergo degradation 
with time. It was also found that the 
concentration of pesticide residues in the 
Vikuge environment decreases with 
increasing distance from the area where the 
obsolete pesticides were dumped (point 
source). However, analysis of the data from 
sediment samples has shown an increase in 
concentration with increase in distance from 
the nearest point to the point source. The 
surface soil samples were found to be mostly 
contaminated while water showed to be the 
least contaminated, with the trend being: 
surface soil > sediments > water.  
 
Based on the findings of this study it is 
recommended that: 
1. Control measures should be taken to 

avoid further contamination of the areas 
around Vikuge farm.  

2. Users of the pesticides and the 
community should be educated on the 
proper handling of these chemicals to 
avoid their side effects. 
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