NEW GLUCOPYRANOSYLGLYCERYL-N-OCTENYL ADIPATE AND BIOACTIVITY OF RETRO AND CONDENSED CHALCONES FROM TOUSSAINTIA ORIENTALIS

SS Nyandoro^{a*}, MHH Nkunya^a, CC Joseph^a, JO Odalo^b and I Sattler^c

^a Chemistry Department, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania ^bDepartment of Pure and Applied Sciences, Mombasa Polytechnic University College, P.O.Box 90420-80100, Mombasa, Kenya.

^cLeibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany

*E-mail address: samwel@chem.udsm.ac.tz, samnyandoro@yahoo.com

ABSTRACT

1-(3- β -D-Glucopyranosylglycer-2-yl)-6-N-(oct-2-enyl)-adipate, [orientalin, 1] was isolated as anew metabolite from the polar leaf extracts of Toussaintia orientalis Verdc (Annonaceae), together with the glycoflavonoids afzelin and quercitrin, and the indolidinoids toussaintines A-C. The 2-hydroxy-3,4,6-trimethoxychalcone reversed chalcones and 2-hydroxy-3,4,6-**(2)** trimethoxydihydrochalcone (3), the condensed chalcone (+)-6a,12a-dihydro-6-phenyl-7-styryl-6H,7H-[1]benzopyrano[4,3-][1]benzopyran (4), and mixtures of known triterpenoids and steroids were isolated from the less polar extracts of the root and stem bark of the same plant. The structures were established upon detailed analysis of spectroscopic data and other physical parameters. The chalcones exhibited antimicrobial, anti-inflammatory, antiproliferative and cytotoxic activity at varying efficacy levels, the reversed chalcone 2 demonstrating antiinflammatory potency against COX-2 enzyme that was superior to the standard drug Indomethacin. These results have further indicated the versatility of Annonaceae species in accumulating structurally varied natural products, some of them having unprecedented structures.

Keywords: *Toussaintia orientalis*; Annonaceae; orientalin, 1-(3-β-**D**-glucopyranosylglycer-2-yl)-6-*N*-(oct-2-enyl)-adipate; condensed and retrochalcones; anti-inflammatory.

INTRODUCTION

In our previous paper we reported the isolation of unprecedented antibacterial and *N*-cinnamovl tetraketide antifungal derivatives from Toussaintia orientalis Verdc leaves (Samwel et al. 2011). The investigations were prompted by the fact that previously we had obtained several antimicrobial, cytotoxic and inflammatory aristolactams, the pseudonucleoside $1-(2-C-\text{methyl-}\beta-\mathbf{D}$ ribofuranosyl)-uracil and other metabolites from the stem and root barks of that plant species (Odalo et al. 2010). That was an unprecedented isolation of a pseudonucleoside from a plant source, whose structurally similar derivatives are known antiviral marine sponge metabolites (Ichiba et al. 1995, Searle and Molinski 1995, Carroll et al. 2003, De Clercq 2003) with their clinically used examples including the anti-HIV drug azidothymidine that is dispensed as Retrovir® (Donia and Hamann 2003). Therefore, while carrying out chemical analysis of the leaves it was anticipated that, just as for the stem and root barks, the leaves would also yield the $1-(2-C-\text{methyl-}\beta-\mathbf{D}$ pseudo-nucleoside ribofuranosyl)-uracil or related compounds. The presence of such bio-medically potent metabolites in the leaves was considered to have particular significance since the leaves

being regenerative, could be a sustainable source of the compounds.

However, as we reported in Samwel et al. (2011), neither the pseudo-nucleoside 1-(2-C-methyl-β-D-ribofuranosyl)-uracil such similar compounds were obtained. Therefore, this prompted us to re-investigate the leaves from a new collection in order to establish unequivocally whether or not the pseudo-nucleoside or similar compounds were present in the leaves. Surely, even in the re-investigation neither the pseudonucleoside nor any similar compounds were obtained from the leaves. Instead we have a new metabolite 1-(3-β-**D**glucopyranosylglycer-2-yl)-6-N-(oct-2enyl)-adipate (1), together with the known glycoflavonoids afzelin and quercitrin (Eldahshan 2011) and the toussaintines A -C (Samwel et al. 2011). Furthermore, phytochemical investigations of less polar extracts of the root and stem barks yielded the retro-chalcones 2 and 3, the condensed chalcone 4 (Nkunya et al. 1993, Lien et al. 2000), as well as a mixture of polycarpol and 24-methylene-lanosta-7,9(11)-dien-3βol, and that of β -sitosterol and stigmasterol (Jung et al. 1990, Hasan et al. 1987. Chaurisia and Wichtl 1987, Greca et al. 1990), in addition to the aristolactam piperolactam C that we recently reported (Odalo et al. 2010) from the same source.

We now report the isolation, structural determination and biosynthetic postulation for the formation of the new metabolite orientalin [1-(3-β-**D**-glucopyranosylglycer-2-yl)-6-N-(oct-2-enyl)-adipate, (**1**)]. We further report the isolation, structural determination and biosynthetic considerations, antimicrobial, cytotoxic inflammatory, activity and antioxidant inhibition of the chalcones 2 - 4.

RESULTS AND DISCUSSION

Repeated chromatography of the dichloromethane and methanol extracts

from shade dried leaves gave a yellowish gum, whose structure **1** was established based on analysis of spectroscopic data. The HREIMS showed molecular ion peak at m/z 491.3840 ($C_{23}H_{41}NO_{10}$). The presence of free hydroxyl groups was deduced from the appearance of a broad IR band at 3394 cm⁻¹, while the strong absorptions at 1730 and 1650 cm⁻¹ appeared in the spectrum and were typical for ester and amide carbonyls, respectively (Silverstein *et al.* 1981). The presence of secondary acyclic amide system was further established by the strong IR band due to nitrogen-hydrogen bond deformation at 1458 cm⁻¹ (Kemp 1991).

Both the ¹H and ¹³C NMR spectral features (Table 1), as well as H/H and H/C interactions observed in the COSY, HSQC and HMBC spectra indicated the presence of pyranosyl (Kasai et al. 1977; Kasai et al. 1979; Breitmaier and Voelter, 1998) and glyceryl units as part of the molecular framework of the isolated compound, the latter unit being linked to the former at the anomeric carbon through an oxygen bridge (HMBC). Thus, the 13 C NMR spectrum consisted of resonances characteristic of a pyranosyl unit (δ 105.3, 76.8, 74.9, 72.4, 70.2 and 62.5), the downfield shift observed for the sugar residue anomeric carbon signal $(\delta_{\rm C} \ 105.3)$ and the corresponding upfield shift of the anomeric proton signal (δ_H 4.01, d, 6.9 Hz) being ascribed to the presence of a β-substituted aglycone (Kasai et al. 1977). In addition, the ¹H and ¹³C NMR spectra indicated a signal at δ 3.51 and 62.5 respectively, which were assignable to an oxymethylene group. The signals appearing at δ 3.61 and 70.2; and 3.28-3.23, and 76.8, 74.9 and 72.4, respectively were ascribed to four oxymethine units of the pyranosyl skeleton.

Furthermore, the 1 H and 13 C NMR spectra as well as COSY and HMBC interactions (Fig 2) indicated the glyceryl unit (δ_{C} 70.8, 68.7 and 64.0) to be linked to the anomeric

carbon through one of its terminal oxymethylene oxygen atoms, and to the rest of the molecule through the oxymethine oxygen, forming an ester functionality and hence accounting for the downfield shift of

the glyceryl oxymethine proton signal (δ 5.02) as the result of anisotropy of the ester carbonyl.

Figure 1: Chemical structures of compounds 1-5

Table 1: 1 H (600 MHz) and 13 C (150 MHz) NMR spectral data for orientalin (1) in CD₃OD".

H/C	δ_{H}	J (Hz)	δ_{C}	H/C	$\delta_{\scriptscriptstyle \mathrm{H}}$	J (Hz)	δ_{C}
1	-	-	175.1	1'	4.01	d, 6.9	105.3
2	2.57	br s	35.1	2'	3.28-3.23	m	76.8
3	1.38	br s	26.0	3'	3.28-3.23	m	74.1
4	1.38	br s	26.0	4'	3.28-3.23	m	72.4
5	2.57	br s	34.9	5'	3.61	br s	70.2
6	-	-	174.8	6′	3.50	dd, 12.5, 3.7	62.5
					3.52	dd, 12.5, 9.8	
7	2.80	d, J = 7.8	26.6	1"	4.25	dd, 12.1, 7.6	64.0
8	5.12	br s	130.9		4.00	d, 11.7, 8.2	
9	5.12	br s	129.2	2"	5.02	m	71.8
10	2.09	br s	28.2	3"	3.76	dd, 12.1, 4.6	68.7
11	1.10	br s	23.8		3.51	dd, 12.1, 7.6	
12	1.10	br s	23.7				
13	1.06	br s	21.6				
14	0.68	br s	14.5				

br s = broad signal not well resolved to show multiplicities.

Figure 2: Important HMBC interactions observed for orientalin (1)

Moreover, both the ¹H and ¹³C NMR spectra (Table 1) as well as the MS fragmentation pattern (Scheme 1) indicated the presence of a 1,6-dioxohexanyl unit (δ_{CO} 175.1 and 174.8), one side of which being linked to C- $2 (\delta_C 70.8)$ of the glyceryl group through an oxygen bridge, and on the other side to an oct-2-enyl unit via an amino atom (HMBC) forming an amide moiety. The presence of a dioxohexanyl system was further deduced by considering the NMR signals of methylene units (δ_H 2.57, 4H; δ_C 35.1 and 34.9) α to each of the two carbonyl carbons and their corresponding coupling relationships with the "middle" methylene moieties (COSY), and with the carbonyl carbons (HMBC). This was further considering corroborated by the fragmentation pattern observed in the MS that constituted peaks at m/z 169 and 296 arising from McLafferty-type cleavage as prompted by each of the two carbonyl groups (Scheme 1).

In addition, the 1 H and 13 C NMR spectra of 1 also indicated the presence of an isolated N-methylene group ($\delta_{\rm H}$ 2.80, 2H, d, J = 7.8 Hz, and $\delta_{\rm C}$ 26.6) adjacent to one of the two mutually coupling vinylic methine units ($\delta_{\rm H}$ 5.12, $\delta_{\rm C}$ 130.9) of an olefinic moiety as deduced from 1 H- 1 H COSY interaction. From the COSY and HMBC interactions it was evident that the above stated methylene unit as well as the olefinic moiety formed an octenyl portion of the molecule, as further indicated by the appearance of an MS fragmentation peak at m/z 111 (Scheme 1). Athoungh some multiplicities did not show

the expected splitting patterns hence appeared as broad singlets (*br s*), their coulpling relationship were established from ¹H-¹H COSY interactions. All the spectral features as hereby discussed established structure **1** for orientalin.

Biosynthetically, orientalin (1) could be considered to belong to the series of nitrogenous natural products we recently reported from the leaves of T. orientalis, having been derived from a tetraketide parent skeleton (Samwel et al. 2011). However, unlike the recently reported nitrogenous compounds, the tetraketide parent skeleton in compound 1 had not subsequently undergone cyclization, but rather it formed a peptide linkage on one end with hexanedioic acid (adipic acid) derived from the oxidation of the respective fatty acid. Thus, the hexanedioic acid could then undergo or would have undergone glycoglycerolation on the other end to form structure 1.

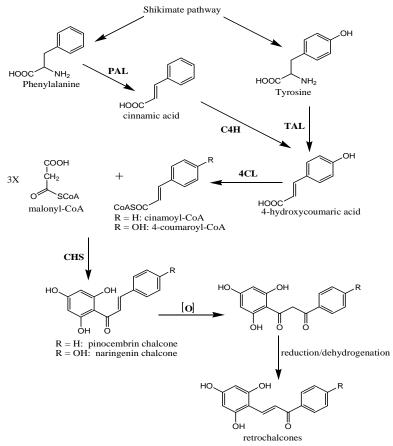
Although sugar derivatives occur as natural products, and previously also having been isolated from Annonaceae species, this is the first report of the natural occurrence of the glycerylated aminooctenyl adipate sugar derivative (1), and the first time to report the occurrence of the glycoflavanoids afzelin and quercitrin from *T. orientalis*. The structures of afzelin and quercitrin were deduced from analysis of their spectral data, which compared well with each other except for the signals appearing as the result of the absence of a C-3' hydroxyl group in the

former compound, as further confirmed from the literature data (Eldahshan 2011). Isolation of the new metabolite (1) have further indicated the versatility of Annonaceae species in accumulating natural products with varied chemical structures, some of the metabolites constituting unprecedented structural frameworks (Leboeuf *et al.* 1982; Nkunya 2005).

Scheme 1: MS fragmentation pattern for orientalin (1)

The two retro-chalcones 2 and 3, and the condensed chalcone dependensin (4) were isolated upon repeated chromatography of the pet ether extract of the root bark of T. orientalis, with compound 2 being also obtained from the dichloromethane extract of the root barks. The structures of the compounds 2-4 were established based on analysis of their spectroscopic data that were comparable to those reported in the literature (Nkunya et al. 1993; Lien et al. 2000). The co-occurrence of both compounds 2 and 3 is quite interesting from the biosynthetic point of view, although at this stage it is not possible to state the biosynthetic relationship between the two

compounds, which would be undoubtedly formed more or less through the same sequence. Generally, chalcones are the first isolable compounds of the flavonoid biosynthesis in plants, but do not necessarily accumulate to any appreciable degree unless the enzyme chalcone isomerase, which catalyses the cyclization of chalcone to flavone, is absent (Bohm 1998). Flavonoids are produced from phenylpropanoid formed through the shikimate pathway (Hwang et al. 2003). Phenylalanine ammonia lyase (PAL) catalyzes the first committed step of the phenylpropanoid pathway by mediating the conversion of the amino acid phenylalanine to trans-cinnamic acid


(Scheme 2). Cinnamate-4-hydroxylase (C4H) introduces a hydroxyl group at C-4 of cinnamic acid in the presence of molecular oxygen to yield trans-4-coumaric acid that could also be the product of tyrosine ammnonia lyase (TAL) transformation of tyrosine formed through the shikimate pathway. 4-Coumarate-CoA ligase (4CL) activates p-coumaric acid by the addition of coenzyme A to produce a 4coumarate-CoA ester, which is the preferred substrate of chalcone synthase (CHS). CHS catalyzes the condensation of three malonyl-CoA with 4molecules of coumaryl-CoA to generate the C₆-C₃-C₆ skeleton found in flavonoids (Scheme 2). During the reaction, a tetraketide intermediate is formed, which then 4.2',4',6'undergoes cyclization to tetrahydroxychalcone. Retro-chalcones are believed to be formed from the normal chalcones via an intermediate dicarbonyl compound which could then undergo reduction of the carbonyl initially at C-l and subsequent dehydration (Saitoh et al. 1975). The essential features of this 1.3carbonyl transposition are illustrated in Scheme 2 for the formation of retrochalcones.

When first isolated, dependensin was obtained as a racemic mixture together with 5,7,8-trimethoxyflav-3-ene (5) and retrochalcone 2 (Nkunya *et al.* 1993). Dependensin was then conceived to be a product of non-enzymatic acid catalyzed dimerization of 5 while compound 2 was shown to be a decomposition product of 5

(Elyashberg *et al.* 2002). However, dependensin was not detected among the decomposition products of **5** when the latter was exposed to oxygen in the presence of HCl, thereby indicating that despite being obtained in the racemic form dependensin isolated then was a true natural product.

The fact that compound 4 was obtained in an optically active form in the present investigations, could indicate the participation of enzymes either in its biosynthesis or in kinetic resolution of the previously non-enzymetically racemic compound. It might also be that there are two enzyme systems in the two plant species, viz. Uvaria dependens and T. orientalis (both belonging to the family Annonaceae) for the synthesis of racemic as well as optically active dependensin. This is a subject that could only be resolved upon analysis of the enzyme systems found in the two plant species.

The occurrence of a natural product both in a racemic and optically active form is unprecedented. While it is generally known that racemic compounds are not products of enzymatic reactions, the above situation might suggest the presence of enzymes that are able to facilitate kinetic resolution of a racemic compound such as dependensin, which would result from non-enzymatic processes to form an optically active compound. However, at this stage such a kinetic resolution process remains a subject for further research.

Scheme 2: Biosynthetic pathway for the formation of retro-chalcones in plants

chalcones 2-4 isolated from T. orientalis were evaluated for antimicrobial, anti-inflammatory, cytotoxic activity and antioxidant inhibition. The agar diffusion method was used to determine both the antibacterial and antifungal activity of the compounds. Table 2 presents the results as zones of inhibition in the antimicrobial assay. The active compounds showed the activity in the range of 12-16 mm. Generally, in this assay the potent compounds had better activity against fungi than bacteria. The fungal species *P. notatum* (P1) and bacterial species M. vaccae (M4) were more susceptible to the compounds as compared to the other fungi and bacteria assayed. Compound 3 showed a broader spectrum of antimicrobial activity and higher potency (inhibition zone of 16 mm) against *M. vaccae* (M4) than the other chalcones, but had lower efficacy than the standard drug Ciprofloxacin.

Results on the inhibition of purified NAD (P)-linked 3α -hydroxysteroid dehdrogenase as exerted by the isolated compounds at three different concentrations (30, 3 and 0.3 µg/ml), (IC₅₀ values and HKI classification of the observed activity) are given in Table 3. Generally, inhibition of NAD (P) linked 3α -hydroxylsteroid dehydrogenase of rat liver cytosol is correlated with anti-inflammatory activity in humans (Penning, 1985), and therefore this test could be

reliably used to evaluate potential antiinflammatory agents. In that test system, the chalcones 2-4 exhibited varying levels of activity, ranging from inactivity to very good activity. Compound 2 was the most active and fell into Class 3 of the Hans-Knöll Institute (HKI) classification, this indicating a very good anti-inflammatory activity for that compound. The condensed chalcone 4 exhibited good activity, which fell in Class 2 of the above classification, while dihydrochalcone 3 was inactive (Class 0). The loss of activity observed for the dihydrochalone 3 as compared to the chalcone 2 might have been due to the absence of a conjugated carbonyl system in 3. This would imply the significance of this functionality in the anti-inflammatory activity as it was previously observed for other activities (Rodriguez et al. 1997, Ohno et al. 1990).

inhibitions The percentage of cyclooxygenase (COX-1 and COX-2) enzyme of the isolated compounds (which were found to be active in the 3α -HSD assay) at three different concentrations (30, 3 and 0.3 µg/ml) are given in Table 4. Of the tested compounds, the reversed chalcone 2 showed potent anti-inflammatory activity against the COX-2 enzyme exhibiting 88% inhibition at 30 µg/ml concentration as the standard compared to drug Indomethacin which showed 66% inhibition at the same level of concentration. However, the compound was weakly active against COX-1 while the condensed chalcone 4 was weakly active against both COX-1 and COX-2. As previously stated, the difference in activity of the two compounds 2 and 4 could be the result of an α,β -unsaturated carbonyl system in compound 2 as the active site, which is absent in 4 (Rodriguez et al. 1997, Ohno et al. 1990).

It is of interest to note that the active compounds as hereby reported inhibited the expression of COX-1 and COX-2 enzymes.

The enzyme system COX-2 is highly expressed in inflammed tissues and is predominantly associated with development and continuance of inflammation in tissues (Xie et al. 1991). The COX pathway, for arachidonic acid metabolism provides many of the necessary inflammatory biochemical mediators (Xie et al. 1991), leading to the formation of inflammatory molecules which can exert profound biological effects influencing the process of inflammation. Therefore, the compounds that exhibited potent activity against both enzyme systems could provide templates from which pharmaceutically potent COX inhibitors might be derived. This is therefore an interesting area for future research on the isolated compounds.

When the three chalcones 2-4 were evaluated for their antioxidant inhibition of Xanthin Oxidase (XOD) and Horseradish Peroxidase (HRP) enzymes, the dihydrochalcone 3 exhibited weak inhibitory activity against HRP, but remained inactive against XOD (Table 5). All the other compounds were found to be non-inhibitors against the two enzyme systems at the tested concentrations.

The chalcones 2 and 3 also demonstrated appreciable activity in the antiproliferative and cytotoxic tests, compound 2 being more active than the dihvdro- analogue 3, as both antiproliferative and cytotoxic agents (Table 6). As for the other activities discussed earlier, the observed difference in activity outlined the importance of the conjugated carbonyl system in the activity of these compounds as both antiproliferative and cytotoxic agents. The condensed chalcone 4 weak exhibited activity as both antiproliferative and cytotoxic agent.

Chalcones are reported to possess a broad spectrum of biological activity, among which are cyctotoxicity (Go et al. 2005, Elias et al. 1995, Beutler et al. 1993), antitumour (Dhar 1981, Yamamoto et al.

1991, Chang et al. 2000, Zi et al. 2005), anti-inflammatory (Won et al. 2005), antiprotozoal (Frölich et al. 2005, Salem and Werbovetz 2005, Chen et al. 1994, Chen et al. 1997, Liu et al. 2001, Zhai et al. 1999), and antioxidant (Cioffi et al. 2003, Cuendet et al. 2000, Mohamad et al. 2004)

activities. Thus, the biological activity results reported in this paper further indicate the great potential of the chalcones isolated from *T. orientalis* as chemotherapeutic agents, for which additional research could yield even more interesting results.

Table 2: Zones of inhibition (mm) of chalcones (2-4) against bacterial and fungal strains given in Table 7

Compounds/Microorganisms	B1	В3	B4	В9	M4	H4	Н8	P1
2	0	0	0	0	15	0	0	15
3	12	0	0	0	16	0	11	15
4	0	0	0	0	13	0	0	15
Ciprofloxacin (5 µg/ml)	28	18	23	22	22			
Amphotericin (10 µg/ml)						14	20	18

Table 3: Anti-inflammatory activity of chalcones (**2-4**) against 3α-hydroxysteroid dehydrogenase (% inhibition values)

Compounds	30 μg/ml	3 μg/ml	0.3 μg/ml	IC ₅₀ (μg/ml)	HKI Class
2	80	51	0	3.06	3
3	34	0	0		0
4	74	34	0	8.60	2
Indomethacin	93	27	10	4.59	

Not active (0); active (1); more active (2); highly active (3)

Table 4: Anti-inflammatory activity of compounds **2** and **4** against COX-1 and COX-2

Compounds	Concentration	% Inhibition of COX-1 and CO		
	(µg/ml)	COX-1	COX-2	
2	30	50	88	
	3	32	22	
	0.3	27	13	
4	30	34	13	
	3	29	14	
	0.3	15	13	
Indomethacin	30		66	
	3	51		

Table 5: Horseradish Peroxidase inhibition of compound **3**

Compound	Concentration (µg/ml)	% Activity for Positive Control (100%)	Category (HKI)
3	40	29	1
3	20	69	1
	4	106	
Standard			
NAC	40	2	
	20	2	
	4	51	

Category 1 = Active; 3 = Very high activity

Table 6: Antiproliferative and cytotoxic effects of chalcones (2-4)

	Antiproliferative effec	et (µg/ml) Cyt	Cytotoxic effect (µg/ml)		
Compounds	L-929 (GI ₅₀)	K-562 (GI ₅₀)	HeLa (CC ₅₀)		
2	9.5	11.2	15		
3	34.1	41.2	32.1		
4	>50	>50	>50		

EXPERIMENTAL

General experimental procedures: Column chromatography: Silica gel 60 (Merck 230mesh) and Sephadex® LH-20 (Pharmacia); thin layer chromatography (TLC): Pre-coated plates (Merck, Kieselgel 60 F_{254} , 0.20 mm) and visualization: UV/VIS and anisaldehyde reagent/heat at ca. 110 °C; UV (λ_{max} , nm): Perkin Elmer (Lambda spectrophotometer; IR (λ_{max} , cm⁻¹): Perkin Elmer FTIR-100 spectrophotometer; ¹H (400 and 600 MHz) and ¹³C (100 and 150 MHz) NMR: Bruker Avance Topspin Spectrometer and CDCl3 or CD3OD as solvent, TMS internal standard for ¹H NMR and solvent signal for 13C NMR; highresolution electron ionization mass spectra (HREIMS): GCT Premier TOF mass spectrometer, 70 eV and 180 °C source temperature; optical rotations: Perkin-Elmer Model 241 and JASCO P-1020 Polarimeters.

Plant materials: The root and stem barks of *T. orientalis* Verdc. were collected in October 2004 while leaves were re-collected in February 2008 from Zaraninge Forest Reserve at the edge of Saadani National Park in Bagamoyo District, Tanzania and the plant's identity was confirmed at the Herbarium of the Department of Botany, University of Dar es Salaam where a voucher specimen is preserved under number FMM 3330.

3.3 Extraction and isolation: The air-dried and powdered leaves (2 Kg) were sequentially extracted using pet ether, CH₂Cl₂ and MeOH at RT (2 x 48 h) and residual solvent removed under *vacuo*. The CH₂Cl₂ extract (38.4 g) on repeated column chromatography, eluting with a gradient of *n*-hexane and EtOAc polarity increase

(silica gel, 25-100% v/v EtOAc/n-hexane gradient elution) yielded the previously reported indolidinoids toussaintines A – C (Samwel *et al.* 2011) and orientalin (**1**, 56 mg). The MeOH extract (78.6 g) on repeated column chromatography (silica gel, 25-100% v/v EtOAc/n-hexane gradient elution) also gave compound **1** (290 mg), the toussaintines A – C, as well as afzelin and quercitrin (Eldahshan, 2011).

The air dried and powdered root and stem barks (each 1 Kg) were sequentially extracted using pet ether, dichloromethane and methanol at room temperature, each extraction lasting for three days. Removal of residual solvent under reduced pressure furnished the crude extracts (38.2 g). The extracts were subjected to silica gel column chromatography, eluting with a gradient of *n*-hexane and EtOAc, and the fractions were then pooled on the basis of observations from TLC analysis. Repeated chromatography of the pet ether extract of the root bark yielded a mixture of βsitosterol) and stigmasterol (Chaurisia and Wichtl 1987; Greca et al. 1990), a mixture of polycarpol and 24-methylene-lanosta-7,9(11)-dien-3β-ol, (Jung *et al.* 1990; Hasan al. 1987), 2-hydroxy-3,4,6trimethoxychalcone (2), 2-hydroxy-3,4,6trimethoxydihydrochalcone (3) and (+)dipendensin (4, $[\alpha]_D$; +16.34°). The dichloromethane extract of the root bark on repeated chromatography on silica gel and yielded then Sephadex[®] LH-20 piperolactam C (Odalo et al. 2010), 2 and polycarpol, all of which were purified further by recrystallization from EtOAc. The pet ether extract of the stem bark on chromatography repeated yielded compounds 2 and polycarpol, and a mixture of β -sitosterol and stigmasterol, compounds 2 and polycarpol having been recrystallized from MeOH and EtOAc, respectively.

1-(3-β-D-Glucopyranosylglycer-2-yl)-6-N-(oct-2-enyl)-adipate, [orientalin 1]: Light yellow gum; yield, 346 mg; [α]_D -7.9° (MeOH, c 1.38); anisaldehyde – pink then black; IR (film), $\lambda_{\rm max}$ cm⁻¹ 3394, 2927, 2855, 1730, 1650 and 1458; HREIMS, m/z (rel. int. %) 491.3840 ([M]⁺, C₂₃H₄₁NO₁₀), 341 (45), 339 (43), 313 (75), 264 (41), 262 (30), 257 (41), 245 (46), 239 (42), 229 (100), 227 (66), 213 (30), 213 (30), 201 (80), 185 (40), 171 (98), 155 (85), 144 (32), 131 (34), 129 (39), 127 (53) 125 (46), 111 (41), 109 (67) and 107 (33); ¹H and ¹³C NMR: Table 1.

Biological Assays

Agar diffusion assay for anti-microbial activity (antibacterial and antifungal activity): The agar diffusion method was used for the determination of antibacterial and antifungal activity of the isolated compounds against the microorganisms listed in Table 7.1. The microorganisms were obtained from the Hans Knolls Institute for Natural Product Research and Infectious Biology (HKI) in Jena, Germany. Approximately 9 mL of Müller-Hinton agar for bacteria and Sabouraud Dextrose Agar for fungi (Oxoid, UK) were poured into petri dishes (9 cm in diameter) and inoculated with the respective organisms. Wells (4 mm) were punched out of the solid agar using pipette tips, and 1 mL of 50 μg/mL of the test compounds and control antibiotics (Ciprofloxacin, 5µg/mL and Amphotericin, 10 µg/mL) were placed in each well. The petri dishes were then incubated at 30 °C and 35 °C for the test bacterial and fungal strains, respectively, for 20 h and the average diameter of the inhibition zone surrounding the wells was measured.

Table 7: Bacterial and fungal strains used to test for efficacy of the isolated chalcones.

Code	Organism Name	Type	HKI Code
BNA	Bacillus subtilis ATTC 6633 (IMET) NA	В	B1
SA	Staphylococcus aureus (IMET 10760) SG511	В	B3
EC	Escherichia coli SG 458	В	B4
PA	Pseudomonas aeruginosa K 799/61	В	B9
MV	Mycobacterium vaccae IMET 10670	В	M4
SS	Sporobolomyces salmonicolor SBUG 549	F	H4
CA	Candida albicans BMSY 212	F	H8
PN	Penicilium notatum	F	P1

B = Bacterium; F = Fungus

Antiinflammatory activity [3 **a**hydroxysteroid dehydrogenase (3**\alpha**+HSD) assay: This assay was carried out following standard procedures as adopted from the literature (Penning 1985). Cell free systems for the determination of antiinflammatory and antiphlogistic activity are critical as it is a complex reaction of living organisms. Nonetheless, in vitro assays for the screening of inhibitors of key enzymes like 3α-HSD and prostaglandin H synthase are important tools. The NAD (P)-linked enzyme (3α-HSD) has been purified from rat liver cytosol. This enzyme is known to catalyze the reduction of a variety of 3ketosteroids. for example 5α dihydrotestosterone (5α-androstan-17β-O-5β-dihydrocortisone (5β-pregnan- $17\alpha,21$ -diol-3,11,20-trione) to corresponding 3α-hydroxysteroids through the consumption of NADPH and, therefore, plays an important role in cortisone metabolism. The NADPH consumption is determined photometrically as a decrease of extinction at 340 nm. Indomethacin and Ibuprofen are used as reference compounds. A surprising property of the purified enzyme is that it is inhibited by the major classes of non-steroidal and steroidal antiinflammatory drugs in the rank order of their therapeutic potency. A high correlation exists between the logarithm of the concentration of drug required to produce 50% inhibition of the purified 3αhydroxysteroid dehydrogenase (log IC_{50} value) and the dose required to produce an anti-inflammatory response in humans. These observations led to the suggestion that the extent of inhibition of 3α -hydroxysteroid dehydrogenase could be used to predict anti-inflammatory drug potency (Penning 1985).

Preparation of cytosol: Adult Sprague-Dawley rats (150-200 g) were killed by cervical dislocation. The livers were excised and homogenized in 3 volumes of 50 mM Tris-HCl of pH 8.6 containing 250 mM sucrose, 1 mM dithiothreitol and 1 mM EDTA. Homogenates were centrifuged at 100,000 x g for 30 min; the supernatant (cytosol; i.e. of 3α-hydroxysteroid dehydrogenase) was used for enzyme assays without further processing.

Preparation of purified 3α-hydroxysteroid dehydrogenase: A homogeneous enzyme was prepared according to the method described by Penning (1985). This enzyme had a final specific activity of 3.58 μmol of 5β -dihydrocortisone reduced/min/mg of protein.

Enzyme assays: The reduction of 5β -dihydrocortisone was monitored by measuring the changes in the absorbance of the pyridine nucleotide at 340 nm. Each assay (1.0 ml) contained the following:

Potassium phosphate buffer (pH 6.0, 0.840 ml of 1M), NADPH (20 μ L of 9 M), 5 β dihydrocortisone (10 µL of 5 mM), and acetonitrile (30 µL). The reactions were initiated by the addition of enzyme (30-50 ug of cytosolic protein or 0.6 ug of purified enzyme), and optical density change was followed over a period of 5 min. Control incubation experiments by addition of the cytosol in which either 5β-dihydrocortisone or NADPH was absent, indicated that the presence of both substances was required before the cytosol would promote a change in absorbance at 340 nm. The % inhibition of the isolated compounds was generated at three different concentrations (30, 3 and 0.3) µg/ml). Increasing amounts of the isolated compound were added to the standard assay system, and the concentration of the compound required to cause the rate of 5βdihydrocortisone reduction by 50% (IC₅₀) was computed from the resulting natural logarithm dose-response curves.

Chemiluminescent cyclooxygenase (COX) assav: Two isoforms inhibitor cyclooxygenase (COX-1 and COX-2) are rate-limiting enzymes biosynthesis of prostaglandins, this being the conversion of arachidonic acid to prostaglandin H₂ molecules that are responsible for the progression of some inflammatory responses (Smith et al. 1991; Cao and Prescott, 2002). COX-2 is the inducible isoform expressed in response to pro-inflammatory cytokines, endotoxins and tumor promoters (DuBois et al. 1998) and is predominantly associated with inflammation (Pai et al. 2001). This inducible COX-2 is believed to be the target enzyme for the anti-inflammatory activity of non-steroidal anti-inflammatory drugs (Xie et al. 1991). Therefore, it was of interest to observe if the isolated compounds that had shown antiinflammatory activity in the 3α-HSD test had effects on these enzymes that would lead to pathogenic changes, if overexpressed. The COX inhibitor assay utilizes

the heme-catalyzed hydroperoxidase activity of cyclooxygenases to generate luminescence in the presence of a luminal-type cyclic naphthalene hydrazide and the substrate arachidonic acid. Arachidonate-induced luminescence has been shown to be an index of the real-time catalytic activity and demonstrated the turnover inactivation of the enzyme (Forghani *et al.* 1998). The chemiluminescent COX assay induces both COX-1 and COX-2 enzymes in order to screen isoenzyme-specific inhibitors.

Preparation of reagents: All the reagents used were commercially obtained from Cayman Chemical Company in the form of a Chemiluminescent COX (ovine) Inhibitor Screening Assay kit. The assay buffer (0.1 M Tris-HCl, pH 8) was prepared by diluting 3 ml of commercially available assay buffer concentrate with 27 ml of HPLC grade water and stored at 4 °C. The heme solution was prepared by diluting 58 µl of the commercial heme with 942 ul of the assay buffer (dilute). The COX-1 and COX-2 enzymes, which were stored at -80 °C were each prepared for the assay by diluting 30 1 of enzyme with 570 µl of assay buffer (dilute) and stored on ice. Arachiodonic acid, which was used as the substrate was stored at -80 °C. The supplied substrate (100 lμ) was diluted by 10μ0 μl of 0.1 M KOH and the resulting solution diluted with 9.8 ml of assay buffer (dilute) to achieve a final concentration of 116 μM. The chemiluminescent substrate, which contained a naphthalene hydrazide solution, was used as supplied.

Assay procedures: The assay was performed in triplicate at 25 °C and the test samples were dissolved in DMSO. Heme (10 μl), assay buffer (10 μl), and solvent (10 μl) were added to three wells, which served as background wells. Three other wells which were designated as 100% initial activity wells were each constituted with heme (10 μl), enzyme (either COX-1 or COX-2, (10

 μ l)), and solvent (10 μ l). Three other wells, which served as the inhibitor wells were constituted with heme (10 μ l), enzyme (either COX-1 or COX-2 (10 μ l)), and test sample (10 μ l). The assay buffer (200 μ l) was added to all the wells. The plate was then inserted into the Luminometer and the

chemiluminiscent subsrate (10 μ l) dispensed from the Luminometer and arachidonic acid (50 μ l) was immediately dispensed to all the wells and reading taken for 10 seconds per well. The percent inhibition of the enzymes was determined from the average Relative Luminescent Units (RLU) values as follows:

% Inhibtion =
$$100 - (\frac{\text{RLU inhibitor sample-RLU background}}{\text{RLU initial activity-RLU background}} \times 100)$$

Antioxidant inhibition The activity: antioxidant tests were carried out by employing Xanthine-Oxidase (XOD) and Horseradish peroxidase (HRP) systems. XOD is an important oxidative enzyme, which is involved in normal biological processes and also in pathological conditions. XOD catalyses the oxidation of hypoxanthine, and xanthine to uric acid which plays a crucial role in causing gout (Kong et al. 2000), whereas, the generation of superoxide radicals (ROS, reactive oxygen species) are involved in many pathological processes such as inflammation, atherosclerosis, cancer and aging (Halliwell et al. 1992). Therefore, it was of interest to observe if the isolated compounds could affect this enzyme that leads to pathogenic changes, if overexpressed.

derived chemiluminescence Lucegenin (LDCL) was used to measure inhibition of XOD as described by Li et al. (1998). ROS reduces lucigenin by producing lucigenin cation radical which reacts with the peroxidase radical to yield an unstable dioxetane intermediate. The lucigenin dioxetane decomposes to produce two molecules of N-methylacridone, one of which is in an electronically excited state, which upon relaxation to the ground state emits a photon. The production of ROS can then be monitored through sensitive measurement of the photon emission. Allopurinol, which inhibits XOD activity,

was used as a standard drug in this assay. XOD catalyzes the degradation of azothioprin, an immunosuppressant substance that is used after organ transplant. Allopurinol is used for co-medication in order to slow degradation of azothioprin.

The assay mixtures for enzymatic system contained XOD (4 µg/ml) and xanthine (0.5 mM) in air-saturated PBS (1 ml) containing 0.1 mM diethylenetriaminepentaacetic acid (DTPA) and dark-adapted lucigenin (5 µL, 5 lucigenin-derived The μM). chemiluminescence was monitored with a Luminometer at 37 °C and light emission was recorded after every min for 20 min, and was then expressed as mean arbitrary light units/min. The blank reaction, that is, a control contained all components except the enzyme. The concentrations of the test samples were 0.16, 0.8 and 4 μ g/ml.

N-acetylcysteine (NAC) was used as a standard scavenger. Thiol-containing molecules possess antioxidant properties that are of interest in the pharmacological inactivation of reactive oxygen species (ROS), particularly in the treatment of chronic inflammatory diseases. The *in vitro* antioxidant activity of a new agent is examined and compared with NAC. This assay was used to assess the antioxidant potential of the isolated compounds.

Luminol (5-amino-2,3-dihydro-1,4-Horseradish phthalazinedione) and peroxidase (HRP, E.C. 1.11.1.7, Grade II) were obtained from Boehringer Mannheim (Germany). Hydrogen peroxide (30%) was obtained from Merck (Milan, Italy) while Trolox (6-hydroxy-2,5,7,8tetramethylchroman-2-carboxylic acid, in pure form, >98%), was obtained from Fluka (Milan, Italy). All other reagents and compounds were of analytical-grade. All solutions were prepared with pyrogen-free reagent-grade water, using a Milli-Q system (Millipore, Milan, Italy). A Luminoscan Ascent luminometer (Labsystems, Helsinki, Finland) was used to perform the automated assays. The data were recorded using a computer and the Ascent software for kinetics measurements. The 96-wells blank microplates employed in the automated assay were from Thermo Labsystems, Helsinki, Finland.

The reagent solutions used in the assay were prepared, stored and employed according to published literature chemiluminescent (CL) antioxidants assay (Girotti et al. 2002). The calibration curve (1-10 µM Trolox) was measured once a week and any time when the stable reagents (luminol and HRP solutions) were newly prepared. Otherwise, at each experimental session only one standard concentration was measured, that compared with calibration curve, was used to calculate a "correction factor". When this value was lower than 0.8 or higher than 1.2 a new calibration curve was prepared. In each well of the microplate were manually injected 10 ul of the sample or standard solution and 20 µl of HRP solution. The reaction started when 200 µl of CLM were injected automatically in each well. Signal intensities and count numbers (RLU) automatically recorded.

Antiproliferative and cytotoxicity assay: Antiproliferative and cytotoxic activity of the compounds was determined as described in the literature (Dahse et al. 2001). The compounds were assayed on cell lines K-562 (human chronic myeloid leukaemia) and (mouse fibroblast) for antiproliferative effects (GI₅₀, concentration which inhibited cell growth by 50%), and against HeLa cells for their cytotoxicity effects (GC_{50} = concentration at which cells are destroyed by 50%; used partially in referring to the lysis of cells). The cells were incubated at 10 different concentrations of each of the target compounds. Cells of established suspended cell lines K-562 (DSM ACC 10) and adherent Huvec (L-929) were cultured in the RPMI medium (Dahse et al. 2001). The adherent cells of L-929 were harvested at the logarithmic growth phase after trypsinization, using 0.25% trypsin in PBS containing 0.02% EDTA (Biochrom KG L2163). For each experiment with K-562, L-929, and HeLa cells approximately 10,000 cells were seeded with 0.1 mL RPMI 1640 (GIPCO BRL 21875-034) containing 25 µg/ml Gentamicin sulfate (BioWhittaker 17-528Z but without HEPES) per well of the 96-well microplates (K-562: NUNC 163320, L-929, HeLa: NUNC 167008). For the cytotoxicity assay, the HeLa cells were pre-inoculated for 48 h without the test substances. The dilution of the compounds was carefully made on the monolayers of HeLa cells after the preincubation time.

Cells of L-929, K-562 and HeLa in the presence of the respective test compounds were incubated for 72 h at 37°C in a humidified atmosphere and 5% CO₂. Suspension cultures of K-562 in microplates were analyzed by an electronic cell analyzer system (CASY 1, SCHÄRFE, Reutlingen, Germany) using an aperture of 150 µm. The contents of each well (0.2 ml) in the microplate were diluted 1:50 with CAYSTON (SCHÄRFE). Every count/ml was automatically calculated from the

arithmetic mean of three successive counts of 0.4 ml each. From the dose response curves the GI₅₀ values were calculated using the computer program CASYSTAT. The GI₅₀ value was defined as the 50% intersection line of the concentrationresponse curve, determined by the cell count/ml as compared to the control. The essential parameters for the estimation of growth inhibition and for changes in the diameter distribution curve were expressed as diagrams. The monolayer of the adherent Huvec (L-929) and HeLa cells were fixed by glutaraldehyde and stained with a solution of methylene blue. After washing gently, the stain was eluted by 0.2 ml of 0.33 M HCl into the wells. The optical densities were measured at 630 nm in a microplate reader.

ACKNOWLEDGEMENT

Financial support from Sida/SAREC and DAAD/NAPRECA gratefully is acknowledged. We thank Mr. Frank M. Mbago, the Herbarium Curator, the Department of Botany at the University of Dar es Salaam, for locating and identifying the investigated plant species. We express our thanks to Prof. R.T. Majinda (University of Botswana) for facilitating HRMS analysis and to Mr. Dilip Jagjivan (University of KwaZulu-Natal) for NMR analysis of the new compound, orientalin. Dr Corinna Lange, Dr Gollmick Friedrich, Dr Hans-Martin Dahse, Dr Ute Möllman and Ms Heinecke Heike of Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany are appreciatively acknowledged for carrying out bioassays and spectral analysis of chalcones reported in this paper.

REFERENCES

Alias Y, Awang K and Hadi AHA 1995 An antimitotic and cytotoxic chalcone from *Fissistigma lanuginosu*. *J. Nat. Prod.* **58**: 1160-1166.

- Beutler JA, Cardellina JH, Gray GN, Prather TR, Shoemaker RH, Boyd MR, Lin CM, Hamel E and Cragg GM 1993 Two New Cytotoxic Chalcones from Calythropsis aurea. J. Nat. Prod. 56: 1718-1722.
- Bohm BA 1998. Introduction to flavonoids, Harwood Academic Publishers, Amsterdam.
- Breitmaier E and Voelter W 1998 Carbon-13 NMR spectroscopy: High-resolution methods and applications in organic chemistry, VCH Publishers Ltd., New York.
- Cao Y and Prescott SM 2002 Many actions of cyclooxygenase-2 in cellular dynamics and in cancer." *J. Cell Physiol.* **190**: 279-286.
- Carroll SS, Tomassini JE, Bosserman M, Getty K, Stahlhut MW, Eldrup AB, Bhat B, Hall D, Simcoe AL, LaFemina R, Rutkowski CA, Wolanski B, Yang Z, Migliaccio G, De Francesco R, Kuo LC, MacCoss M, Olsen, DB 2003 Inhibition of hepatitis C virus RNA replication by 2'-modified nucleoside analogs. *J. Biol. Chem.* 278: 11979-11984.
- Chang LC, Chavez D, Song LL, Farnsworth NR, Pezzuto, JM and Kinghorn AD 2000 Absolute configuration of novel bioactive flavonoids from *Tephrosia purpurea*. Org. Lett. 2: 515-518.
- Chaurisia N and Wichtl M 1987 Sterols and steryl glycosides from *Urtica dioica*. *J. Nat. Prod.* **50**: 881-885.
- Chen M, Christensen SB, Zhai L, Rasmussen MH, Theander TG, Frokjaer S, Steffansen S, Davidsen J and Kharazmi A 1997) The novel oxygenated chalcone, 2,4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite *Plasmodium yoelii in vivo. J. Infect. Dis.* 176: 1327-1333.
- Chen M, Theander TG, Christensen BS, Hviid L, Zhai L and Kharazmi A 1994) Licochalcone A, a new antimalarial agent inhibits *in vitro* growth of the

- human malaria parasite *Plasmodium* falciparum and protects mice from *P.* yoelii infection. Antimicrob. Agents Chemother. **38**: 1470-1475.
- Cioffi G, Escobar LM, Braca A and de Tommasi N 2003 Antioxidant chalcone glycosides and flavanones from *Maclura* (*Chlorophora*) *tinctoria*. *J. Nat. Prod.* **66**: 1061-1064.
- Cuendet M, Potterat O, Salvi A, Testa B and Hostettmann K 2000 A Stilbene and dihydrochalcones with radical scavenging activities from *Loseleuria procumbens*. *Phytochemistry*, **54**: 871-874.
- Dahse, H.-M, Schlegel B and Gräfe U 2001.

 Differentiation between inducers of apoptosis and nonspecific cytotoxic drugs by means of cell analyzer and immunoassay using the cell lines K-562 (Human Chronic Myeloid Leukemia) and L-929 (Mouse Fibroblast) for antiproliferative effects and Hela (Human Cervix Carcinom) for cytotoxic effects. *Pharmazie*. **56**: 489-491.
- De Clercq E 2003 Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir for intreatment of DNA virus and retrovirus infections. *Clinical Microbiol. Rev.* **16**: 569-596.
- Dhar DN 1981 The chemistry of chalcones and related compounds, Wiley-Interscience, New York, NY.
- Donia M, Hamann MT 2003 Marine natural products and their potential applications as antiinfective agents. *Lancet Infect. Dis.* **3**: 338-348.
- DuBois RN, Abramson SB, Croford L, Gupta RA Simon LS, Van de Putate LB and Lisky PE 1998 cyclooxygenase in biology and disease. *FASEB J.* **12**: 1061-1073.
- Eldahshan OA 2011 Isolation and structure elucidation of phenolic compounds of *Carob* leaves grown in Egypt. *Curr. Res. J. Biol. Sci.* **3**: 52-55.

- Elyashberg ME, Blinov KA, Williams AJ, Martirosian ER and Molodtsov SG 2002 Application of a new expert system for the structure elucidation of natural products from their 1D and 2D NMR data. *J. Nat. Prod.* **65**: 693-703.
- Forghani F, Ouellet M, Keen S, Percival MD and Tagari P 1998 Analysis of prostaglandin G/H synthase-2 inhibition using peroxidase-induced luminol luminescence. *Anal. Biochem.* **264**: 216-221.
- Frölich S, Schubert C, Bienzle U and Jenett-Siems K 2005 *In vitro* antiplasmodial actvity of prenylated chalcone derivatives of Hops (*Humulus lupulus*) and their interaction with Haemin. *Antimicrob. Agents Chemother.* **55**: 883-887.
- Girotti S, Bolelli L, Fini F, Budini R and Arfelli G 2002 Chemiluminescent determination of antioxidant capacity in beverage. *J. Food Sci.* **14**: 113-122.
- Go ML, Wu X and Liu XL 2005 Chalcones: An update on cytotoxic and chemoprotective properties. *Curr. Med. Chem.* **12**: 483-499.
- Greca MD, Monaco P and Previtera L 1990 Stigmasterols from *Typha latifolia*. *J. Nat. Prod.* **53**: 1430-1435.
- Halliwell B, Gutteridge JMC and Cross CE 1992 Free radicals, antioxidants and human diseases-Where are we now? *J. Lab. Clin. Med.* **119**: 598-620.
- Hasan CM, Shahnaz S and Muhamma I 1987 Chemistry in the annonaceae, XXIII. 24-Methylene-lanosta-7,9(11)-dien-3β-ol from *Artabotrys odorotissimus* Stem Bark. *J. Nat. Prod.* **50**: 762-763.
- Hwang EI, Kaneko M, Ohnishi Z and Horinouchi S 2003 Production of plant-specific flavanones by *Escherichia coli* containing an artificial gene cluster. *Appl. Environ. Microbiol.* **69**: 2699-2706.
- Ichiba T, Nakao Y, Scheuer PJ, Sata NU, Kelly-Borges M 1995 Kumusine a

- chloroadenine riboside from a sponge, *Theonella* sp. *Tetrahedron Lett.* **36**: 3977-3980.
- Jung JH, Pummangura S, Chaichantipyuth C, Patarapanich C and McLaughlin JL 1990 Bioactive constituents of *Melodorum* fruticosum." *Phytochemistry*, **29**: 1667-1670.
- Kasai R, Okihara M, Asakawa J, Mizutani K and Tanaka O 1979 ¹³C NMR study of α and β-anomeric pairs of D-manopyranosides and L-rhamnopyranosides. *Tetrhedron*, 35: 1427-1432.
- Kasai R, Suzuo M, Asakawa J, Mizutani K and Tanaka O 1977 Carbon-13 chemical shifts of isoprenoid— β - \mathbf{D} -glucopyranosides and $-\beta$ - \mathbf{D} -mannopyranosides. Stereochemical influences of aglycone alcohols. *Tetrahedron Lett.* **2**: 175-178.
- Kemp W 1991 Organic Spectroscopy, 3rd ed. Macmillan, Hong Kong, p 65, 79.
- Kong LD, Cai Y, Huang WW, Cheng CH and Tan RX 2000 Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. *J. Ethnopharmacol.* **73**: 199-207.
- Leboeuf M, Cave A, Bhaumik PK, Mukherjee B, Mukherjee P 1982 The phytochemistry of the Annonaceae. *Phytochemistry*, **21**: 2783-2813.
- Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier J and Trush MA 1998 Validation of Lucigenin (Bis-*N*-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. *J. Biol. Chem.* **273**: 2015-2023.
- Lien TP, Porzel A, Schmidt J, Sung TV and Adam G 2000 Chalconoids from Fissistigma bracteolatum. Phytochemistry, 53: 991-995.
- Liu M, Wilairat P and Go ML 2001 Antimalarial alkoxylated and hydroxylated chalones: Structureactivity relationship analysis. *J. Med. Chem.* **44**: 4443-4452.

- Mohamad H, Abas F, Permana D, Lajisa NH, Ali AM, Sukari MA, Hin TYY, Kikuzaki H and Nakatani N 2004 DPPH free radical scavenger components from the fruits of *Alpinia rafflesiana* Wall. ex. Bak. (Zingiberaceae). *Z. Naturforsch.* **59c**: 811-815.
- Nkunya MHH 2005 Unusual metabolites from some Tanzanian indigenous plant species. *Pure Appl. Chem.* **77**: 1943-1955.
- Nkunya MHH, Waibel R and Achenbach H 1993 Three flavonoids from the stem bark of the antimalarial *Uvaria* dependens. *Phytochemistry*, **34**: 853-856.
- Odalo JO, Joseph CC, Nkunya MHH, Sattler I, Lange C, Friedrich G, Dahse HM, Möllman U 2010 Aristolactams, 1-(2-C-methyl-β-D-ribofuranosyl)-uracil and other bioactive constituents of *Toussaintia orientalis. Nat. Prod. Comm.* **5**: 253-258.
- Ohno K, Higaki J, Takechi S and Hirata M 1990 Specific role of an alpha,beta-unsaturated carbonyl group in gamma-glutamylcysteine synthetase induction by prostaglandin A2. *Chem. Biol. Interact.* **76**: 77-87.
- Pai R, Szabo IL, Giap AQ, Kawanaka H and Tarnawski AS 2001 Non-steroidal anti-inflammatory drugs inhibit reepithelialization of wounded gastric monolayers by interfering with actin, src, FAK and Tensin Signaling. *Life Sci.* **69**: 3055-3071.
- Penning TM 1985 Inhibition of 5ß-dihydrocotisone reduction in rat liver cytosol: A rapid spectrophotometric screen for nonsteroidal anti-inflammatory drug potency. *J. Pharm. Sci.* **74**: 651-654.
- Rodriguez AM, Enriz RD Santagata LN, Jauregui EA, Pestchanker MJ and Giordano OS 1997 Structurecytoprotective activity relationship of simple molecules containing an

- alpha,beta-unsaturated carbonyl system. *J. Med. Chem.* **40**: 1827-1834.
- Saitoh T, Shibata S and Sankawa U 1975 Biosynthesis of echinatin: A new biosynthetical scheme of retrochalcone. *Tetrahedron Lett.* **16**: 4463-4466.
- Salem MM and Werbovetz KA 2005 Antiprotozoal compounds from *Psorothamnus polydenius. J. Nat. Prod.* **68**: 108-111.
- Samwel S, Odalo JO, Nkunya MHH, Joseph CC and Koorbanally NA 2011 Toussaintines A-E: Antimicrobial indolidinoids, cinnamoylhydrobenzofuranoid and cinnamoylcyclohexenoid from Toussaintia orientalis leaves. Phytochemistry, 72: 1826-1832.
- Searle PA and Molinski TF 1995 Trachycladines A and B: 2'-C-methyl-5'deoxyribofuranosyl nucleosides from the marine sponge *Trachycladus laevispirulifer*. J. Org. Chem. **60**: 4296-4298.
- Silverstein RM, Bassler GC and Morrill TC 1981 Spectrometric identification of organic compounds, 4th ed., John Wiley and Sons, New York.
- Smith WL, Marnett LJ and Dewitt DL 1991 Prostaglandin and Thromboxane Biosynthesis. *Pharmacol. Therap.* **49**: 153-179.

- Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP and Lin CN 2005 Synthetic chalcones as potential anti-inflamatory and cancer chemopreventive agents. *Eur. J. Med. Chem.* **40**: 103-112.
- Xie WL, Chipman JG, Robertson DL, Erikson RL and Simmons DL 1991 Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. *Proc. Nat. Acad. Sci.* USA, **88**: 2692-2696.
- Yamamoto S, Aizu E, Jiang H, Nakadata T, Kiyoto I, Wang JC and Kato R 1991 The potent anti-tumor-promoting agent isoliquiritigenin. *Carcinogenesis*, **12**: 317-323.
- Zhai L, Chen M, Blom J, Theander TG, Christensen, SB and Kharazmi A 1999 The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. *Antimicrob. Agents Chemother.*, **43**: 793-803.
- Zi X, Simoneau AR and Flavakawain A 2005 A novel chalcone from Kava extract induces apoptosis in bladder cancer cells by involvement of bax protein-dependent and mitochondriadependent apoptotic pathway and suppresses tumor growth in mice. *Cancer Res.* **65**: 3479-3486.