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Introduction

Let G be a simple connected graph with vertex
set V (G) and edge set E(G). The order n of a
graph G is the number of vertices of G and the
size m of a graph G is the number of edges of G.
The degree of a vertex v ∈ V (G), dG(v), is the
number of edges incident with v. The distance
dG(u, v) between two vertices u, v ∈ V (G) is the
number of edges in a shortest path connecting
them. The minimum and the maximum degree
of a graph G are denoted by δ(G) and 4(G) re-
spectively. The eccentricity of v, eccG(v), is the
distance between v and any vertex which is fur-
thest from v in G. A triangle-free graph is an
undirected graph in which no three vertices form
a triangle of edges. The line graph L(G) of a
graph G is the graph with vertex set E(G) in
which e, f ∈ E(G) are adjacent as vertices in
L(G) if and only if they are adjacent as edges in
G.

Topological indices have been extensively
studied due to their chemical importance. Some
of these topological indices are based on degrees
of vertices and the most common such indices
are the first Zagreb index (M1(G)) and second
Zagreb index (M2(G)) of a graph G are defined,
respectively, as

M1(G) =
∑

v∈V (G)

d2(v) and M2(G) =
∑

uv∈E(G)

d(u)d(v).

For any simple graph G of size m, we can easily
observe that

||L(G)|| = 1

2
M1(G)−m.

Let us present definitions of well-known distance-
based topological indices of graphs. The Wiener
index of a graph G,

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

the degree distance

DD(G) =
∑

{u,v}⊆V (G)

(deg(u) + deg(v))d(u, v),

the Gutman index

Gut(G) =
∑

{u,v}⊆V (G)

deg(u)deg(v)d(u, v)

the eccentric connectivity index

ECI(G) =
∑

v∈V (G)

ecc(v)d(v)

and the eccentric distance sum

EDS(G) =
∑

v∈V (G)

ecc(v)D(v)

where D(v) =
∑

u∈V (G) d(u, v).
More studied distance based topological in-

dices are: Wiener, degree distance, eccentric con-
nectivity and eccentric distance sum (Agrawalet
al. (2000); Dankelmann et al. (2009); Morgan et
al. (2011); Hua et al. (2011); Ilić et al. (2011)).
The generalized transformation graph Gxy, intro-
duced recently by Basavanagoud et al.(2015), is
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a graph whose vertex set is V (G)∪E(G), and for
α, β ∈ V (Gxy), the vertices α and β are adjacent
in Gxy if and only if (a) and (b) holds:
(a) α, β ∈ V (G), α, β are adjacent in G if x = +

and α, β are not adjacent in G if x = −.
(b) α ∈V(G) and β ∈ E(G), α, β are incident
in G if y = + and α, β are not incident in G if
y = −.

One can obtain the four graphical transfor-
mations of graphs as G++, G+−, G−+ and G−−.
Note that G++ is just the semitotal-point graph
of G, which was introduced by Sampathkumar
and Chikkodimath et al.(1973). The vertex v of
Gxy corresponding to a vertex v of G is referred
to as a point vertex. The vertex e of Gxy corre-
sponding to an edge e of G is referred to as a line
vertex.

In Ramane et al.(2018), the harmonic index
and Randic index of generalized transformation
graphs were obtained.

We study the Wiener index, the degree dis-
tance, the Gutman index, the eccentric connec-
tivity index and the eccentric distance sum of
the generalized transformation graphs G+− and
G−+.

By definition of simple graph an edge is a sub-
set of two element set of the vertex set of V(G).
That is, if e is an edge between vertices u and v,
then we write e = {u, v}. So for any edge e and
a vertex u of a graph, we write u ∈ e to mean u
and e are incident. If u and e are not incident,
we write u /∈ e. For two edges e1 and e2, we write
e1 ∩ e2 6= ∅ to mean the edges are adjacent, and
e1 ∩ e2 = ∅ to mean the edges are not adjacent.

Distance based indices of the
generalized transformation graph G+−

In this section, we determine the expressions for
the Wiener index, Gutman index, degree dis-
tance, eccentric connectivity index and eccentric
distance sum of the generalized transformation
graph G+− in terms of the order and size of the
underline graphs. In Basavanagoud et al.(2015),
the authors found the degrees of all vertices of
Gxy.

Proposition 1. Let G be a graph with n ver-
tices and m edges. Let u ∈ V (G) and e ∈ E(G).

Then the degrees of point and line vertices in Gxy

are
(i). dG++(u) = 2dG(u) and dG++(e) = 2.
(ii). dG+−(u) = m and dG+−(e) = n− 2.
(iii). dG−+(u) = n− 1 and dG−+(e) = 2.
(iv). dG−−(u) = n + m − 1 − 2dG(u) and
dG−−(e) = n− 2.

Now let us first determine the distance be-
tween any two vertices of the generalized trans-
formed graph G+−.

Proposition 2. Let G be a graph of order n ≥ 5
and δ(G) ≥ 2. Then for u, v ∈ V (G) and
e, e1, e2 ∈ E(G), the distance between any two
vertices in G+− is given by

(i). dG+−(u, v) =

{
1 if uv ∈ E(G)

2 if uv /∈ E(G)

(ii). dG+−(u, e) =

{
1 if u /∈ e,
2 if u ∈ e

(iii). dG+−(e1, e2) = 2

(iv). ecG+−(u) = 2 = ecG+−(e)

Proof. (i). Let u, v ∈ V (G). By the definition
of G+−, u and v are adjacent in G if and only if
they are adjacent in G+−. That is, if uv ∈ E(G),
then uv ∈ E(G+−) and hence dG+−(u, v) = 1.
Suppose uv /∈ E(G). Then dG(u, v) ≥ 2. If
dG(u, v) = 2, then dG+−(u, v) = 2. Suppose
dG(u, v) ≥ 3. Let u = u1u2 . . . uk = v be a (u, v)-
path of length at least 3 in G. Let ei = uiui+1.
Then clearly e2 is not incident with both u and
v in G. Thus by the definition of G+−, e2 is ad-
jacent with both u and v in G+−. That is, ue2v
is a (u, v)-path of length 2 in G+− and hence
dG+−(u, v) = 2.

(ii). Let u ∈ V (G) and e ∈ E(G). By the
definition of G+−, u and e are not incident in
G if and only if u and e are adjacent in G+−.
That is, if u /∈ e, then ue ∈ E(G+−) and hence
dG+−(u, e) = 1. Suppose u ∈ e. Then e = uv for
some v ∈ V (G). Since δ(G) ≥ 2 there exists a
vertex w in G such that uw ∈ E(G) and w 6= v.
This implies that e and w are not incident in G
and hence we ∈ E(G+−). This implies that, uwe
is a (u, e)-path in G+− and hence dG+−(u, e) = 2.

(iii). Let e1, e2 ∈ E(G). By the definition of
G+−, no two edges are adjacent in G+−. That is,
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dG+−(e1, e2) ≥ 2. Let e1 = ab and e2 = cd. Since
G has at least five vertices there exists a vertex
u ∈ V (G) \ {a, b, c, d}. Then u is not incident
with e1 and e2. This implies that u is a djacent
with both e1 and e2 in G+−. That is, e1ue2 is a
(e1, e2)-path in G+− and hence dG+−(e1, e2) = 2.
(iv).Follows from (i), (ii) and (iii).

From propositions (1) and (2), we have the fol-
lowing results.

Theorem 1. Let G be a graph of order n ≥ 5

and size m. If δ(G) ≥ 2, then
(i) W (G+−) = n2 +m2 +mn− n
(ii) DD(G+−) = 3nm2 + 3mn2 − 4mn− 4m2

(iii) Gut(G+−) = 3(mn)2 − 5nm2 − mn2 − m3

+4mn− 4m
(iv) ECI(G+−) = 4m(n− 1)
(v) EDS(G+−) = 4n2 + 4m2 + 4mn− 4n.

Proof. (i). W (G+−)

=
∑

{u,v}⊆V (G+−)

dG+−(u, v)

=
∑

{u,v}⊆V (G)

dG+−(u, v)+
∑

u∈V (G)
e∈E(G)

dG+−(u, e)

+
∑

{e1,e2}⊆E(G)

dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

dG+−(u, v) +
∑

{u,v}⊆V (G)
uv/∈E(G)

dG+−(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

dG+−(u, e)+
∑

u∈V (G)
e∈E(G),u/∈e

dG+−(u, e)

+
∑

{e1,e2}⊆E(G)

dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

1 +
∑

{u,v}⊆V (G)
uv/∈E(G)

2 +
∑

u∈V (G)
e∈E(G),u∈e

2

+
∑

u∈V (G)
e∈E(G),u/∈e

1 +
∑

{e1,e2}⊆E(G)

2

= m+ 2

((
n

2

)
−m

)
+ 2(2m) + nm

−2m+ 2

(
m

2

)
= 2

(
n

2

)
+ 2

(
m

2

)
+ nm+m

= n2 +m2 + nm− n.

(ii). DD(G+−)

=
∑

{u,v}⊆V (G+−)

(dG+−(u)+dG+−(v))dG+−(u, v)

=
∑

{u,v}⊆V (G)

(dG+−(u)+dG+−(v))dG+−(u, v)

+
∑

u∈V (G)
e∈E(G)

(dG+−(u) + dG+−(e))dG+−(u, e)

+
∑

{e1,e2}⊆E(G)

(dG+−(e1)+dG+−(e2))dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

(dG+−(u) + dG+−(v))dG+−(u, v)

+
∑

{u,v}⊆V (G)
uv/∈E(G)

(dG+−(u) + dG+−(v))dG+−(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

(dG+−(u) + dG+−(e))dG+−(u, e)

+
∑

u∈V (G)
e∈E(G)
u/∈e

(dG+−(u) + dG+−(e))dG+−(u, e)

+
∑

{e1,e2}⊆E(G)

(dG+−(e1)+dG+−(e2))dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

2m+
∑

{u,v}⊆V (G)
uv/∈E(G)

4m+
∑

u∈V (G)
e∈E(G),u∈e

2(m+ n− 2)

+
∑

u∈V (G)
e∈E(G),u/∈e

(m+ n− 2)+
∑

{e1,e2}⊆E(G)

4(n− 2)

= 2m2 + 4m

((
n

2

)
−m

)
+ 4m(m+ n− 2)

+(m+ n− 2)(nm− 2m) + 4(n− 2)

(
m

2

)
= 3nm2 + 3mn2 − 4mn− 4m2.

(iii). Gut(G+−)

=
∑

{u,v}⊆V (G+−)

(dG+−(u)dG+−(v))dG+−(u, v)

=
∑

{u,v}⊆V (G)

(dG+−(u)dG+−(v))dG+−(u, v)

+
∑

u∈V (G)
e∈E(G)

(dG+−(u)dG+−(e))dG+−(u, e)
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+
∑

{e1,e2}⊆E(G)

(dG+−(e1)dG+−(e2))dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

(dG+−(u)dG+−(v))dG+−(u, v)

+
∑

{u,v}⊆V (G)
uv/∈E(G)

(dG+−(u)dG+−(v))dG+−(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

(dG+−(u)dG+−(e))dG+−(u, e)

+
∑

u∈V (G)
e∈E(G),u/∈e

(dG+−(u)dG+−(e))dG+−(u, e)

+
∑

{e1,e2}⊆E(G)

(dG+−(e1)dG+−(e2))dG+−(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

m2+
∑

{u,v}⊆V (G)
uv/∈E(G)

2m2+
∑

u∈V (G)
e∈E(G),u∈e

2m(n−2)

+
∑

u∈V (G)
e∈E(G),u/∈e

m(n−2)+
∑

{e1,e2}⊆E(G)

2(n−2)2

= m3 + 2m2

((
n

2

)
−m

)
+4m2(n−2)

+m(n− 2)(nm− 2m) + 2(n− 2)2
(
m

2

)
= 3(nm)2−5nm2−mn2−m3+4mn−4m.

(iv). ECI(G+−)

=
∑

u∈V (G+−)

ecG+−(u)dG+−(u)

=
∑

u∈V (G)

ecG+−(u)dG+−(u)+
∑

e∈E(G)

ecG+−(u)dG+−(u)

=
∑

u∈V (G)

2m+
∑

e∈E(G)

2(n− 2)

=4mn− 4m.

(v). Let u ∈ V (G). Then
DG+−(u)

=
∑

v∈V (G+−)

dG+−(u, v)

=
∑

v∈V (G)

dG+−(u, v) +
∑

e∈E(G)

dG+−(u, e)

=
∑

v∈V (G)
v∈NG(u)

dG+−(u, v) +
∑

v∈V (G)
v/∈NG(u)

dG+−(u, v)

+
∑

e∈E(G)
e∈u

dG+−(u, e) +
∑

e∈E(G)
e/∈u

dG+−(u, e)

= dG(u)+2(n−1−dG(u))+2dG(u)+m−dG(u)
= 2(n− 1) +m.

Let e ∈ E(G). Then

DG+−(e) =
∑

v∈V (G+−)

dG+−(e, v)

=
∑

v∈V (G)

dG+−(e, v) +
∑

f∈E(G)

dG+−(e, f)

=
∑

v∈V (G)
v∈e

dG+−(e, v)+
∑

v∈V (G)
v/∈e

dG+−(e, v)

+
∑

f∈E(G)

dG+−(e, f)

= 2(2) + n− 2 + 2(m− 1)

= n+ 2m.

EDS(G+−)

=
∑

v∈V (G+−)

eccG+−(v)DG+−(v)

=
∑

v∈V (G)

eccG+−(v)DG+−(v)+
∑

e∈E(G)

eccG+−(e)DG+−(e)

=
∑

v∈V (G)

2(m+ 2(n− 1)) +
∑

e∈E(G)

2(n+ 2m)

= 4n2 + 4m2 + 4nm− 4n.

Distance based indices of the
generalized transformation graph G−+

In this section, we determine the expressions for
the Wiener index, Gutman index, degree dis-
tance, eccentric connectivity index and eccentric
distance sum of the generalized transformation
graph G−+ of a triangle free graph in terms of the
order and size of the underline graphs. First let
us determine the distance between any two ver-
tices of the generalized transformed graph G−+.

Proposition 3. Let G be a triangle free graph
of order n and size m. Then for all u, v ∈ V (G)
and e, e1, e2 ∈ E(G), the distance between any
two vertices of G−+ is given by

(i). dG−+(u, v) =

{
2 if uv ∈ E(G)

1 if uv /∈ E(G)
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(ii). dG−+(u, e) =

{
1 if u ∈ e,
2 if u /∈ e

(iii). dG−+(e1, e2) =

{
2 if e1 ∩ e2 6= ∅
3 if e1 ∩ e2 = ∅

(iv). ecG−+(u) = 2

(v). 2 ≤ ecG−+(e) ≤ 3

Proof. (i). Let u, v ∈ V (G). By the definition
of G−+, u and v are adjacent in G if and only
if they are not adjacent in G−+. If uv /∈ E(G),
then uv ∈ E(G−+) and hence dG−+(u, v) = 1.
Suppose e = uv ∈ E(G). Then uv /∈ E(G−+)

and ue, ve ∈ E(G−+). Thus uev is a (u, v)-path
in G−+ and hence dG−+(u, v) = 2.

(ii). Let u ∈ V (G) and e ∈ E(G). By the def-
inition of G−+, u and e are incident in G if and
only if u and e are adjacent in G−+. If u ∈ e,
then ue ∈ E(G−+) and hence dG−+(u, e) = 1.
Suppose u /∈ e. Then e = vw for some v, w ∈
V (G) \ {u}. Since G is triangle free graph we
have uv /∈ E(G) or uw /∈ E(G). By the definition
of G−+, uv ∈ E(G−+) or uw ∈ E(G−+). That
is, either uve or uwe is a (u, e)-path of length 2
and hence dG−+(u, e) = 2.

(iii). Let e1, e2 ∈ E(G). By the definition of
G−+, no two edges are adjacent in G−+. That
is, dG−+(e1, e2) ≥ 2. Let e1 = ab and e2 = cd.
If e1 and e2 are adjacent in G, then e1we2 is a
(e1, e2)-path of lenth 2, where w is the vertex
which is incident with both e1 and e2. That is,
dG−+(e1, e2) = 2. Suppose e1 and e2 are not
adjacent in G. Then {a, b} ∩ {c, d} = ∅. Since
G is triangle free graph we have ac /∈ E(G) or
ad /∈ E(G) or bc /∈ E(G) or bd /∈ E(G). Without
loss of generality assume that ac /∈ E(G). Then
ac ∈ E(G−+) and hence e1ace2 is a (e1, e2)-path
of lenth 3 in G−+. That is, dG−+(e1, e2) = 3.
(iv) and (v) follows from (i), (ii) and (iii).
Using propositions (1) and (3), we have the
following results on distance based indices of
G−+.

Theorem 2. Let G be a triangle free graph of
order n ≥ 5 and size m. Then

(i). WG−+)=3

(
m

2

)
+

(
n

2

)
+2nm−M1(G)

(ii). DD(G−+)=n3 − 2n2 + 6m2 + 2mn2

+2mn+ n− 6m− 4M1(G)

(iii). Gut(G−+)=

(
n

2

)
(n− 1)2 + 5m(n− 1)2

+6m2 − 2m− 4M1(G)

(iv). ECI(G−+)

=

{
2n2 + 4m− 2n if 4(L(G)) = m− 1,

2n2 + 6m− 2n if 4(L(G)) ≤ m− 2

(v). If 4(L(G))=m − 1, then EDS(G−+) =
2n2 + 6m2 + 8mn − 2n − 6m − 2M1(G) and if
4(L(G)) ≤ m − 2, then EDS(G−+) = 2n2 +

9m2+10mn− 2n− 9m− 3M1(G), where M1(G)

is the first Zagreb index of G and L(G) is the line
graph of G.
Proof. (i). W (G−+)

=
∑

{u,v}⊆V (G−+)

dG−+(u, v)

=
∑

{u,v}⊆V (G)

dG−+(u, v) +
∑

u∈V (G)
e∈E(G)

dG−+(u, e)

+
∑

{e1,e2}⊆E(G)

dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

dG−+(u, v)+
∑

{u,v}⊆V (G)
uv/∈E(G)

dG−+(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

dG−+(u, e)+
∑

u∈V (G)
e∈E(G),u/∈e

dG−+(u, e)

+
∑

{e1,e2}⊆E(G)
e1∩e2=∅

dG−+(e1, e2)+
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

2+
∑

{u,v}⊆V (G)
uv/∈E(G)

1 +
∑

u∈V (G)
e∈E(G),u∈e

1

+
∑

u∈V (G)
e∈E(G),u/∈e

2 +
∑

{e1,e2}⊆E(G)
e1∩e2=∅

3 +
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

2

=2m+

(
n

2

)
−m+2m+2(nm−2m)+2||L(G)||

+3

((
m

2

)
−||L(G)||

)
=

(
n

2

)
+3

(
m

2

)
+2nm−m− ||L(G)||

=

(
n

2

)
+3

(
m

2

)
+2nm− 1

2
M1(G).
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From the last equality we can easily observe, a
simple relation between the Wiener index of the
general transformed graph G−+ and the first Za-
greb index of the underline graph G, which is,

W (G−+)+
1

2
M1(G)=

(
n

2

)
+3

(
m

2

)
+2nm.

(ii). DD(G−+)

=
∑

{u,v}⊆V (G−+)

(dG−+(u)+dG−+(v))dG−+(u, v)

=
∑

{u,v}⊆V (G)

(dG−+(u)+dG−+(v))dG−+(u, v)

+
∑

u∈V (G)
e∈E(G)

(dG−+(u)+dG−+(e))dG−+(u, e)

+
∑

{e1,e2}⊆E(G)

(dG−+(e1)+dG−+(e2))dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

(dG−+(u)+dG−+(v))dG−+(u, v)

+
∑

{u,v}⊆V (G)
uv/∈E(G)

(dG−+(u)+dG−+(v))dG−+(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

(dG−+(u)+dG−+(e))dG−+(u, e)

+
∑

u∈V (G)
e∈E(G),u/∈e

(dG−+(u)+dG−+(e))dG−+(u, e)

+
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

(dG−+(e1)+dG−+(e2))(dG−+(e1, e2)

+
∑

{e1,e2}⊆E(G)
e1∩e2=∅

(dG−+(e1)+dG−+(e2))(dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

4(n−1)+
∑

{u,v}⊆V (G)
uv/∈E(G)

2(n−1)

+
∑

u∈V (G)
e∈E(G),u∈e

(n+1)+
∑

u∈V (G)
e∈E(G),u/∈e

2(n+1)

+
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

8+
∑

{e1,e2}⊆E(G)
e1∩e2=∅

12

= 4m(n− 1)+2(n− 1)

((
n

2

)
−m

)
+2m(n+ 1)

+2(n+1)(nm−2m)+8||L(G)||+12
((

m

2

)
−||L(G)||

)
= −2M1(G)+n

3−2n2+2n2m+6m2+2mn+n−6m.

From the last equality we can easily observe, a
simple relation between the degree distance of
the general transformed graph G−+ and the first
Zagreb index of the underline graph G, which is,

DD(G−+) + 2M1(G)=n
3 − 2n2 + 2n2m+ 6m2

+2mn+ n− 6m.

(iii). Gut(G+−)

=
∑

{u,v}⊆V (G−+)

(dG−+(u)dG−+(v))dG−+(u, v)

=
∑

{u,v}⊆V (G)

(dG−+(u)dG−+(v))dG−+(u, v)

+
∑

u∈V (G)
e∈E(G)

(dG−+(u)dG−+(e))dG−+(u, e)

+
∑

{e1,e2}⊆E(G)

(dG−+(e1)dG−+(e2))dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

(dG−+(u)dG−+(v))dG−+(u, v)

+
∑

{u,v}⊆V (G)
uv/∈E(G)

(dG−+(u)dG−+(v))dG−+(u, v)

+
∑

u∈V (G)
e∈E(G),u∈e

(dG−+(u)dG−+(e))dG−+(u, e)

+
∑

u∈V (G)
e∈E(G),u/∈e

(dG−+(u)dG−+(e))dG−+(u, e)

+
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

(dG−+(e1)dG−+(e2))dG−+(e1, e2)

+
∑

{e1,e2}⊆E(G)
e1∩e2=∅

(dG−+(e1)dG−+(e2))dG−+(e1, e2)

=
∑

{u,v}⊆V (G)
uv∈E(G)

2(n− 1)2+
∑

{u,v}⊆V (G)
uv/∈E(G)

(n− 1)2
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+
∑

u∈V (G)
e∈E(G),u∈e

2(n− 1)+
∑

u∈V (G)
e∈E(G),u/∈e

4(n− 1)

+
∑

{e1,e2}⊆E(G)
e1∩e2 6=∅

8 +
∑

{e1,e2}⊆E(G)
e1∩e2=∅

12

= 2m(n−1)2+(n−1)2
((

n

2

)
−m
)
+4m(n−1)

+4(n−1)(nm−2m)+8||L(G)||

+12

((
m

2

)
−||L(G)||

)
= −2M1(G)+

(
n

2

)
(n− 1)2

+5m(n− 1)2+6m2−2m.

From the last equality we can easily observe, a
simple relation between the Gutman index of the
general transformed graph G−+ and the first Za-
greb index of the underline graph G, which is,

Gut(G+−)+2M1(G)=

(
n

2

)
(n−1)2+5m(n−1)2

+6m2 − 2m.

(iv). ECI(G−+)

=
∑

v∈V (G−+)

eccG−+(v)dG−+(v)

=
∑

v∈V (G)

eccG−+(v)dG−+(v)

+
∑

e∈E(G)

eccG−+(e)dG−+(e).

If 4(L(G)) = m − 1, then ecc(e) = 2 for all
e ∈ E(G). In this case,

ECI(G−+) =
∑

v∈V (G)

eccG−+(v)dG−+(v)

+
∑

e∈E(G)

eccG−+(e)dG−+(e)

=
∑

v∈V (G)

2(n− 1) +
∑

e∈E(G)

2(2)

= 2n(n− 1) + 4m

= 2n2 + 4m− 2n.

If 4(L(G)) ≤ m − 2, then ecc(e) = 3 for all
e ∈ E(G). In this case,

ECI(G−+) =
∑

v∈V (G)

eccG−+(v)dG−+(v)

+
∑

e∈E(G)

eccG−+(e)dG−+(e)

=
∑

v∈V (G)

2(n−1)+
∑

e∈E(G)

3(2)

= 2n(n− 1)+6m

= 2n2+6m− 2n.

(v). Let u ∈ V (G). Then

DG−+(u)

=
∑

v∈V (G−+)

dG−+(u, v)

=
∑

v∈V (G)

dG−+(u, v) +
∑

e∈E(G)

dG−+(u, e)

=
∑

v∈V (G)
v∈NG(u)

dG−+(u, v) +
∑

v∈V (G)
v/∈NG(u)

dG−+(u, v)

+
∑

e∈E(G)
e∈u

dG−+(u, e) +
∑

e∈E(G)
e/∈u

dG−+(u, e)

= 2dG(u)+(n−1−dG(u))+dG(u)+2(m−dG(u))
= 2m+ n− 1.

Let e ∈ E(G). Then

DG−+(e)

=
∑

v∈V (G−+)

dG−+(e, v)

=
∑

v∈V (G)

dG−+(e, v)+
∑

f∈E(G)

dG−+(e, f)

=
∑

v∈V (G)
v∈e

dG−+(e, v) +
∑

v∈V (G)
v/∈e

dG−+(e, v)

+
∑

f∈E(G)
f∈NL(G)(e)

dG−+(e, f)+
∑

f∈E(G)
f /∈NL(G)(e)

dG−+(e, f)

= 2(1) + 2(n− 2) + 2dL(G)(e)

+3(m− 1− dL(G)(e))

= 2n+ 3m− dL(G)(e)− 5.
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EDS(G−+)

=
∑

v∈V (G−+)

eccG−+(v)DG−+(v)

=
∑

v∈V (G)

eccG−+(v)DG−+(v)

+
∑

e∈E(G)

eccG−+(e)DG−+(e)

=
∑

v∈V (G)

eccG−+(v)(2m+ n− 1)

+
∑

e∈E(G)

eccG−+(e)(2n+3m−dL(G)(e)−5).

We have two cases to be considered.
Case 1: 4(L(G)) = m−1. In this case, we have
ecc(e) = 2 for all e ∈ E(G). Thus
EDS(G−+)

=
∑

v∈V (G)

eccG−+(v)(2m+ n− 1)

+
∑

e∈E(G)

eccG−+(e)(2n+3m−dL(G)(e)−5)

=
∑

v∈V (G)

2(2m+ n− 1)

+
∑

e∈E(G)

2(2n+3m−dL(G)(e)−5)

= 2n(2m+n−1)
+2m(2n+3m−5)

−2
∑

e∈E(G)

dL(G)(e)

= 2n(2m+ n− 1)+2m(2n+ 3m− 5)

−2
∑

uv∈E(G)

(dG(u) + dG(v)− 2)

= 2n(2m+n−1)+2m(2n+3m−5)+4m

−2
∑

v∈V (G)

d2G(v)

= 2n2+6m2+8mn−2n−6m−2M1(G).

From the last equality we can easily observe, a
simple relation between the eccentric distance
sum of the general transformed graph G−+ and
the first Zagreb index of the underline graph G,
which is,
EDS(G−+)+2M1(G) = 2n2+6m2+8mn−2n−
6m if 4(L(G)) = m− 1.
Case 2: 4(L(G)) ≤ m−2. In this case, we have
ecc(e) = 3 for all e ∈ E(G). Thus

EDS(G−+)

=
∑

v∈V (G)

eccG−+(v)(2m+n−1)

+
∑

e∈E(G)

eccG−+(e)(2n+3m−dL(G)(e)−5)

=
∑

v∈V (G)

2(2m+ n− 1)

+
∑

e∈E(G)

3(2n+3m−dL(G)(e)−5)

= 2n(2m+n−1)+3m(2n+3m−5)

−3
∑

e∈E(G)

dL(G)(e)

= 2n(2m+n−1)+3m(2n+3m−5)

−3
∑

uv∈E(G)

(dG(u)+dG(v)−2)

= 2n(2m+n−1)+3m(2n+3m−5)+6m

−3
∑

v∈V (G)

d2G(v)

= 2n2+9m2+10mn−2n−9m−3M1(G).

From the last equality we can easily observe, a
simple relation between the eccentric distance
sum of the general transformed graph G−+ and
the first Zagreb index of the underline graph G,
which is,
EDS(G−+) + 3M1(G) = 2n2 + 9m2 + 10mn −
2n− 9m if 4(L(G)) ≤ m− 2.
Remark

(1) By Theorem (1), for all graphs G1 and
G2, with δ(G1) ≥ 2, δ(G2) ≥ 2 having
same number of vertices and same num-
ber of edges, we have
1.1: W (G+−

1 ) =W (G+−
2 ).

1.2: DD(G+−
1 ) = DD(G+−

2 ).
1.3: Gut(G+−

1 ) = Gut(G+−
2 ).

1.4: ECI(G+−
1 ) = ECI(G+−

2 ).
1.5: EDS(G+−

1 ) = EDS(G+−
2 ).

(2) By Theorem (2), for all triangle free
graphs G1 and G2 of order at least five,
having same number of vertices and same
number of edges, we have
2.1: W (G−+1 ) =W (G−+2 ).
2.2: DD(G−+1 ) = DD(G−+2 ).
2.3: Gut(G−+1 ) = Gut(G−+2 ).
2.4: ECI(G−+1 ) = ECI(G−+2 ).
2.5: EDS(G−+1 ) = EDS(G−+2 ).
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