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ABSTRACT: We define what is called Blaschke difference for polytopes as an inverse operation to 
Blaschke addition. Using this operation we give a new algorithm to reduce and find a minimal pair of 
polytopes from the given class of the Rådström-Hörmander lattice containing a pair of polytopes in IR2. 
This method gives a better algorithmic insight and easy to handle than the one given by Handschug 
(1989). We also prove that a pair of polytopes in the plane is minimal if and only if the sum of the 
number of their vertices is minimal in the class. However, it is shown in the paper that, this last 
statement does not hold true in general for higher dimensional spaces. 
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INTRODUCTION 
 
Vector addition of convex compact sets (called 
Minkowski addition) has proved to be useful in 
different investigations. However there are many 
useful properties which fail to hold with this 
addition. For example, if a set A is not singleton, A–
A is different from {0} on any dimension; moreover, 
decomposability of polytopes does not hold true 
when we consider vector spaces of dimensions 
greater than 2. To this effect we need the 
composition of convex compact sets, known as 
Blaschke addition, which overcomes at least the 
above mentioned limitations. It was first proposed 
by Blaschke (1916) and used by various authors for 
different purposes (e.g., Firey and Grünbaum, 1964; 
Schneider, 1993; Bonetti and Vitale, 2000). This 
addition can also be used to find a minimal 
representative from a given equivalent class of the 
Rådström-Hörmander lattice, which will be our 
main focus on this paper. 
  Let X be a real topological vector space and K(X) 
denote the set of nonempty convex compact 
subsets of X endowed with the usual Minkowski 
addition and scalar multiplication. The set K(X) is a 
commutative semigroup with cancellation 
property (Urbański, 1976). Denote the cartesian 
product K(X) × K(X) by K 2(X). 
 Like in Pallaschke and Urbański (1994) we say 
that two pairs (A,B) and (C,D) from K 

2(X) are 
equivalent, written (A,B)~(C,D) if, and only if 
A+D=B+C with the Minkowski addition. Let us 

recall that the quotient space K 
2(X)/~ is called the 

Rådström-Hörmander lattice. We denote by [A,B] 
the equivalence class determined by (A,B). We can 
define the ordering relation ≤ on  K 

2(X) by 
(A,B)≤(C,D) iff (A,B)~(C,D) and A⊆C, B⊆D. 
 The pair (A,B) ∈ K 2(X) is said to be minimal if it 
is minimal in the class [A,B] with respect to the 
above ordering relation. Minimal pairs of compact 
convex sets have been investigated since the 1980’s 
mainly by Pallaschke and Urbanski (see for 
instance Pallaschke et al., 1991; Scholtes, 1992; 
Grzybowski, 1994; Pallaschke and Urbański, 1996); 
different authors also proved some minimality 
criteria. 
 
 

BLASCHKE ADDITION 
 
The key to this addition operation is the existence 
theorem of Minkowski (1903) and Schneider 
(1993). Before we state the theorem, we first sketch 
the notion of surface area measure φ for a convex 
compact set of K⊂IRn (called the surface area 
measure of order n–1). For each Borel set U ⊆Sn-1 
where Sn-1 denotes the unit sphere in IRn, let bdK(U) 
be the set of points in boundary of K having 
outward normal vectors in U. Then (see Schneider, 
1993) the surface area measure φ is defined on the 
Borel σ-field of Sn-1 via φ(U)=λn–1(bdK(U)), where 
λn–1 is (n–1)-dimensional Hausdorff measure. The 
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surface area measure of K is also denoted by      
S

   

n–1(K,.) and is a finite measure on Sn-1. 
 If φ is the area measure of a convex compact set 
then (Schneider, 1993:281) 
 

   0
1

=∫
−nS

udϕ

 
 The general Minkowski theorem is then the 
converse of the above equation, which is stated 
below. 
 

Theorem 1 Suppose that φ is a bounded measure on 
the Borel subset of Sn-1 that is not concentrated on a 
great sphere and that satisfies 
 

   0
1

=∫
−nS

udϕ

 
Then there is a unique (up to translation) convex 
body for which φ is the surface area measure. 
 

 With the help of this Minkowski theorem it is 
possible now to define what is called Blaschke 
addition of two compact convex sets. Let L,K⊂IRn 
be compact convex sets. Then there exists a convex 
compact set M⊂IRn, such that 
 
  ).,(),(),( 111 ⋅=⋅+⋅ −−− MSKSLS nnn  
 
 This set M is called the Blaschke sum of L and K, 
denoted by L#K, and is determined only up to 
translation.  
 We will illustrate this addition for the case of 
polytopes in concrete ways (see Firey and 
Grünbaum, 1964 ). Let P be a k-polytope in  and 
let  be the k-dimensional subspace parallel to 
the affine hull of P (aff P). Denote by 

nIR
kIR

1)(1 +≥− kPfk  
the number of facets of P, and with each facet 

 associate its outward unit normal 

vector u
))(1( 1 PfiF ki −≤≤

 i.  Then with every k-polytope P, k ≥ 2 we 
can associate the system of vectors 
 
 )},(1|)({)( 11 PfiFVuPV kiki −− ≤≤=  (1) 
 
 where  denotes the volume of facet  
(which is (k–1) dimensional set). If polytopes P

)(1 ik FV − iF
1 

and P2 are translates of each other, then 

clearly )()( 21 PVPV = . Therefore, V(P) can be 
considered as being associated with the translation 
class of polytopes containing P. 
 If Q is a (k–1)-dimensional polytope in , we 
define a set of vectors 

kIR

 
 )},(),({)( 1010 QVuQVuQV kk −− −=  (2) 
 
where  is a unit vector normal to the 

hyperplane (in 
0u

kIR ) containing Q to be associated 
with Q. 
 

Definition 2 (See Grünbaum, 1967) A system 
}1{ miW i ≤≤= ν  of nonzero vectors in  is called 

equilibrated if  

kIR

   (3) 0
1

=∑
=

i

m

i
v

and no two of the vectors of W are parallel. W is 
called fully equilibrated in  provided it is 
equilibrated and spans

kIR
kIR . 

 
 With this terminology, we now restate the 
Minkowski existence theorem for polytopes. 
 

Theorem 3 (Minkowski's Theorem) 
(i) If P is a polytope in , then V(P) is 

equilibrated. If P is a k-polytope, then 
V(P) is fully equilibrated in the subspace 

nIR

kIR  parallel to the affine hull of P. 
(ii) If W is a fully equilibrated system of nonzero 

vectors in , then there exists a 
polytope P, unique up to translation, such 
that W =V(P). 

)2( ≥kIRk

 
 For the proof of this theorem the reader is 
referred to (Grünbaum, 1967:339–340). We now 
illustrate the Blaschke sum of two polytopes and 
also define a Blaschke difference, a composition 
which can be viewed as an inverse operation to the 
Blaschke addition. 
 Let A,B∈K 

2 2),( ≥nIRn  be polytopes of dimensions 
k1 and k2 respectively, U(A) denotes a set of unit 
normal vectors of a polytope A at its facets, and let 
|X| denotes the cardinality of the set X.  
 
 Let  
 
 )}(1|)),(({)( 11 11

AfiuAFVuAV kiki −− ≤≤=  and  



SINET: Ethiop. J. Sci., 32(1), 2009                                                                                                                                               3 

  )}(1|)),(({)( 11 22
BfivBFVvBV kiki −− ≤≤=

Put  
W |},)()(|)()(1|{ 11 21

BUAUBfAfjde kkjj ∩−+≤≤= −−
 

where, 
 

,
, \

, \

i i

j j j

j j

w u v for some i if w A B
e u if u A B

v if v

⎧ = = ∈ ∩
⎪

= ∈⎨
⎪ ∈⎩

( ) ( )

( ) ( )

( ) ( )

U U
U U

U UB A

∩

 

 
and  
 

1 2

1

2

1 1

1

1

( ( , )) ( ( , )),

( ( , )), \

( ( , )), \

k k

j k

k

V F A u V F B u if u A B

d V F A u if u A B

V F B u if u B A

− −

−

−

⎧ + ∈
⎪

= ∈⎨
⎪ ∈⎩

U U

U U

U U

( ) ( )

( ) ( )

( ) ( )

 
 Then since both V(A) and V(B) are equilibrated, 
V is also equilibrated. Moreover, the affine hull of 
V is of dimension k≥ max{ k1, k2}. Thus W is fully 
equilibrated in some space . Therefore, by 
Minkowski theorem there is a polytope 

kIR
kIRP ⊂  

such that W=V(P) and this P is unique up to 
translation. i.e.,  
 
 P=A#B. 
 
 If D=A#B, then clearly U(A)⊆U(D) and 

∀w∈U(A). Thus we 
can define a subtraction operation  as follows:  
 Suppose D=A#B is given. Then we have 
 

},,|{)( 1 IRSeeBV n ∈∈= − αα    
where 

1 1 1

\ ,
,

( ( , )) ( ( , ))k k

u D A if w A withw u
e w if u A v D withw u vand

V F A w V F D w− −

⎧ ∈ ∃ ∈ =/
⎪= ∃ ∈ ∃ ∈ =⎨
⎪ ≤⎩

U U U
U U

( ) ( ) ( ) 

( ), ( ) =

∩

 
and 
 

1

1 1

1

1 1

( ( , )), \

( ( , )) ( ( , )),
k

k k

V F D u if u D A

V F D u V F A u if u A D
α

−

− −

∈⎧⎪= ⎨ − ∈⎪⎩

U U

U U

( ) ( )

( ) ( )

 
 Hence the polytope B, which is determined (up 
to translation) by the set V(B) is the Blaschke 
difference of D and A. We shall denote this 
difference by 
 
 B=D A 

 It is now an elementary exercise to prove the 
following assertions. 
 
 Proposition 4 Let A,B and D be polytopes in nIR . 
 

1. A A={0} for any polytope nIRA ⊂ .  
 
2. U(A#B)={w∈ U(A)|∄ u∈U(B) with u= W } 
  ∪ {u∈ U(B)|∄ W∈ U(A) with W =u} 
  ∪{v|∃ W∈ U(A),∃ u∈U(B)with W =u=v} 
 
3. A is a Blaschke-summand1 of D if and only if there 

exists a polytope B, which is the Blaschke-difference 
of D and A, i.e. B=D A. In this case we have 

 

 

1 1 1

( ) { ( ) | ( ) with }
{ | ( ), ( ) with and

( ( , )) ( ( , ))}k k

B v D u B u w
u w A v D w u v

V F A w V F D w− −

= ∈ ∃ ∈ =
∪ ∃ ∈ ∃ ∈ = =

≤

U U U
U U

 

 

 One of the powerful results we get when we use 
Blaschke addition is the decomposition of 
polytopes with simplices (see Theorem 1 in Firey 
and Grünbaum, 1964), which has no analogue in 
Minkowski sum for dimensions greater than 2. 
 Moreover, since the surface area measure of 
order (n–1) and the area measure of order 1 
coincide in 2IR , one can utilize Blaschke addition to 
develop a reduction algorithm to find a minimal 
pair of compact convex sets in the plane. 
Handschug (1989) developed the first method of 
this kind for polytopes in the plane, and later on 
Demyanov and Abankin (1997) produced a similar 
algorithm for the so called piecewise smooth sets 
in the plane. In both cases, however, the Blaschke 
sum is not mentioned though it is applied in 
different forms. The fact that these two area 
measures coincide in 2IR  assures the uniqueness 
up to translation of a minimal pair in the plane. 
This coincidence of the two measures in the plane 
was employed as well by Bauer (1996) in proving a 
strong criteria for minimality of pairs of compact 
convex sets in 2IR . Since the surface area measure 
Sn–1 of order n–1 is not distributive over 
Minkowski addition in general for n>2, the above 
mentioned nice applications of Blaschke sum 
cannot be used to generalize the results obtained 

(()),(( 111
FVwAFV kk −− ≤ )), wD

                                                 
1A compact convex set K is said to be a Blaschke-
summand of M, if there exists a compact convex set L 
such that M=K#L. 



4                                                                                                                                                                        Semu Mitiku 

for pairs of compact convex sets in  in higher 
dimensions. 

2IR

 
 

REVISED HANDSCHUG’S ALGORITHM 
 
In this section we give a variant of Handschug’s 
Algorithm using the above defined Blaschke sum 
and difference for polytopes in the plane. But first 
we need to prove the following Lemma. 
 

Lemma 5  The pair  is equivalent to 
 if and only if there exist convex compact sets 

C

),( 11 BA
),( 22 BA

1 and C2 such that 
 
 A1+C1=A2+C2  and B1+C1=B2+C2  (4) 
 
Proof: ▸ Suppose  and  are 

equivalent. Then by definition A
),( 11 BA ),( 22 BA

1+B2= 
BB1+A2. Then put C1=B2 and C2=B1 or C1=A2 
and C2=A1. This proves one side of the 
implication. 
 For the converse, adding up the two 
equations in (4) we get 

   21212121 CCABCCBA +++=+++
Then by the cancellation law we have the 
expected result. ◂  

  
 Using this Lemma, it is possible to reduce the 
pair of compact convex sets  into an equi-
valent pair of compact convex sets , if we 
can find a compact convex set C

),( 11 BA
),( 22 BA

1 as small as 
possible and a compact convex set C2 as large as 
possible. Hence, the problem of finding a minimal 
representative from the class of convex compact 
sets can be transformed into the problem of 
summands and decompositions of compact convex 
sets.  
 For a polytope A in nIR  we denote by F1(A) the 
set of all edges (which are, one dimensional faces) 
of A. Let A,B be polytopes in nIR . We say that 
F∈F1(A) and G∈F1(B) are equiparallel (as in  Bauer 
(1996)) if F and G are parallel and if there is u∈Sn–1 
with F=F(A,u) and G=F(B,u). The following theo-
rem gives us the necessary and sufficient condition 
for a pair of polytopes in the plane to be minimal. 
The theorem is proved using surface area measure 
even in a more general setting for any convex 
compact sets in 2IR . 
 

Theorem 6  Let A,B be polytopes in 2IR , where A 
and B are not both straight lines. The pair 
(A,B)∈K2( 2IR ) is minimal iff A and B have at most 
one pair of equiparallel edges. 
 

 For the proof of this theorem we refer to 
Corollary 3.6 in Bauer (1996). This theorem is a 
fundamental characterization of minimal pairs of 
polytopes in the plane.  
 Since Blaschke addition coincides (up to 
translation) with Minkowski addition on the plane, 
we can rewrite equation (4) equivalently (up to 
translation) as:  
 
 2211 ## CACA = and 2211 ## CBCB =  (5) 
 
Or using Blaschke difference 
 
 )#( 112 CAA = 2C  and  )#( 112 CBB = 2C  (6)  
 
 But this last equation is equivalent to the 
statements:  

)#()( 112 CAUuCUw ∈∃∈∀ with w=u and  
 and 

)),(( 212
wCFVk −

)),#(( 111 wCAFVk −≤ )#()( 112 CBUvCUw ∈∃∈∀  

with w=v and  )),(( 212
wCFVk − )),#(( 111 wCBFVk −≤ . 

 
 That means, the elements of the set U(C2) are 
from the intersection of the sets U(A1#C1)  and 
U(BB1#C1). Our aim, here, is to find a polytope C2 as 
large as possible and a polytope C1 as small as 
possible such that C1 and C2 satisfy relation ( ). To 
this end, define a set of vectors,  

5

  
 )(),(|{ 110 BUvAUuwV ∈∃∈∃= α with   uvw ==

  and ))}},(()),,((min{ 1111 vBFVuAFV nn −−=α  (7) 
 
and the vector    

∑
∈

=
oVw

o wv
α

if ∅≠oV  and , otherwise. (8) 0=ov

 
Then put 

},{)( 1 oo eeCV ββ −= and }{)( 2 oo eVCV β−∪= if  (9) 0≠ov
 
where 

∑
∈

=
0

0
Vw

v
α

αβ and ,
0

0
0 v

ve =  with •  denoting 

the Euclidean norm, or  
 }0{)( 1 =CV  and oVCV =)( 2  if  (10) .0=ov
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 To summarize the above discussion, if a pair of 
polytopes (A,B) from the class [A,B] is given, then 
we can reduce this pair to an equivalent and 
minimal pair of polytopes  (which is 
unique up to translation) using the following 
algorithm.  

),( 00 BA

 
Step 1. Describe the polytopes A and B as sets of 

vectors 
  

1 1( ) { ( ( , ))| ( )}kV A uV F A u u A−= ∈U  
  )}(|)),(({)( 12

BUvvBFvVBV k ∈= −

 
Step 2. Collect the elements from both sets having 

the same direction with the minimum 
magnitude, say 

 
 with )(),(|{0 BUvAUuawV ∈∃∈∃= uvw ==   
  and ))}},(()),,((min{ 11 vBFVuAFV nn −−=α    (11) 
 
Step 3. Check for the sum  of the 

vectors in Vo. 

∑
∈

=
oVw

o ww

 • If the sum is 0, put  and  02 )( VCV =

   ← (represents a point set) }0{)( 1 =CV
 • Else put  and  }{)( 002 wVCV −∪=

    ← (represents a line)  },{)( 001 wwCV −=

 
Step 4. Determine the reduced polytopes by 

computing 
 )#( 1CAAo = 2C  and  )#( 1CBBo = 2C  
 
 Then clearly  and  as defined in 
equations (

)( 1CV )( 2CV
9) or (10), satisfy Minkowski’s Theorem. 

Hence we can reconstruct the desired sets 1C  
and . Once  and  are calculated one 
can determine  and  from equation (6).  

2C )( 1CV )( 2CV

2A 2B
 If the cardinality of  is less than or equal to 1 
then the pair  is minimal by Theorem 6. 
Otherwise,  will contain at most one unit normal 
vector which is parallel to that of  since all 
vectors of 1  and  having parallel unit normal 
vectors are collected in the set . Hence  and  
after reduction will have at most one pair of edges 
which are equiparallel. The above algorithm, 
therefore, yields a minimal pair . 

0V

),( 11 BA

2A

2B

A 1B

0V 2A 2B

),( 22 BA

MINIMALITY OF VERTICES OF PAIRS OF 
POLYTOPES IN IR2

 
A polytope can be described as the convex hull of 
its vertices. Therefore, identifying minimality of 
pairs of polytopes with the number of their vertices 
will be more useful in application. The next 
theorem states that a pair of polytopes is minimal 
in its equivalence class if and only if the sum of the 
number of vertices of the polytopes is minimal in 
the class. 
 

Proposition 7  Let A,B be polytopes in  and let 
[A,B] denote the equivalence class determined by (A,B) 
in Rådström-Hörmander Lattice. If (A',B')∈[A,B] is 
minimal, then there is no pair (C,D)∼(A',B') such that 
|E(C)|+|E(D)|<|E(A')|+|E(B')|, where E(A') 
denotes the set of extremal points of A' and |X| 
denotes the cardinal number of the set X. 

2IR

 
Proof: ▸  Let (C,D)∈[A,B] and assume (C,D) is not 

minimal. Then applying the above 
algorithm we can find a minimal pair 

 which is equivalent to (C,D) and 
unique up to translation. 

),( 11 DC

Hence 
⎜V(C)|+|V(D)|  ≮ |V(C1)|+|V(D1)|=|V(A')|+|V(B')⎜ 
which is equivalent to the relation 

|E(C)|+|E(D)| ≮ |E(A')|+|E(B')|. ◂  
 
Theorem 8  Let be polytopes. Then the 
pair (A,B) is minimal only if |E(A)|+|E(B)| is 
minimal for all (A,B)∈[A,B], where E(A) denotes the 
set of all extremal points of A and |X| denotes the 
cardinal number of the set X. 

2, IRBA ⊂

 
Proof : ▸  If the given pair (A,B) is minimal, then 

by virtue of the algorithm described in the 
previous section there is no pair 

],[),( 11 BABA ∈  such that 
 
 |,)(||)(||)(||)(| 11 BVAVBVAV +>+  
 

where |V(A)| denotes the cardinal 
number of the set V(A). For otherwise we 
can farther reduce the pair (A,B) to  
which is not possible as (A,B) was chosen 
to be minimal. That means the number of 
edges of A and B is always less than that of 

),,( 11 BA
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1A  and  for all pairs 1B 1 1( , ) [ , ]A B A B∈ . In 

 since the number of edges of a 
polytope is equal to the number of its 
vertices, the assertion follows. ◂  

2IR

 
 Bounded polyhedral convex sets are easier to 
describe, using their facial structure, than any other 
compact convex sets. In the plane, equivalent 
classes of pairs of compact convex sets have some 
interesting properties in this direction. The idea of 
the following theorem can be seen as a mere 
consequence of the translation equivalence of two 
minimal pairs in the plane, which was proved 
independently by Scholtes (1992) and Grzybowski 
(1994). However, for completeness we give here a 
different proof by using the above given algorithm.  
 

Theorem 9  If A and B are two polytopes in the plane 
and C and D are any compact convex sets in  such 
that 

2IR

(i) (A,B)∼(C,D) and 
(ii) (C,D) is minimal 

 
Then C and D are also polytopes. 

 
Proof: ▸  Let A and B be polytopes and assume 

without loss of generality that the pair 
(A,B) is not minimal. Then using the above 
given algorithm (Handschug’s Algorithm) 
we can reduce the pair to get a minimal 
pair of polytopes, say , which is 
equivalent to (A,B). 

),( 11 BA

 
But since (A,B)∼(C,D) and  we 
have . 

),(~),( 11 BABA

),(~),( 11 DCBA
 
From assumption (ii) we know that (C, D) is 
minimal and since minimal pairs in the 
plane are unique up to translations 
(Scholtes, 1992; Grzybowski, 1994), the 
assertion of the theorem follows. ◂  

 
 More strongly we have the following corollary. 
 

Corollary 10 If an equivalence class [A,B] of 
compact convex sets in the plane contains at least 
one pair of polyhedral sets, then any minimal pair is 
also polyhedral. 

 

Proof: ▸  Let  be polytopes and 
(C,D)∈[A,B]. Suppose (C, D) is not minimal. 
Since every equivalence class [A,B] contains 
a minimal element, we can find some 

)(, 2IRKDC ∈

],[),( 11 BABA ∈  which is minimal. Then we 
can apply Theorem 9 above to find the 
conclusion of the corollary. ◂  

 
 Therefore, if an element in Rådström-
Hörmander lattice in  contains at least one pair 
of polytopes, then the minimal pairs definitely 
have minimal number of extremal points. 

2IR

 
 
RELATIONSHIP BETWEEN MINIMALITY OF 

PAIRS OF POLYTOPES AND THEIR 
NUMBER OF VERTICES 

 
For the case when the dimension of the underlying 
space is less than or equal to 2, we have proved in 
Theorem 8 that the statement conjectured by 
Pallaschke and Urbański2 works perfectly. 
Moreover, the conjecture is proved to be true for 
reduced pairs in higher dimensions as well (see 
Theorem 12 below). 
 

Lemma 11 Let  be compact convex sets. 
For any a∈E(A) there exists b∈E(B) such that 
a+b∈E(A+B). 

nIRBA ⊂,

 
Proof: ▸  The proof goes by induction on n 

(dimension of the space nIR ). The assertion is 
obviously true for n=1, because convex 
compact sets in  are closed intervals, and 
end points of the interval of the sum is the 
sum of the end points of the component 
intervals. Let us assume that the lemma 
holds true for n=1,2, ,k−1 and suppose 

, a∈E(A). Then there exists a facet 
of A containing a. Let this facet be 
determined by the normal vector . 
Now consider the sets F(A,u) and F(B,u). 
These two sets are nonempty, compact 
convex sets contained in parallel 
hyperplanes and every extreme points of 

IR

kIRBA ⊂,

kIRu∈

                                                 
2Conjecture(Pallaschke and Urbański): If a pair of 
polytopes is minimal then the sum of the number of 
their vertices is minimal. 
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F(A,u) and F(B,u) are extreme points of A 
and B, respectively. Moreover we have 
F(A+B,u)=F(A,u)+F(B,u). For suitable transla-
tions F(A,u) and F(B,u) are contained in a 
(k−1)-dimensional subspace of . Hence 
by the assumption, for the extreme point a of 
F(A,u) there exists an extreme point b of 
F(B,u) such that a+b∈E(F(A+B,u)). Hence the 
lemma. ◂  

kIR

 
 In Bauer (1996) it is defined that a pair of 
compact convex sets (A,B) is said to be reduced if 
and only if every element of [A,B] can be described 
as (A+K,B+K) for some convex compact set K. It is 
easy to verify that all reduced pairs are minimal. 
Moreover, reduced pairs are the up to translation 
unique minimal pairs in their class. 
 The extremal points of the sum A+B are the only 
points having a unique representation as a sum of 
two points from A and B. Indeed if a+b = 
a'+b'∈E(A+B), then )'()'( 2

1
2
1 bbaaba +++=+ ∈E(A+B) 

which implies that a=a' and b=b'. This discussion 
will lead us to the next theorem, in which we will 
show that if a pair of any compact convex sets is 
reduced, then the sum of their extremal points is 
minimal in the class.  
 

Theorem 12  Let  be compact convex sets. 
If the pair (A,B) is reduced then |E(A)|+|E(B)|≤ 
|E(C)|+|E(D)| for all (C,D)∼(A,B). 

nIRBA ⊂,

 
Proof: ▸  Let (A,B) be reduced. Then (C,D)∼(A,B) 

implies that there exists a compact convex 
set nIRM ⊂  such that C=A+M and D=B+M. 
Then by Lemma 11, we have that for any 
extremal point a of A, there always exist an 
extremal point, say m, of M such that a+m is 
an extremal point of C. Since this 
representation is unique (by the remark 
prior to this theorem) we can conclude that 
|E(A)|≤|E(C)|. In a similar fashion we also 
have |E(B)|≤|E(D)|. Hence |E(A)|+|E(B)| 

≤|E(C)|+ |E(D)|. ◂  
 
 However, in dimensions greater than or equal to 
3, this nice relationship between the number of 
vertices and the minimality of a pair of polytopes 
does not hold true in general. The following simple 
counter example shows this fact (Fig. 1). 
 

 
Can be reduced using cutting hyperplane method 
to a pair: 
 

 
 
Fig. 1. Minimal pair of polytopes with more number of 

vertices. 
 
 
 The pair (A0,B0) in Fig. 1 which is equivalent to 
the pair (A,B) is non-reducible and it is minimal as 
well by Theorem 5.1 in Bauer (1996). However 
 
 |E(A)|+|E(B)|=4+4<6+3=|E(A0)|+|E(BB0)| 
 
 As an application to Theorem 8, we consider the 
following problem. Let a function  be 
piecewise-linear and continuous. Then it is shown 
by Melzer (1986) that f can be written as a 
difference of two piecewise-linear convex functions 
as: 

IRIRf →2:

 
 

(0) (0)

( ): , ,maxmax
u f v f

f x u x
∈∂ ∈∂

= − v x    (12) 

 
 But this representation is not unique and also 
one needs a minimal representation of the 
difference in equation (12). It is clear that the sets 
∂f(0) and (0)f∂  are polytopes in . Thus by 
Theorem 8 a pair (A,B) which is equivalent to 

2IR

( (0), (0))f f∂ ∂ , is minimal, if and only if the sum of 

vertices, say  and , of A and B, respectively, 
is minimal. Thus equation (12) is equivalent to:  

An Bn

 
,,max,max)( },,1{},,1{ 〉〈−〉〈= ∈∈ xbxaxf jnjini BA
 

 
where BA nn +  is minimal among all such 
expressions. 
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 Note that since the proofs of the above 
characterizations are based on Handschug’s 
Algorithm, which in turn is based on the 
equivalence (up to translation) of Blaschke sum to 
that of Minkowski sum, it is applicable only for 2 
dimensional real vector spaces or for reduced pairs 
in dimensions higher than 2. For non reduced pairs 
in higher dimensions this relation does not hold in 
general as indicated with the above counter 
example in 3-dimensional case. 
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