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Abstract
A pseudo-equilibrium approximation model for the dynamics and transmission of malaria in human
populations is studied. A stochastic version of  this model is then formulated and analyzed
based on the fact that the disease is endemic and therefore has a basic reproduction number
greater than unity. Using a comprehensive theory on asymptotic approximation techniques in recurrent
epidemics, approximations for the quasi-stationary distribution and the time to extinction
are derived. We find that whenever the reproduction number is greater than unity, the time to
extinction of the disease is exponentially distributed with positive exponent and therefore becomes
very large within very large human population sizes. We then interpret the fact that it has been
difficult to eradicate malaria with the exponentially large time to extinction of the number of
infected individuals in the population of  humans.
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Résumé
On a étudié un modèle de rapprochement de pseudo-équilibre de la dynamique et de la transmission du
paludisme dans les populations humaines. En utilisant une théorie complète sur les techniques
d’approximation asymptotique en épidémies récurrentes, des approximations pour la distribution
quasi stationnaire et le temps d’extinction sont dérivées. Nous trouvons que chaque fois que le
nombre de reproduction est supérieur à un, le temps d’extinction de la maladie est distribué
exponentiellement avec l’exposant positif et par conséquent devient très grand pour les tailles de grande
population humaine. Ensuite, nous interprétons le fait qu’il a été difficile à éradiquer le
paludisme vu le grand temps exponentiellement a l’extinction du nombre de personnes infectées
dans la population humaine.

Mots Cle: rapprochement de Pseudo-équilibre, distribution stationnaire, distribution quasi- stationnaire.
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1 Introduction

Deterministic mathematical models for the population dynamics of living organisms are well es-
tablished in the literature[14, 7, 29, 32]. However, it is well known that only when numbers in a
population become large, can the dynamics of the population be well approximated by a deter-
ministic differential equation model [9]. In this case, it can be shown that the densities predicted
by the deterministic equations will coincide with the mean values from a stochastic analysis [26].
Since populations of living organisms come in discrete units, stochastic models, which are models
based on discrete events and probabilistic arguments, are actually the natural models for studying
the occurrence of population of living organisms. Now, in studying the dynamics and transmis-
sion of human malaria, a parasitic vector-borne disease which is endemic in many parts of the
world, most models [3, 2, 28, 35, 22, 23] have so far been based on the pioneering and Nobel Prize
winning deterministic ordinary differential equation model first proposed by Sir Ronald Ross [33].
The important and striking result from Ross’ model and from all other Ross-type models, is that
there exist a deterministic threshold parameter with the property that if this parameter exceeds
unity, there is a non-zero globally and asymptotically stable deterministic steady state solution
which is always reached so long as we start of the process with at least one infective and the
disease will always establish itself in the population, and when the threshold parameter is less
than unity, the disease dies out from the community [26, 33]. Deterministic Ross-type models
for malaria transmission have therefore served their purpose in informing us on the dynamics of
malaria transmission. However, the deterministic model’s prediction of a stable endemic equilib-
rium whenever we start off the process with even one infected individual (vector or human) so
long as the threshold parameter is greater than unity is not realistic. The first event that could
occur, in the sequence of possible events, could be the death of this infective in which case the
infection will not spread into the populations irrespective of whether or not the threshold condi-
tion is satisfied. A far more likely occurrence is that the probability that the disease establishes
itself in the population will change. It is in this regard that we deem it necessary to re-examine
a simplified version of the deterministic differential equation model for malaria dynamics, earlier
derived and studied by Ngwa and Shu [25, 26], within the context of a stochastic analysis.

Malaria in humans is caused by one of the four major protozoan species of genus Plasmodium,
namely; Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale.
Some authorities have indicated an emerging fifth species, Plasmodium knowlesi, which has been
implicated in human malaria transmission mostly in South East Asia [4, 6, 30]. Our focus is on
malaria caused by Plasmodium falciparum which is potentially life-threatening. Which ever species
is involved, the parasites are transmitted from human to human by the female Anopheles mosquito
when it bites a human being in order to harvest blood that she needs for the maturation of her
eggs. It has been estimated that there are about 380 known species of Anopheles mosquitoes, but
only about 60 of these have been identified as being capable of transmitting human malaria, [25].
This relatively small fraction of Anopheles sp. mosquitoes that prefer human blood therefore have
a human bitting habit and it is this habit that helps drive the passage of the parasite from human
to human. It is clear here that for the malaria infection to move from one person to another, the
two humans must be visited by the same mosquito over a reasonable period of time.

When a Plasmodium infected mosquito bites a susceptible human host, it injects the sporozoite
forms of the parasite from its salivary glands into the victim’s blood stream. Within hours, the
sporozoites invade the human’s liver cells where they asexually divide and eventually thousands
of merozoites forms of the parasite are released into the human’s blood stream. The merozoites
quickly invade the human’s red blood cells and begin a second round of proliferation within the
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cell. The infected red blood cells eventually rupture (owing to an increase in the number of
parasites in them) and die, releasing more parasites and also toxins into the blood stream. When
a susceptible mosquito takes a blood meal from an infected person, it can become infected with
the malaria parasite. These parasites go through several stages of growth in the mosquito and
the cycle begins again when this infected mosquito bites a susceptible human. The fact that the
malaria parasite has divided its life cycle so that part of it is the mosquito while the other part is
in the human, points to the inherent difficulties in eradicating the infection in human populations,
especially in situations where humans are allowed to interact with mosquitoes. The resilience
of the infection in the population can sometimes be attributed to the fact that the reservoir of
infection is large. Thus questions such as, ”when does an infection disappear in a population?”
take on a real mathematical meaning when posed in an endemic setting.

In endemic areas of Africa, it has been estimated that an individual receives about 40 to 120
infectious bites per year compared with 2 per year in India [25]. The incubation period of the
parasite depends on extrinsic factors such as temperature, as well as intrinsic factors such as the
species of mosquito. For example, the incubation period for Plasmodium falciparum is 12 days
in humans within a temperature range of 25o-27o and 10 days in the mosquito. A malaria attack
is characterized by sweating, fever, chills, myalgia (muscle ache), headache, nausea, vomiting,
dizziness, shivering, pains in the joints and a rise in temperature. The total load of human
misery and suffering from malaria presents a formidable challenge to public health authorities.
Mathematical modelling of malaria is important since it attempts to provide information about
its transmission rates and spread and can assist in health decision making processes.

Mathematical modelling has flourished since the days of Ross, [33], who was the first to model
the dynamics of malaria transmission [1]. Lotka [10], extended the analysis of Ross’s model, while
Macdonald, [11], modified and extended Ross’s work by introducing the theory of superinfec-
tion (that is, a human host acquiring additional infection before recovery). Using data from the
Garki project, [13], many studies have been carried out on the epidemiology of malaria and one
of the most outstanding is the mathematical model proposed by Dietz et al [5], which Nedelman
[21], analysed in detail. Ngwa and Shu, [25], modelled endemic malaria with variable human
and mosquito populations, a factor which had been hitherto omitted in most models. Ngwa et.
al. [24], modelled the dynamics of an age-structured endemic malaria transmission with varying
populations. Most of the earlier works on the Mathematical modelling of disease transmission
are essentially deterministic in character. In other words, they do not take into consideration the
probabilistic aspects of the processes studied. However, N̊asell [18], derived an approximation for
the expected time to extinction in a stochastic model for recurrent epidemics. He also derived
approximations of the quasi-stationary distribution of the stochastic logistic epidemic in the tran-
sition regions near the deterministic threshold [17] by extending the earlier work of Kryscio and
Lefẽvre [8]. More recent models for malaria transmission have combined the life style and feeding
habits of the mosquito [27, 28] into more realistic and complicated systems of differential equations
[22, 23, 35], while others have examined co-infection of malaria with other diseases such as HIV
and cholera [31, 34]. However, the crucial problem of the time to extinction, that is how long
will it take, under given control measures, for the infection to be eradicated within the human
population remains an unanswered and open problem. In this paper, we use the comprehensive
theory on asymptotic approximation techniques in recurrent epidemics developed by N̊asell Inge-
mar [15, 16, 17, 18, 19, 20] to study the concept of quasi-stationarity and the time to extinction
for malaria based on a simplified version of the malaria model for endemic malaria derived and
studied by Ngwa and Shu [25].

In attempting to handle this problem, we must note that a major difference between determinis-
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tic and stochastic models lies in the state space, which is continuous or discrete in the deterministic
setting and purely discrete for the stochastic models. In this regard, the stochastic models are
more realistic than the deterministic ones since counts of individuals are always discrete. The
important results of the deterministic models are qualitative in nature as opposed to quantitative
results of the stochastic models. Stochastic models are more difficult to handle mathematically
than deterministic models. The difficulty is enhanced when either the associated deterministic
model is nonlinear or the associated stochastic model has an absorbing state. In models with an
absorbing state, the stochastic stationary distribution is degenerate and uninformative, and if the
process has been going on for a long time and absorption has not yet occurred (as is the case
with endemic malaria), we must address the the concept of quasi-stationarity. To do this, we shall
construct a stochastic version of the deterministic model for the dynamics of endemic malaria with
variable human and mosquito populations proposed by Ngwa and Shu, [25]. It is not possible to
find an explicit expression for the quasi-stationary distribution or for the time to extinction of a
stochastic model whose deterministic counterpart is non-linear. As a result, progress in the analy-
sis of such a model rests on finding a good approximation to the quasi-stationary distribution and
the time to extinction. Our motivation lies in the quest to understand why malaria is endemic
in nature and also to address the interesting mathematical aspects arising from the modelling
exercise.

The rest of the paper is organised as follows: in Section two, we re-examine the deterministic
model whose general form was analysed by Ngwa and Shu, [25]. The system of equations in this
model is reduced to a single equation by rescalling using the pseudo-steady state hypothesis from
Michaelis-Menten theory [12], and consider a closed population containing N human individuals
while the mosquito population size is held constant. In section three, we consider the stochastic
counterpart of the reduced model, wherein, we assume large constant total human population
made up of only two classes of persons, the infectives and the susceptibles. The Kolmogorov
forward differential equations are then derived and their stationary distribution examined. In
section four the quasi-stationary distribution and the time to extinction are then approximated
via a rigorous analysis using a comprehensive theory on asymptotic approximation techniques in
recurrent epidemics as in N̊asell Ingemar ([16, 18, 20]) . The paper concludes with a discussion in
Section five.

2 The SIS malaria model

A version of the mathematical model for malaria transmission proposed by Ngwa and Shu [25],
assumes that the human and vector populations are divided into classes or states representing
disease status. Thus at any time t ≥ 0, there are Sh, susceptible humans, Eh incubating humans,
Ih infectious humans, Rh partially immune humans, Sv susceptible vectors, Ev incubating vectors
and Iv infectious vectors. The model assumes per capita birth rates, λh > 0 and λv > 0, and per
capita death rates fh and fv, for the human and mosquito populations respectively. All new-borns
are assumed susceptible in both populations. When all the variables are put together, there are
seven nonlinear autonomous ordinary differential equations for the seven state variables Sh, Eh,
Ih, Rh, Sv, Ev, Iv, together with the over 14 parameters that measure the different rates. In the
general system, the populations is growing needing that the total populations be determined by
differential equations in their own right. The system is almost too large to be useful in the face
of mathematical analysis.

In this paper, it is assumed that once an individual human is exposed to the infection, the
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individual becomes infectious right away and that the total human population is a constant. In
the vector population however, it is assumed that after exposure, there is an incubation period of
approximate length 1/νv before the vector becomes infectious. Therefore exposed vectors become
infectious at rate νv > 0. The vector’s period of infectiousness is the remaining length of time of
life after the onset of infectiousness. Thus, the class of disease being considered here is one whose
incubation period in humans is short when compared with other aspects of the disease transmis-
sion; aspects such as the duration of infectiousness. The transmission process and dynamics is
assumed to be driven by the human biting habit of the transmission agent, namely, the Anopheles
sp. mosquito.

The following simple disease transmission model, whose general version was studied by Ngwa
and Shu [25] is considered.







dSh

dt
= λhNh + rhIh − fh(Nh)Sh −

(

CvhavIv

Nh

)

Sh,
dIh

dt
=
(

CvhavIv

Nh

)

Sh −
(

rh + fh(Nh)
)

Ih,
dSv

dt
= λvNv − fv(Nv)Sv −

(

ChvavIh

Nh

)

Sv,
dEv

dt
=
(

ChvavIh

Nh

)

Sv −
(

νv + fv(Nv)
)

Ev,
dIv

dt
= νvEv − fv(Nv)Iv,

(1)

together with the appropriate initial data at time t = 0. Here Nh = Sh+Ih, while Nv = Sv+Ev+Iv

are the respective total human and vector populations. For these to be constant, it is sufficient that
λh = fh(Nh) and λv = fv(Nv) which is equivalent to considering constant human and mosquito
populations with sizes Nh = f−1

h (λh) and Nv = f−1
v (λv) which will always exist whenever fh and

fv are continuously differentiable monotone decreasing functions of their arguments.
To analyse the model, it is assumed that the human and vector populations have linear death

rates µh and µv and then introduce the following dimensionless parameters:

τ = µht, λ =
λh

µh

, r =
rh

µh

, ξ =
Cvhav

µh

Nv, ε =
µh

µv

, a =
λv

µv

, b =
Chvav

µv

, e =
νv

µv

. (2)

In the present scaling, 1
µh

and 1
µv

are respectively the approximate life spans of the vector and
human populations. If it is assumed that the life span of the vector is short compared with that of
the human, then

0 <
µh

µv

= ε ≪ 1. (3)

Thus the parameter groupings in (2) are strictly different from those used in Ngwa and Shu [25]
in that they explicitly highlight the presence of the small parameter, ε, in the system and also
consider the vector and human populations as constants. Using (2) in (1) gives

{

dSh

dτ
= λ(Nh − Sh) + rIh − ξ( Iv

Nv
)( Sh

Nh
), dIh

dτ
= ξ( Iv

Nv
)( Sh

Nh
) − (r + λ)Ih,

εdSv

dτ
= a(Nv − Sv) −

(

bIh

Nh

)

Sv, εdEv

dτ
=
(

bIh

Nh

)

Sv −
(

e + a)
)

Ev, εdIv

dτ
= eEv − aIv,

(4)

together with the appropriate initial conditions at time τ = 0. From (4), it is seen that in each of
the last three equations a small parameter is multiplying the derivative. So system (4) is therefore
a singular perturbation problem. By applying the pseudo-steady state hypothesis [12], one can, to
a first approximation, set ε = 0 to obtain from the last three equations the following relations:

Sv =
aNvNh

aNh + bIh

, Ev = (
a

a + e
)(

bIh

aNh + bIh

)Nv, Iv = (
e

a + e
)(

bIh

aNh + bIh

)Nv. (5)
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Substituting for Iv from (5) in the first equation of (4) with ε = 0, we obtain the following
pseudo-equilibrium approximation for the system (1).

dSh

dτ
= (λ + r)Ih − ( ξeb

a(a+e)
)( IhSh

Nh(Nh+ b
a
Ih)

),
dIh

dτ
= ( ξeb

a(a+e)
)( IhSh

Nh(Nh+ b
a
Ih)

) − (r + λ)Ih.

}

(6)

Since Sh + Ih = Nh a constant, one of the equations in (6) is redundant since Sh = Nh − Ih. In
this case, one simply drops the subscript h and write

I = Ih, N = Nh, δ =
b

a
, D =

ξeb

a(a + e)
, µ = r + λ, (7)

to have the single nonlinear equation,

dI

dτ
=

D(N − I)I

N(N + δI)
− µI. (8)

This equation thus represents the pseudo-equilibrium approximation model for the original model
and clearly shows the dependence of the system on the total population N . It also captures
essential parameters such as D which is dependent on the human biting habit of the mosquitoes
as well as on the total mosquito population Nv. An increase in D can therefore be regarded as
an increase in Nv. The parameter δ measures the infectiousness of the vector in relation to the
vector population linear growth rate.

Equation (8) has an exact integral which may be written in the form
{

(δ+R0) log(I(τ))−(δ+1)R0 log(N(R0−1)−I(τ)(δ+R0))
µ(R0−1)(δ+R0)

= τ + a constant if R0 = D
µN

> 1,
N−δI(τ) log(I(τ))

δµI(τ)+µI(τ)
= τ + a constant if R0 = D

µN
= 1,

(9)

where the constant of integration can be determined by specifying the initial number of infective
humans I at time τ = 0. Observe however that this complete integral is too complicated to be
of use in any analysis, and we cannot even begin to make sense of it when R0 < 1. To gather
relevant information however, we observe that equation (8) has two steady state solutions. That
is solutions for which dI

dτ
= 0, namely;

I∗ = I∗
1 = 0, and I∗ = I∗

2 =
(R0(N) − 1)N

R0 + δ
where R0(N) =

D

µN
. (10)

R0 is the unique threshold parameter for the model. Clearly, when R0 ≤ 1, the only steady state
is the trivial solution, I∗

1 , which will be globally and asymptotically stable, while if R0 > 1, the
trivial solution, though it exists is linearly unstable while the nontrivial steady state solution, here
given as I∗

2 , is globally and asymptotically stable. Also, for a given D and µ, there is a critical
population size Nc = D/µ above which the equation has only the trivial solution I∗

1 = 0. In the
context of the original system, this requirement will mean that in cases when N is very large,
the simplified model will be useful when D is much larger than N . That is D → ∞ for fixed
parameters. In situations where malaria abounds, this requirement is often met since D increases
linearly with increasing mosquito population.

Observe that equation (8) if K = I∗
2 can be rearranged as follows:

dI

dτ
=

D(N − I)I

N(N + δI)
− µI = D0

(

1 − I

K

)

I ≡ f(I), D0(N, I, R0) =

(

µN

N + δI

)

(R0 − 1),(11)
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The form (11) shows the constant solutions I∗
1 = 0 and I∗

2 = K at a glance. Since the stability of
the steady states is governed by the sign of f ′(I∗), it is easy to verify that

f ′(I∗ = 0) = µ(R0 − 1) and f ′(I∗ = K) = −(
µN

N + Kδ
)(R0 − 1) (12)

so that the steady state I∗ = 0 is globally and asymptotically stable when R0 ≤ 1 and locally
unstable if R0 > 1, and the steady state I∗ = I∗

2 = K, which exists only when R0 > 1, is globally
and asymptotically stable when it does exist. Thus the representation (11) shows that for any
given positive non-zero initial number of infected individuals, say I(0) = I0 > 0, we have two
solution regimes as τ → ∞ as follows:

(i) lim
τ→∞

I(τ) = 0 if R0 ≤ 1, (ii) lim
τ→∞

I(τ) = I∞ = I∗
2 = K if R0 > 1. (13)

Clearly from the formulation, I(t) = 0 ∀t > 0 whenever I(0) = 0. Figure 1 (a) and (b) respectively
show the long term numerical solution of the equation (8) for the two regimes where R0 < 1 and
R0 > 1 respectively. An examination of the behaviour of the steady state I∗

2 as a function of R0,
See Figure 1(c), shows that the final finite amplitude steady state solution varies with R0 only in
a narrow band of reproduction numbers. So that a control measure that will reduce R0 say from
500 to 50 will lead only to a small reduction in the number of infectives in the population. As we
had reported before, [25], this behaviour has far reaching consequences on the control of malaria
as control measures applied when the reproduction number is far above its critical value, and the
number of infectives in the population is large will lead to very small effects in prevalence.

The limiting behaviour given by (13) is all the information that the deterministic model can
offer for the reduced model. The interesting question is whether the stochastic analogue of the
model can give more information than this. Given the pointers from this deterministic analysis,
it is therefore reasonable to study the behaviour of the stochastic analogue of model (11) in the
different regions of parameter space where the size of R0 is compared with 1. We use the rearranged
equation (11) to identify model (8) with the logistic type growth model with a density dependent
growth rate D0 and carrying capacity K. See, for example, N̊asel [20]. The total population N
is seen here as a parameter in the model and also determines an upper bound for the variable I
which in this case models the number of infected humans in the population.

3 Stochastic considerations

The deterministic model predicts a stable endemic equilibrium whenever we start off the process
with at least one infected individual so long as the threshold parameter R0 > 1. This prediction
is not realistic since the first event, in the sequence of possible events, could be the death of this
infective. In this case, the infection will certainly not spread into the population irrespective of
whether or not R0 > 1. To investigate this fully, we now study the stochastic analogue of the
deterministic model by requiring that such a stochastic model examines the probability of the
disease establishing itself in the population and its derivation built on the reduced deterministic
model. The stochastic model should account for the basic events of recruitment (infection) and
removal (recovery) of individuals in the appropriate state. In conformity with the fact that
populations occur in discrete integer units, define a stochastic variable that is restricted to take
non-negative integers. In the case here, use a single integer, state variable; namely, the number of
infected humans in the population at time τ , I(τ). The variable, I, then takes values from the set
{0, 1, 2, · · · , N} where N is the total human population. Referring to the simplified model (8), the
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Figure 1: Long term behaviour of the solution of (8) for different values of the parameter R0.
(a) R0 = 0.75 and so the solution converges to the trivial solution, I = 0, as τ → ∞. (b)
R0 = 2.75 and so we have an endemic equilibrium solution so that I∞ = I∗

2 defined by (10). (c)
The behaviour of the final solution I∞ = limτ→∞ I(τ) as a function of the basic reproduction
number R0. As R0 → ∞ the number of infectives rise very fast and soon saturates towards the
final size of the total population, and the variation of the density of infectives with R0 is large
only in a narrow band of basic reproduction numbers. The parameters, as in [25], are µ = 0.2018,
δ = 9.998, N = 1000, D = 201.84R0.

Basic Event Transition Transition rate in time △τ

1 Recruitment of a susceptible I → I + 1 DI(N−I)△τ

N(N+δI)

2 Removal of an infective I → I − 1 µI△τ

Table 1: Hypothesized transition rates for the elementary events which constitute the stochastic
version of the deterministic model (8).

transition rates of the various events which constitute the dynamics of the system are displayed
in Table 1.

Once the stochastic frame work is established, instead of writing down a set of equations whose
solutions will give the number of individuals of a given state in the population at the given time τ ,
we attempt to calculate the probability that there shall be a certain number of infected individuals
in the population at a given time τ and define

Pi(τ) = Pr{I(τ) = i}, i ∈ {0, 1, 2, · · · , N}. (14)

That is, Pi(τ) is the probability that there are i infectives in the population at time τ . The
objective, then, would be to attempt to calculate the values of Pi(τ) for each i ∈ {0, 1, 2, · · · , N}.
One set of equations that model the rate of change of the probability defined by (14) is the set
of Kolmogorov differential equations. To formulate the Kolmogorov equations, a time interval
(τ, τ +∆τ) where ∆τ is positive and very small compared with τ is considered. It is then assumed
that the time interval between any two events in the system under consideration (in this case the
events of recovery and infection) is long enough∗ so that only one of these events can occur at
a time. One form of the Kolmogorov equations; the Forward Kolmogorov differential equations
[32, 29], model the rate of change of probability defined by (14). In Table 1, I → I + 1, for
example indicates the change in the number of infectives from I to I + 1. N represents the total
human population. The transition rate measures the rate of change of the corresponding transition

∗Equivalently it is assumed that the time interval under consideration is so short that only one event can occur
within it.
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probabilities. Since the process hypothesized in Table 1 is a Markov process, the transition between
states in the system is restricted only to the nearest neighbouring states. For example, given a
state variable in state i, a transition can only occur from i to i−1 or to i+1. For the present, lets
denote the transition rate per unit time from state i to state i + 1 by λi and the rate of transition
per unit time from state i to i − 1 by µi. Then from Table 1,

λi =
D(N − i)i

N(N + δi)
, µi = µi, i = 0, · · · , N. (15)

Observe that µ0 = λN = 0. This is consistent with the assumption that the state space is limited
to {0, 1, · · · , N}, and also with the facts that when there are no infected persons in the population
their removal rate is obviously zero and when I = N (the entire population is infected) there are
no susceptible individuals left to get exposed to the infection. Again observe that λ0 = 0 is
consistent with the assumption that when there are no infected individuals in the population,
further infections cannot occur and the infection has been eradicated or has gone extinct. The
state I = 0 is an absorbing state.

Starting from the definition of Pi(τ) together with the rates λi and µi whose specific forms
are given by (15) and employing standard techniques [32], we derive the Kolomogorov forward
differential equations for Pi, namely;

dPi(τ)

dτ
= λi−1Pi−1(τ) − (λi + µi)Pi(τ) + µi+1Pi+1(τ), Pi(0) =

{

1, i = i0
0, i 6= i0,

(16)

where i = 0, 1, · · · , N and Pi(τ) = 0 for i < 0 and i > N , and i0 is the initial number of infectives.
The N + 1 equations listed in (16) together with the N + 1 initial conditions constitute the
stochastic analogue of the reduced deterministic model (8). The total human population size, N,
appears as a parameter in the system of equations (16) with initial conditions shown. This is
an advantage which the stochastic formulation has over its deterministic counterpart. We now
examine the existence of stationary distributions for our problem.

3.1 Stationary Distributions

In this subsection, we establish that for any given initial probability distribution, the system
of probability equations (16) satisfying the indicated initial condtions does not have a limiting
equilibrium probability distribution of population sizes in which i 6= 0.

Theorem 3.1 (Absence of non-trivial equilibrium distributions.) Let Pi(τ), for each i ∈
{0, 1, 2 · · · , N} be the probability whose distribution at time τ > 0 satisfies the system (16) together
with the indicated initial conditions. Then there does not exist a limiting equilibrium or stationary
distribution for which Pi 6= 0 is constant ∀ i ∈ {0, 1, · · · , N}. That is

dPi

dτ
= 0 ⇔ Pi =

{

1, i = 0,
0, otherwise.

(17)

Proof : If Pi = 0 or Pi = 1, ∀τ , then obviously dPi

dτ
= 0. Now let P ∗

i be the equilibrium or
stationary distribution of Pi. Then P ∗

i , i = 0, 1, 2, · · · , N satisfies

λi−1P
∗
i−1 − (λi + µi)P

∗
i + µi+1P

∗
i+1 = 0, i = 0, 1, 2, · · · , N ; P ∗

−1 = P ∗
N+1 = 0, (18)
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where λi and µi are given by (15). Thus, there are, from (18), N + 1 equations for the unknowns
P ∗

0 , P ∗
1 , · · · , P ∗

N , which can be solved in turn. For i = 0, we have the equation λ−1P
∗
−1 − (λ0 +

µ0)P
∗
0 +µ1P

∗
1 = 0. From the definition of the parameters, P ∗

−1 = 0, λ0 = µ0 = 0 and so we have the
single term µ1P

∗
1 = 0 ⇒ P ∗

1 = 0. For i = 1, we have the equation λ0P
∗
0 − (λ1 + µ1)P

∗
1 + µ2P

∗
2 = 0.

But From the definition of the parameters λ0 = 0, and we have already found P ∗
1 = 0 and so we

are left with the equation µ2P
∗
2 = 0 ⇒ P ∗

2 = 0. As we continue for subsequent i, we find that
each P ∗

i = 0 for i = 1, 2, · · · , N since λ0 = µ0 = λN = 0 from (15). We then note that since P ∗
i ,

i = 0, 1, 2, · · · , N are probabilities,
∑N

i=0 P ∗
i = 1 ⇒ P ∗

0 = 1. �

Theorem 3.1 shows that the process {I(τ)} has the stationary distribution (1, 0, 0, · · · , 0)
and no other. Thus the system (16) for any initial data does not have a limiting equilibrium or
stationary probability distribution of population sizes in which the number of infective individuals,
I 6= 0. Therefore, in this case, the stationary solution is degenerate and non-informative. The
state i = 0 is, therefore, an absorbing state, since when the system enters this state it cannot come
out again. In fact a disease dynamic with an absorbing state is desirable, especially if the absorbing
state corresponds to the disease free state. We have here an eradication criterion in which we seek
to find conditions such that the system gets absorbed and the infection eliminated. What is sure
is that most diseases, for which the dynamics has an absorbing states, do not enter absorption in
finite time. However, if it is known that the process whose probability distribution is given by the
system (16) under the transition rates shown in Table 1, has been going on for a long time, and
if absorption has not yet occurred, then the state of the system can be well approximated by a
quasi-stationary distribution [20]. Unfortunately, the quasi stationary distribution is not easy to
compute and we next seek ways of approximating it.

3.2 Two auxiliary processes

Even though the system that we have developed has a degenerate stationary distribution, we still
seek to make approximations to what we shall refer to as a quasi- stationary distribution in the
rest of this paper. To do this we start by studying two auxiliary process, originally discussed
by Kryscio and Lefẽvre [8] and then in detail by N̊asell [16, 17, 20], that may initially serve as
approximations to the stationary distribution. Both of the approximating processes are infection-
recovery processes whose transition rates are very close to those given in (15), but with the
advantage that the approximating processes now have non-degenerate stationary distributions that
can be found explicitly. The state space of each of the approximating processes is {1, 2, · · · , N},
and differs from the state space of the original process, {I(τ), τ ≥ 0} only by the fact that it
does not include the state 0. If we denote the two auxiliary processes by {I(0)(τ), τ ≥ 0} and
{I(1)(τ), τ ≥ 0}, we proceed to define them as follows: For the process {I(0)(τ), τ ≥ 0}, denote its

recovery and infection rates by µ
(0)
i and λ

(0)
i respectively and demand that its recovery rate µ

(0)
1

from the state 1 to the state {0} is equal to 0, while all other transition rates are equal to the
corresponding rates for the original process. It might be instructive to described this process as
the original process with the origin removed. The process {I(1)(τ), τ ≥ 0} should have recovery

and infection rates denoted by µ
(1)
i and λ

(1)
i respectively. It is derived from the original process

by allowing for one permanently infected individual, so that each recovery rate µ
(1)
i is replaced

by µ
(1)
i = µi−1 while each of the infection rates, λ

(1)
i , equals the corresponding infection rates of

the original process. Let the state probabilities for the process {I(0)(τ), τ ≥ 0} be denoted by

P(0)(τ) = (P
(0)
1 (τ), P

(0)
2 (τ), · · · , P

(0)
N (τ)), while those for the process {I(1)(τ), τ ≥ 0} are denoted
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by P(1)(τ) = (P
(1)
1 (τ), P

(1)
2 (τ), · · · , P

(1)
N (τ)), then expressions for the stationary distribution for

the two auxiliary processes can be found as it is now demonstrated.

Theorem 3.2 (The auxiliary process {I(1)}.) Let λi and µi be defined as in (15), then the

stationary distribution, P
(1)
i , of the process {I(1)(τ)} is given by the relation

P
(1)
i = ρiP

(1)
1 , ρi =

{

λ1λ2λ3···λi−1

µ1µ2µ3···µi−1
, i = 2, 3, · · · , N,

1, i = 1.
P

(1)
1 =

1
∑N

i=1 ρi

(19)

Proof: The Kolmogorov forward differential equations for the process {I(1)(τ)} are given by the
relation

dP
(1)
i (τ)

dτ
= λ

(1)
i−1P

(1)
i−1(τ) − (λ

(1)
i + µ

(1)
i )P

(1)
i (τ) + µi+1P

(1)
i+1(τ), (20)

where for i = 1, 2, · · · , N , λ
(1)
i = λi, µ

(1)
i = µi−1 with λi and µi given by (15). As τ → ∞, P

(1)(τ)
takes on a positive constant value P

(1) (since a steady state exists for this process) and hence,

from (20), one gets the relation λ
(1)
i−1P

(1)
i−1 − (λ

(1)
i + µ

(1)
i )P

(1)
i + µi+1P

(1)
i+1 = 0, which in terms of the

infection and recovery rates of the original process, is λi−1P
(1)
i−1 − (λi + µi−1)P

(1)
i + µiP

(1)
i+1 = 0.

Rearranging this, one gets the relation, P
(1)
i+1 = (λi

µi
+ µi−1

µi
)P

(1)
i − λi−1

µi
P

(1)
i−1, i = 1, 2, · · · , N, from

which it follows that

P
(1)
2 =

λ1

µ1
P

(1)
1 , P

(1)
3 =

λ1λ2

µ1µ2
P

(1)
1 , P

(1)
4 =

λ1λ2λ3

µ1µ2µ3
P

(1)
1 , P

(1)
5 =

λ1λ2λ3λ4

µ1µ2µ3µ4
P

(1)
1 , · · · . (21)

The general form is therefore, P
(1)
i = ρiP

(1)
1 , i = 1, 2, · · · , N. Since the P

(1)
i ’s are probabilities,

∑N

i=1 P
(1)
i = 1. It then follows from (21) that

ρ1P
(1)
1 + ρ2P

(1)
1 + · · ·+ ρNP

(1)
1 = 1 ⇒ P

(1)
1 =

1
∑N

i=1 ρi

which completes the proof of Theorem 3.2. �

In a similar way we establish an expression for the stationary distribution, P
(0)
i , of the process

{I(0)(τ)}.

Theorem 3.3 (The auxiliary process {I(0)}.) Let ρi be defined as in (19) and

πi =
µ1

µi

ρi, i = 1, 2, · · · , N. (22)

Then the stationary distribution, P
(0)
i , of the process {I(0)(τ)} is given by the relation

P
(0)
i = πiP

(0)
1 , i = 1, 2, · · · , N, with P

(0)
1 =

1
∑N

i=1 πi

(23)

Proof: The Kolmogorov differential equations for the process {I(0)(τ)} are given by

dP
(0)
i (τ)

dτ
= λ

(0)
i−1P

(0)
i−1(τ) −

(

λ
(0)
i + µ

(0)
i

)

P
(0)
i (τ) + µ

(0)
i+1P

(0)
i+1(τ), (24)
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where

λ
(0)
i =

D(N − i)i

N(N + δi)
= λi, ∀i and µ

(0)
i =

{

0, i = 1,
µi, i = 2, 3, · · · , N.

(25)

As τ → ∞, one gets
dP

(0)
i (τ)

dτ
= 0, that is λi−1P

(0)
i−1 − (λi + µi)P

(0)
i + µi+1P

(0)
i+1 = 0, from which it

follows that P
(0)
i+1 =

(

λi

µi+1
+ µi

µi+1

)

P
(0)
i −

(

λi−1

µi+1

)

P
(0)
i−1. Thus

P
(0)
2 =

µ1

µ2

(

λ1

µ1

)

P
(0)
1 , P

(0)
3 =

µ1

µ3

(

λ1λ2

µ1µ2

)

P
(0)
1 , P

(0)
4 =

µ1

µ4

(

λ1λ2λ3

µ1µ2µ3

)

P
(0)
1 , · · · .

It therefore establishes the general form P
(0)
i = πiP

(0)
1 , 1 = 1, 2, · · · , N, which establishes the

relation (23). Since the P
(0)
i ’s are probabilities, it follows that π1P

(0)
1 + π2P

(0)
1 + · · · + πNP

(0)
1 =

1 ⇒ P
(0)
1 = 1

ΣN
i=1πi

�

Having established that the process understudy does not have a stationary distribution because
of the absorptive nature of the degenerate stationary state, we take on board the fact that the
process can still run for a long time without absorption, and therefore must be in some from
of equilibrium. The equilibrium configuration conditioned on non absorption is what we have
identified as the quasi-stationary distribution. We formally identify the two processes: {I(0)}
and {I(I)} as precursors to, and first approximation of, the stationary distribution of the process
under study and then use them as a basis for studying the approximations of quasi stationary
distribution and make use of the expressions for ρi and πi arising from the definition of the two
processes {I(0)} and {I(I)}.

3.3 The quasi-stationary distribution

To define and study the quasi-stationary distribution, q, of the process {I(τ)}, the state space
is partitioned into two subsets, one containing the absorbing state {0} and the other equal to
the set of transient states {1, 2, · · · , N}. Corresponding to this partition, the vector P(τ) is
written in the block form P(τ) = (P0(τ),PQ(τ)) where PQ(τ) = (P1(τ), P2(τ), · · · , PN(τ)) is a
row vector of state probabilities in the set of transient states. Let us denote the quasi-stationary
state probabilities by q̃i(τ). Then q̃(τ) = (q̃1(τ), q̃2(τ), · · · , q̃N(τ)) is the row vector of conditional
state probabilities. q̃i(τ) is defined as

q̃i(τ) = Pr{I(τ) = i|i > 0} =
Pr{I(τ) = i, i > 0}

Pr{I(τ) > 0} =
Pi(τ)

1 − P0(τ)
, i > 0. (26)

Thus the vector of conditional state probabilities, q̃(τ), can be determined from the vector PQ(τ)
of state probabilities on the set of transient states via the relation

q̃(τ) =
PQ(τ)

1 − P0(τ)
. (27)

Differentiate the relation (27) with respect to τ , to obtain

q̃′(τ) =
P′

Q(τ)(1 − P0(τ))

(1 − P0(τ))2
+

P ′
0(τ)PQ(τ)

(1 − P0(τ))2
. (28)
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Apply the relation P ′
0(τ) = µ1P1(τ) to have

q̃′(τ) =
P′

Q(τ)

1 − P0(τ)
+

PQ(τ)µ1P1(τ)

(1 − P0(τ))2
. (29)

Apply the relation (26) to obtain

dq̃(τ)

dτ
=

(

1

1 − P0(τ)

)(

dPQ(τ)

dτ
+ PQ(τ)µ1q̃1

)

. (30)

But PQ(τ) = (P1(τ), P2(τ), · · · , PN(τ)). Hence, P′
Q(τ) = (P ′

1(τ), P ′
2(τ), · · · , P ′

N(τ)), and P ′
i (τ)

satisfies (16). Thus applying relation (27) and setting the time derivatives to zero, in view of
obtaining the stationary solution, q̃ = q̃(∞), the limiting value of the solution of the nonlinear
differential equation (30) as τ → ∞, the quasi-stationary distribution is identified as the solution
to the system of equations

λi−1q̃i−1 − (λi + µi)q̃i + µi+1q̃i+1 = −µ1q̃1q̃i, i = 1, 2, · · · , N, q̃i = 0 for i < 1 and i > N. (31)

For notational convenience, simply write q = (q1, q2, · · · , qN) instead of q̃ = (q̃1, q̃2, · · · , q̃N)
for the row vector of quasi-stationary probabilities. Since the transition rates are non-linear, the
system (31) has no explicit solution for the quasi-stationary probability distribution, since the
solution depends on the unknown value of q1. As a result, alternative means of obtaining the
quasi-stationary distribution must be sought. The sought after quasi-stationary distribution q of
the original process, that is the stationary solution conditioned on non-extinction, is the stationary
solution of (30) which in expanded form satisfies (31).

We start by establishing the following expression for the quasi-stationary state probabilities,
qi.

Theorem 3.4 (The quasi-stationary probabilities) Define πi as in (22) and ρi as in (19),
then the the state probabilities of the quasi-stationary distribution are given by the implicit relation

qi = πi

i
∑

j=1

(

1 −
∑j−1

k=1 qk

)

ρj

q1, i = 1, 2, · · · , N, Where
N
∑

i=1

qi = 1. (32)

Proof: From equation (31), the probabilities qi satisfy the following difference equation:

µi+1qi+1 − (λi + µi)qi + λi−1qi−1 = −µ1q1qi, i = 1, 2, · · · , N, q0 = 0 = qN+1 = q−1. (33)

Define

fi = µiqi − λi−1qi−1, i = 1, 2, · · · , N. (34)

Then
f1 = µ1q1 since λ0 = 0 and fi+1 = µi+1qi+1 − λiqi, i = 1, 2, · · · , N − 1 (35)

From (33) with (34) and (35), it is easy to see the relation fi+1 − fi = −µ1q1qi ⇒ fi+1 = fi −
µ1q1qi, i = 1, 2, · · · , N. Hence, f2 = µ1q1[1−q1], f3 = µ1q1[1−(q1+q2)], f4 = µ1q1[1−(q1+q2+q3)],
· · · . These then give the general result

fi = µ1q1

(

1 −
i−1
∑

k=1

qk

)

, i = 2, 3, · · · , N. (36)
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Inserting (36) into (34) gives the relation µiqi = λi−1qi−1 + µ1q1

(

1 −
∑i−1

k=1 qk

)

, from which it

follows that

qi =
λi−1

µi

qi−1 +
µ1

µi

(

1 −
i−1
∑

k=1

qk

)

q1, µi 6= 0, ∀i. (37)

From (37),

q2 =
λ1

µ2

q1 +
µ1

µ2

(1 − q1) q1,

q3 =
λ1λ2

µ2µ3
q1 +

µ1λ2

µ2µ3
(1 − q1) q1 +

µ1

µ3
(1 − (q1 + q2)) q1,

q4 =
π4

ρ1
q1 +

π4

ρ2
(1 − q1) q1 +

π4

ρ3

(

1 −
2
∑

k=1

qk

)

q1 +
π4

ρ4

(

1 −
3
∑

k=1

qk

)

q1,

q5 =
π5

ρ1
q1 +

π5

ρ2
(1 − q1) q1 +

π5

ρ3

(

1 −
2
∑

k=1

qk

)

q1 +
π5

ρ4

(

1 −
3
∑

k=1

qk

)

q1,

+
π5

ρ5

(

1 −
4
∑

k=1

qk

)

q1, · · · .

By calculating a few more terms, it is seen that the general form for qi is given by (32). Since the
qi’s are probabilities, it then follows that

∑N

i=1 qi = 1. �

4 Approximating the quasi-stationary distribution and time

to extinction

Approximations of quasi-stationary distributions are important since explicit solutions are not
available. In fact, the expression (32) does not give the quasi-stationary distribution in explicit
form since each term in the sum over j depends on the qk values and each qi, in turn, depends
on the unknown probability q1. However, it can be used to successively determine the values of
q2, q3, and so on, if q1 is known. Since q1 can only be determined from the relation

∑N

i=1 qi = 1
which requires knowledge of all the qi, this method becomes impossible to apply. In any case,
since the processes are recursive, we can employ iterative methods as, for example, described in
Nisbert and Gurney [29], Nȧsell [20]. In such iterative methods, q1 is determined based on the
recurrence relation (32) and the recognition method starts with an initial guess for q1, determines
q2, q3, q4, ..., qN , by repeated application of (32) and the requirement that

∑N
i=1 qi = 1, computes

the sum of the qi and determines the result of the first iteration as the initial guess divided
by this sum. The process is repeated until successive iterates are sufficiently close. Renshaw [32]
describes a diffusion approximation as a alternative method for approximating the quasi-stationary
distribution. The above mentioned methods for finding the quasi-stationary distribution do not
take into consideration the threshold value, R0, which we now consider. We shall then use our
approximation for the quasi-stationary distribution to approximate the time to extinction.
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4.1 Approximating the quasi-stationary distribution

We approach the approximation problem by using the results of the two approximating processes
as defined and established in Theorems 3.2 and 3.3. Now, for linear transition rates such as λi = iλ

and µi = iµ, we obtain for ρi from (19) the relation ρi =
(

λ
µ

)i−1

, and expression given in terms of

the ratio of the population infection rate to the population recovery rate. However, for processes
in which one or both of the transition rates are non-linear, obtaining an explicit expression for ρi

from (19) will become difficult. Now, in our case, not both of the expressions for the transition
rates in (15) are linear in the variable i. λi, for example, is non-linear in i. An additional difficulty
in our case comes from considering very large N . Inserting the transition rates for λi and µi from
(15) into (19) and (22) for large N results in some non-explicit and complicated expressions for ρi

and πi. As a result, the method for deriving approximations of the quasi-stationary distribution
and the time to extinction should start with deriving approximations of expressions for ρi and πi.
In fact, when we insert the expressions for the transition rates λi and µi given in (15), we arrive
at expressions for ρi and πi in terms of i and the three parameters N, R0 and δ. To derive an
asymptotic approximations for ρi, we need a precise definition of what we mean by an asymptotic
expansion.

Definition 4.1 Let f : I → R be a real function that depends on a parameter ǫ so that its value at
each t ∈ I is f(t; ǫ), depending as well on the parameter ǫ. The sum

∑∞
k=0 ak(t)ǫ

k is an asymptotic
expansion of f(t; ǫ) if and only if for all n ≥ 0,

f(t; ǫ) −
∑n

k=0 ak(t)ǫ
k

an(t)ǫn
→ 0 as ǫ → 0. (38)

That is, the sum
∑∞

k=0 ak(t)ǫ
k is an asymptotic expansion of f(t; ǫ) if the remainder, f(t; ǫ) −

∑n

k=0 ak(t)ǫ
k, is smaller than the last term in the expansion.

Remark 4.1 Let I ⊆ [0, ∞[ be some domain. One way to recognize an asymptotic expansion
is to assert that if the expansion is of the form

∑∞
k=0 ak(t)ǫ

k, it is an asymptotic expansion (with

respect to ǫ) of a function, for t ∈ I, then ak+1(t)ǫ
k+1

ak(t)ǫk → 0 as ǫ → 0. That is, successive terms in
the expansion are small compared with the previous terms.

We start with an asymptotic approximation of ρi for large N .

Theorem 4.1 Let ρi be defined as in (19). Let

g(i) =

√

1 + δi
N

R0

√

1 − i
N

, h(i) = i log(R0) − (N − i) log(1 − i

N
) − (

N

δ
+ i) log(1 +

δi

N
). (39)

Then

ρi ≈ g(i)eh(i), i = 1, 2, · · · , N, N large. (40)
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Proof: By inserting the expressions for the transition rates λi and µi given in (15) into the relation
for ρi as given by (19), we obtain

ρi =
(N − 1)(N − 2)(N − 3) · · · (N − (i − 1))(i − 1)!

(N
δ

+ 1)(N
δ

+ 2)(N
δ

+ 3) · · · (N
δ

+ (i − 1))(i − 1)!

(

R0

δ

)i−1

. (41)

The numerator of the right hand side of (41) can be expressed as (N−1)!
(N−i)!

and the denominator as
(N

δ
+(i−1))!

(N
δ

)!
. Thus (41) becomes

ρi =
(N − 1)!(N

δ
)(N

δ
− 1)!

(N − i)(N − i − 1)!(N
δ

+ (i − 1))!

(

R0

δ

)i−1

=
Γ(N)Γ(N

δ
)N

R0(N − i)Γ(N − i)Γ(N
δ

+ i)

(

R0

δ

)i

, (42)

where the Gamma function, Γ(x), defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt,

has the property that Γ(x+1) = xΓ(x) with Γ(1) = 1, so that when x is an integer, Γ(x) = (x−1)!.
Nȧsell [20] uses Stirling’s formula, x! ≈ xxe−x

√
2πx, to approximate the Gamma function as

Γ(x) ≈
(x

e

)x
(

2π

x

)
1
2

. (43)

Observe from the initial expression for ρi (42) that as N grows very large, N − i grows very large
as well as N

δ
+ i and N

δ
, for some fixed δ, since δ > 0. Since the Stirling’s formula is used to

approximate n! for n very large, we can, for large N, use the approximation (43) to approximate
the Gamma function in (42) to obtain

ρi ≈ 1

R0

√

1 + δi
N

Ri
0

√

1 − i
N

(

1 − i
N

)N−i (

1 + δi
N

)
N
δ

+i
= g(i)eh(i). (44)

�

Next, we shall use the approximation of ρi prescribed by Theorem 4.1, namely (44), to derive
three other asymptotic approximations of ρi. The first is derived for i-values in the vicinity of the
i-value, i = K, where h(i) is maximum (since K is the deterministic endemic steady state), while
the other two hold for smaller values of i. Precisely for i = O(

√
N) and i = o(

√
N) for N large.

We verify that i = K is the i-value for which h(i) is maximum, i-real valued. By differentiating
(39) with respect to i, we find that

h′(i) = logR0 + log(1 − i
N

) − log(1 + δi
N

) = log

(

(1 − i
N

)R0

1 + δi
N

)

, (45)

and then observe that h′(i) = 0 for i = K, the non-zero steady state for the deterministic model,
where K is defined in (11). The second derivative gives h′′(K) < 0, K 6= N , which shows that
this point corresponds to the maximum for the function h.
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Theorem 4.2 Let ϕ(x) = 1√
2π

exp(−x2

2
) denote the standard normal density function. Let

y1(i) = i−K
σ1

, K = N(R0−1)
R0+δ

, σ1 =

√
NR0(δ+1)

R0+δ
, β1 =

√

2h(K), (46)

and ρi be defined as in (19). Then

ρi ≈ 1√
R0

ϕ(y1(i))

ϕ(β1)
, y1(i) = O(1), 1 ≤ i ≤ N, N large. (47)

Proof: For i-values in the vicinity of the i-values where h(i) is maximum, we first approximate
g(i) and h(i) using Taylor expansions about K and then we substitute these approximations in
(40). We include only one term in the Taylor expansion of g(i) and three terms in the Taylor
expansion of h(i) to best capture the result. The first three terms in the Taylor expansion of h(i)
about K are

h(i) ≈ h(K) + h′(K)(i − K) +
h′′(K)

2!
(i − K)2. (48)

where

h(K) = KlogR0 − (N − K)log(1 − K

N
) −

(

N

δ
+ K

)

log(1 +
δK

N
)

h′(K) = 0, since h(i) has a maximum at K

h′′(K) = −
{

1

N − K
+

δ

N + δK

}

=
−N(1 + δ)

(N − K)(N + δK)
.

Define σ2
1 = − 1

h′′(K)
, β1 and y1(i) as in (46). Then σ2

1 = (N−K)(N+δK)
N(1+δ)

, y2
1(i) = N(1+δ)

(N−K)(N+δK)
(i−K)2.

With these relations for σ2
1, β1 and (y1(i))

2, h(i) simplifies to

h(i) ≈ 1

2
β2

1 −
1

2
y2

1(i). (49)

The first (constant) term in the Taylor expansion of g(i) about K gives

g(i) ≈ 1

R0

√

NR0 + δNR0

Nδ + N
=

1√
R0

. (50)

These approximations of h(i) and g(i) are asymptotic since succeeding terms in each Taylor
expansion are of decreasing order in N . Using the approximation (40) of ρi, we obtain

ρi ≈ g(i)eh(i) ≈ 1√
R0

e
β2
1
2
− y2

1(i)

2 = 1√
R0

ϕ(y1(i))
ϕ(β1)

. �

To approximate ρi for smaller values of i, we first approximate g(i) and h(i) by Taylor expan-
sions about 0. We will include one term in the Taylor expansion of g(i) and three terms in the
Taylor expansion of h(i). The following theorem establishes an approximation of ρi for smaller
i-values and N large.

Theorem 4.3 Define ϕ(x) as in theorem (4.2), ρi as in (19), and

{

y2(i) = i−µ2

σ2
, µ2 = N

1+δ
log(R0), σ2 =

√

N
1+δ

, β2 =
√

N
1+δ

log(R0),

y2
2(i) =

(

1+δ
N

)

i2 − 2i log(R0) + N
1+δ

(log(R0))
2.

(51)
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Then

ρi ≈ 1
R0

ϕ(y2(i))
ϕ(β2)

, i = O(
√

N), 1 ≤ i, N large (52)

ρi ≈ Ri−1
0 , i = o(

√
N), 1 ≤ i, N large. (53)

Proof: The sum of the first three terms in the Taylor expansion of h(i) about 0 gives the following
result

h(i) ≈ i log(R0) −
1

2

(1 + δ)

N
i2. (54)

In terms of y2 and β2 defined in (51),

h(i) ≈ 1

2
β2

2 −
1

2
y2

2, i = O(
√

N), N large. (55)

The constant term h(0) = 0 in this case. The constant term in the Taylor expansion of g(i) about
0 gives

g(i) ≈ 1

R0
, i = O(

√
N), N large. (56)

Both approximations are asymptotic since succeeding terms in each of the Taylor expansions are
of decreasing order in N when i = O(

√
N). By inserting the approximations (55) and (56), of h(i)

and g(i) respectively, into the asymptotic approximation (40) for ρi, we obtain ρi ≈ 1
R0

e
β2
2
2
− y2

2(i)

2 =
1

R0

ϕ(y2(i))
ϕ(β2)

, which gives the result (52). If we further impose a restriction that i is asymptotically

smaller than
√

N , we obtain

h(i) ≈ i log(R0), i = o(
√

N), 1 ≤ i, N large. (57)

From the relation i
N

< i√
N

, we deduce that for a given i, lim
N→large

i√
N

= lim
N→large

i
N

= 0.

So, that Considering this argument in (39) will yield (57). Substituting g(i) ≈ 1
R0

from (56) and

h(i) ≈ i log(R0) from (57) in (40), for ρi, we obtain ρi ≈ 1
R0

ei log(R0) = Ri−1
0 . establishing the result

(53). �

The following theorem establishes three asymptotic approximations of πi.

Theorem 4.4 Let ϕ(x), y1 and β1 be defined as in theorem 4.2, y2, β2 as in (51). Then

πi ≈ 1

(R0 − 1)
√

R0

(

R0 + δ

N

)

ϕ(y1(i))

ϕ(β1)
R0 > 1, y1(i) = O(1), N large, (58)

πi ≈ 1

iR0

ϕ(y2(i))

ϕ(β2)
, i = O(

√
N), N large, (59)

πi ≈ 1

i
Ri−1

0 , i = o(
√

N), N large. (60)

Proof: From the relations πi = µ1

µi
ρi and ρi ≈ g(i)eh(i) from (22) and (40) respectively, we find

that πi can be approximated as follows:

πi ≈
µ

µi
g(i)eh(i) = g0(i)e

h(i), where g0(i) =
1

iR0

√

N + δi

N − i
, N 6= i, (61)
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and h(i) is defined as in (39). The constant term in the Taylor expansion of g0(i) about K =
N(R0−1)

R0+δ
gives g0(i) ≈ g0(K) = 1√

R0(R0−1)

(

R0+δ
N

)

, R0 > 1. Inserting this approximation of g0(i) and

the approximation h(i) ≈ 1
2
β2

1 − 1
2
y2

1(i) from (49) into the asymptotic approximation πi ≈ g0(i)e
h(i)

from (61) gives

πi ≈ 1
(R0−1)

√
R0

(R0+δ
N

)ϕ(y1(i))
ϕ(β1)

, which completes the proof of (58). From the definition of πi in (22),

we have that

πi =
1

i
ρi, i = 1, 2, · · · , N, (62)

since µi = µi. Substituting the approximation ρi ≈ 1
R0

ϕ(y2(i))
ϕ(β2)

for i = O(
√

N) and N large from

Theorem 4.3 into the relation (62), we obtain πi ≈ 1
iR0

ϕ(y2(i))
ϕ(β2)

, which completes the proof of (59).

Furthermore, substituting the approximation ρi ≈ Ri−1
0 for i = o(

√
N) and N large from Theorem

4.3 in the relation (62) gives πi ≈ 1
i
Ri−1

0 , which proves (60). �

The forgoing then allow us to write down the approximations for the stationary distribution
P(1) for 1 ≤ i ≤ N . To do this it suffices to derive an approximation of P

(1)
i , the probability

density function of the distribution P(1). The derivations of the approximations of the stationary
probabilities, P

(1)
i , which are based on the expression P

(1)
i = ρiP

(1)
1 , i = 1, 2, · · · , N, from (19).

Theorem 4.5 The stationary distribution P(1) is approximated as

P
(1)
i ≈ 1

σ1

ϕ(y1(i)), R0 > 1, R0 fixed, y1(i) = O(1), (63)

where σ1 and y1(i) are defined as in Theorem 4.2.

Proof: Consider the relation P
(1)
i = ρiP

(1)
1 . Since the approximation of ρi is known from the

relation (40), it remains to find an approximation of P
(1)
1 = 1

PN
i=1 ρi

. The approximation (47) of

ρi, shows that ρi is proportional to the probability 1
σ1

ϕ(y1(i)) for a normally distributed random
variable with mean K and standard deviation σ1. This approximation is valid for 1 ≤ i ≤ N ,
where the argument of the function ϕ is O(1). The sum of all these probabilities over i from 1 to
N is asymptotically equal to 1, since this range of i-values cover the body of the distribution. We
can thus approximate the sum

∑N
i=1 ρi as follows:

N
∑

i=1

ρi ≈ 1√
R0

1

ϕ(β1)

N
∑

i=1

ϕ(y1(i)) ≈ σ1√
R0 ϕ(β1)

, (64)

since
∑N

i=1
ϕ(y1(i))

σ1
≈ 1 as 1 ≤ i ≤ N covers the body of the distribution. It follows from (64)

that

P
(1)
1 ≈

√
R0ϕ(β1)

σ1
=

R0 + δ
√

N(1 + δ)
ϕ(β1), R0 > 1, R0 fixed, (65)

where we have applied the definition of σ1 from Theorem 4.2. From the result (65) and the

approximation (47) of ρi, we obtain P
(1)
i = ρiP

(1)
1 ≈ 1√

R0

(R0+δ)√
N
√

(1+δ)
ϕ(y1(i)) = ϕ(y1(i))

σ1
. �

Remark 4.2 The result (63) shows that the distribution P(1) is approximately normal for 1 ≤
i ≤ N .
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Next we also derive three asymptotic approximations of the stationary distribution P(0), one in
the body of the distribution (for the range 1 ≤ i ≤ N) and two in the left tail of the distribution,
precisely for i = O(

√
N) and i = o(

√
N) for N large. These derivations are based on the relation

P
(0)
i = πiP

(0)
1 from (23). The approximations in the left tail of the distribution will be used to

approximate the time to extinction.

Theorem 4.6 Define ϕ, y1 and β1 as in theorem 4.2, y2(i), β2 as in theorem 4.3. Then we have

P
(0)
i ≈ 1

σ1

ϕ(y1(i)), R0 > 1, R0 fixed, y1(i) = O(1), N large. (66)

P
(0)
i ≈ (R0 − 1)

√
N

R0

√
δ + 1

ϕ(β1)

ϕ(β2)

ϕ(y2(i))

i
, R0 > 1, R0 fixed, i = O(

√
N), N large. (67)

P
(0)
i ≈ (R0 − 1)

√
N√

δ + 1
ϕ(β1)

Ri−1
0

i
, R0 > 1, R0 fixed, i = o(

√
N), N large. (68)

Proof: We use the approximation πi ≈ 1
(R0−1)

√
R0

(R0+δ
N

)ϕ(y1(i))
ϕ(β1)

from (58). As in the preceding

section, we make use of the result
∑N

i=1
ϕ(y1(i))

σ1
≈ 1 to evaluate the sum

∑N
i=1 πi. From (58), we

have
N
∑

i=1

πi ≈ 1

(R0 − 1)
√

R0

(

R0 + δ

N

)

1

ϕ(β1)

N
∑

i=1

ϕ(y1(i)) ≈ σ1(R0 + δ)√
R0(R0 − 1)Nϕ(β1)

.

From the relation P
(0)
1 = 1

PN
i=1 πi

, we obtain

P
(0)
1 ≈ (R0 − 1)

√
R0Nϕ(β1)

σ1(R0 + δ)
. (69)

Making use of the approximation of πi from (58) and P
(0)
1 from (69) we obtain from the rela-

tion P
(0)
i = πiP

(0)
1 the approximation P

(0)
i ≈ 1

(R0−1)
√

R0
(R0+δ

N
)ϕ(y1(i))

ϕ(β1)
(R0−1)

√
R0Nϕ(β1)

σ1(R0+δ)
= ϕ(y1(i))

σ1
, es-

tablishing the proof of (66). This approximation is valid for 1 ≤ i ≤ N . Using the approximation

πi ≈ 1
iR0

ϕ(y2(i))
ϕ(β2)

from (59) and the result (69) of P
(0)
1 , we obtain P

(0)
i ≈ 1

iR0

ϕ(y2(i))
ϕ(β2)

(R0−1)
√

R0Nϕ(β1)
σ1(R0+δ)

=
(R0−1)

√
Nϕ(β1)ϕ(y2(i))

R0
√

δ+1ϕ(β2)i
, which completes the proof of (67). Using the approximation πi ≈ 1

i
Ri−1

0 from

(60) and the approximation (69) of P
(0)
1 , we are led to the result P

(0)
i ≈ (R0−1)

√
Nϕ(β1)Ri−1

0

i
√

δ+1
, which

completes the proof of (68). �

Now that we have approximations for the two approximating processes, we are in a position to
write down approximations for the quasi-stationary distribution. To derive an approximation for
the distribution q, it suffices to derive approximations for the qi’s, the quasi-stationary probabilities
whose values are based on the relation (32). To proceed, define

α(j) =
1 −

∑j−1
k=1 qk

ρj

. (70)

The first step in approximating qi is to find an approximation for the sum over j, or the sum of
α(j) in (70), which is then followed by an approximation of the quasi stationary probability, q1.
The next theorem provides an approximation for the sum over j or α(j) (that is, the sum over j
in (32)).
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Theorem 4.7 Let α(j) be defined as in (70) and R0 the threshold value. Then

i
∑

j=1

α(j) ≈ R0

R0 − 1

(

1 −
(

1

R0

)i
)

, R0 > 1, R0 fixed, i = o(
√

N), N large. (71)

Proof: We note that the numerator in each term in the sum in (32) is a decreasing function of
j and the denominator an increasing function of j, since the quantity ρj is proportional to the

probabilities P
(1)
j which increase monotonically with j over the allowable range of j-values. Thus

the terms in the sum over j decrease monotonically, in j, at least up to j = JKK, where JKK,
denotes the largest integer less than or equal to K. The sum over j is dominated by the sum of
the first several terms since the first term in the sum over j equals 1 while the term corresponding
to j = JKK is very much smaller than 1. We consider j-values up to a value that grows very large
as N becomes very large, but for which the growth is slower than

√
N . For such j-values, we make

the assumptions qj = o(1) as N grows very large for j = o(
√

N). This implies that the numerator
of each term is asymptotically equal to 1. From (53), we note that ρj ≈ Rj−1

0 if j = o(
√

N), for N
large. With these considerations, we have the approximation.

∑i
j=1 α(j) ≈∑i

j=1
1
ρj

≈∑i
j=1

1

R
j−1
0

which gives (71) for a fixed R0 > 1, and i = o(
√

N), N large. �

The next step is to approximate q1.

Theorem 4.8 Define β1 and ϕ as in theorem 4.2. Then the quasi-stationary probability, q1, is
approximated as

q1 ≈
(R0 − 1)2

√
N

R0

√
δ + 1

ϕ(β1), R0 > 1, R0 fixed, N large. (72)

Proof: As i becomes very large, we have from (71), R0

R0−1

(

1 − 1
Ri

0

)

≈ R0

R0−1
, since

(

1 − 1
Ri

0

)

≈ 1.

Assuming that the sum over j is approximated by this constant value for all large i-values, we
obtain the approximation

qi ≈ R0

R0 − 1
πiq1, R0 > 1, R0 fixed, N large. (73)

This gives
∑N

i=1 qi ≈ R0

R0−1
1

P
(0)
1

q1, where we have used the expression
∑N

i=1 πi = 1

P
(0)
1

from (23). Us-

ing the condition that
∑N

i=1 qi = 1, we obtain q1 ≈ (R0−1)P
(0)
1

R0
≈ (R0−1)2

√
Nϕ(β1)

R0
√

δ+1
, R0 > 1, R0 fixed, N large,

where we have applied the approximation of P
(0)
1 from (69). �

It now remains to establish an explicit approximation for qi from approximation (73).

Theorem 4.9 Let y1, ϕ and β1 be defined as in theorem 4.2. Then

qi ≈ ϕ(y1(i))

σ1
, y1(i) = O(1), N large, R0 fixed, R0 > 1. (74)

Proof: From (73), qi ≈
√

R0(R0+δ)
(R0−1)2N

ϕ(y1(i))
ϕ(β1)

q1 = ϕ(y1(i))
σ1

, in which we have used the approximations

(72) of q1, and (58) of πi. �
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Figure 2: The distributions P(0) and P(1) are close to the quasi-stationary distribution, q
when R0 > 1. The two distributions are indistinguishable from q. The parameters, as in [25], are
N = 1000, R0 = 10.2, δ = 19.5, K = 309.76, σ1 = 15.396, D = 0.102.

The approximation of qi in (74) indicates that qi has a normal distribution in the parameter
region, where R0 > 1. In summary, we note that the three distributions; P(1), P(0) and q are
approximately normal for 1 ≤ i ≤ N with the mean equal to the non-zero steady state K and
standard deviation σ1, in the parameter region where R0 > 1 is fixed, for N very large. Figure
1 shows a graphical representation of the distributions P(1), P(0), and q when R0 > 1. The
approximations P (0), P (1) are indistinguishable from computed q.

4.2 Approximating the time to extinction

The time to extinction, T , is a random variable which depends on the initial distribution. We
denote this random variable by TQ when the initial distribution P (0) equals the quasi-stationary
distribution, q, and by Ti when I(0) = i, where I(0) is the number of infectives at time 0. If the
process has been going on for a long time and it is known that it has not been absorbed, then
its distribution is well approximated by the quasi-stationary distribution. To obtain the expected
time to extinction from quasi-stationarity, we need to know the probability of ultimate extinction.
The following theorem states an approximation of the probability of ultimate extinction, P0(τ).

Theorem 4.10 The probability of ultimate extinction, P0(τ), is approximated by

P0(τ) ≈ 1 − exp(−µ1q1τ). (75)

Proof: We recall that P0 satisfies the initial value problem P ′
0(τ) = µ1P1(τ), P0(0) = 0 if

absorption has not yet occurred. From (30) we note that at stationarity,

P′
Q(τ) = −µ1q1PQ(τ), PQ(0) = q, (76)

where q is the quasi-stationary probability. (76) has the solution PQ(τ) = q exp(−µ1q1τ). By the
definition of q̃i, the probability that I(τ) = 1 given that extinction has not occurred, is P1(τ) =
q̃1(τ)(1−P0(τ)) ≈ q1(1−P0(τ)), τ → ∞. Thus P ′

0(τ) ≈ µ1q1(1−P0(τ)) ⇒ log(1−P0(τ)) ≈ −µ1q1τ
⇒ P0(τ) ≈ 1 − e−µ1q1τ . �
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If absorption has occurred at time τ , then the waiting time to extinction, TQ, is at most
equal to τ and also, the state of the system is at zero, that is, I(τ) = 0. Hence the event
{TQ ≤ τ} ≡ {I(τ) = 0}. Applying (75), we obtain

Pr{TQ ≤ τ} = Pr{I(τ) = 0} = P0(τ) ≈ 1 − exp (−µ1q1τ).

Thus P0(τ) is the probability of extinction up to and including the time τ . dP0(τ)
dτ

is the probability
density of extinction at time τ . This probability density can be used to obtain the expected time
to extinction from quasi-stationarity for a population of initial size i which is stated in the next
theorem.

Theorem 4.11 The expected time to extinction from quasi-stationarity, ETQ, has an exponential
distribution with

ETQ ≈
√

2π
√

δ + 1 R0 eγ1N

µ1(R0 − 1)2
√

N
, R0 > 1, R0 fixed, N large, (77)

where

γ1 =
1

R0 + δ

{

(R0 − 1) log(R0) − (δ + 1) log

(

δ + 1

R0 + δ

)

− R0

(

δ + 1

δ

)

log(R0)

(

δ + 1

R0 + δ

)}

=
β2

1

2

Proof: The mean or average time to extinction from quasi-stationarity for a population of initial

size i is ETQ(i) =
∫∞
0

τ
[

dP0(τ)
dτ

]

dτ. Since limτ→∞(1− exp(−µ1q1τ )) = 1, we have that P0(∞) = 1.

Thus from (75), P0(∞) − P0(τ) = exp(−µ1q1τ) from which it follows that d
dτ

[P0(∞) − P0(τ)] =

−µ1q1 exp(−µ1q1τ) ≈ −dP0(τ)
dτ

. Thus ETQ(i) = −
∫∞
0

τ d
dτ

[P0(∞) − P0(τ)] dτ =
∫∞
0

[1 − P0(τ)] dτ,
provided that ultimate extinction is certain. Substituting the approximation of P0, we obtain
ETQ(i) =

∫∞
0

exp(−µ1q1τ)dτ = 1
µ1q1

. Since ETQ(i) is independent of i, we conclude that

ETQ = ETQ(i) =
1

µ1q1
. (78)

Also, since the probability density of extinction, dP0(τ)
dτ

= µ1q1 exp (−µ1q1τ), we conclude that TQ

has an exponential distribution. From (72), q1 ≈ (R0−1)2
√

Nϕ(β1)

R0
√

δ+1
. Thus ETQ ≈ R0

√
δ+1

√
2πe

β2
1
2 N

µ1(R0−1)2
√

N
=

R0
√

δ+1
√

2πeγ1N

µ1(R0−1)2
√

N

N̊asell [20] gives the expected time to extinction, ETi, for the logistic growth model from a
fixed initial state i as

ETi =
1

µ1

i
∑

k=1

∑N
j=k πj

ρk

=
1

µ1P
(0)
1

i
∑

k=1

∑N
j=k P

(0)
j

ρk

(79)

in terms of the probabilities P
(0)
j . Since the model studied in this work can be represented

as a logistic model, it follows that we can apply this expression to our model. Note that the
parameter sequences ρi and πi both appear here. Since these parameter sequences are related to
the distributions P(1) and P(0), we can interpret both numerator and denominator of each term
in the sum with the aid of these distributions. By putting i = 1 in (79), we obtain

ET1 =
1

µ1P
(0)
1

N
∑

j=1

P
(0)
j =

1

µ1P
(0)
1

, (80)
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for successive values of i we have

ET2 =
1

µ1P
(0)
1

2
∑

j=1

(

1 −
∑j−1

k=1 P
(0)
k

)

ρj

, ET3 =
1

µ1P
(0)
1

3
∑

j=1

(

1 −
∑j−1

k=1 P
(0)
k

)

ρj

, · · · .

Continuing with this substitution of values of i in equation (80), we obtain the general expression

ETi = ET1

i
∑

j=1

(

1 −
∑j−1

k=1 P
(0)
k

)

ρj

. (81)

Next we derive explicit approximations for the expected time to extinction from the state i.

Theorem 4.12 The expected time to extinction from the state 1 is approximated as

a) ET1 ≈
√

2π
√

1 + δ eγ1N

µ1(R0 − 1)
√

N
, R0 > 1 , R0 fixed, N large

The expected time to extinction from the state i is approximated as

b) ETi ≈
√

2π
√

1 + δ R0 eγ1N

µ1(R0 − 1)2
√

N

(

1 − 1

Ri
0

)

, R0 > 1 , R0 fixed, i = o(
√

N), N large.

Proof: Considering P
(0)
i ≈ (R0−1)

√
Nϕ(β1)√

δ+1

Ri−1
0

i
from (68), for i = 1 we obtain ET1 ≈

√
1+δ

µ1(R0−1)
√

Nϕ(β1)
=

√
2π

√
1+δ eγ1N

µ1(R0−1)
√

N
. The terms in the sum over j in equation (81) decrease monotonically at least up to

j = JKK, since the numerator in each term in the sum is a decreasing function of j and the denom-
inator, an increasing function of j up to j = JKK. We consider j-values up to a value that grows

very large as N grows very large. For such j-values, we make the assumptions that P
(0)
j = o(1) as

N grows very large for j = o(
√

N). Thus the numerator of each term is asymptotically equal to
1. Since ρj ≈ Rj−1

0 for j = o(
√

N) and N large,

ETi ≈ ET1

i
∑

j=1

1

Rj−1
0

≈ ET1

(

R0

R0 − 1

)(

1 − 1

Ri
0

)

=

√
2π

√
1 + δ R0 eγ1N

µ1(R0 − 1)2
√

N

(

1 − 1

Ri
0

)

.

�

Note that ETi increases monotonically with i from the approximation of ET1 towards the
approximation of ETQ. Note also that the Expected time to extinction increases exponentially
with increasing N and becomes very large for very large values of N . In fact ET⋆ → ∞ as
N → ∞ so that for large values of N we can say that absorption will not occur readily. This is in
conformity with the fact that the disease establishes itself in the population whenever R0 > 1.

5 Discussion

We began by studying a simplified version the deterministic malaria model whose general version
was originally derived and studied by Ngwa and Shu [25]. Borrowing a leaf from Michaelis-menten
speaudo-steady state hypothesis we reduced the system to a single nonlinear ordinary differential
equation under the assumption that the humans have a much longer life span than mosquitoes
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and that disease induced death rate is negligible. We showed that the disease-free equilibrium
always exists and is stable for R0 ≤ 1 and unstable otherwise, while the endemic equilibrium is
globally and asymptotically stable for R0 > 1.

We then incorporated stochasticity into the reduced model, and formulated the Kolmogorov
forward differential equations for the stochastic model, which was then analysed for the existence
and stability of the stationary distribution. The analysis revealed that the stochastic model does
not have a non-zero steady state distribution of probabilities and that the stationary distribution
is degenerate. This analysis led to the study of the quasi-stationary distribution of the stochastic
model. Our results agreed with those obtained by N̊asell [15] who addressed the concepts studied
in this paper but with the associated deterministic model being the the classical Ross malaria
model. Modern deterministic differential equation models for malaria transmission employ more
sophisticated techniques giving rise to equations that also account for the abundance of mosquitoes
amidst disease dynamics [22, 23], and even with these more complicated models, vital information
as time to extinction and other far reaching results derived in this paper are elusive. This is very
understandable since stochastic models are really the natural models [19] and are the ones that
are suitable for describing rate of change of populations of living organisms.

Using a comprehensive theory on asymptotic approximation techniques in recurrent epidemics
developed by N̊asell Ingemar [15, 16, 17, 18, 19, 20], the quasi-stationary distribution was studied
under the assumption that R0 > 1. Owing to the absence of explicit solutions for the quasi-
stationary distribution, two approximating distributions, P(0) and P(1), were discussed. These
approximating processes were employed to get explicit approximations of the quasi-stationary dis-
tribution and of the expected time to extinction. We found that the quasi-stationary distribution
is approximately normal and is approximated by the distributions P(0) and P(1) when R0 > 1.
We also found out that the expected time to extinction from quasi-stationarity is approximately
exponential and that it can take infinite time for extinction to occur so long as R0 > 1. This is in
conformity with the results of the deterministic model which predict that the disease establishes
itself in the population when R0 > 1. The time to extinction, being infinite, is indicative of the
fact that malaria eradication is not a simple issue when R0 > 1. Thus, to fight against malaria,
control measures which will help to bring down R0 should be employed. With the resulting ap-
proximation for the quasi-stationary distribution, q, we can approximate the probability of the
disease in the population. The size of mosquito population appeared as a parameter in the model
analysed in this paper so that an increase in R0 was identified with an increase in mosquito popu-
lations and as such linking the present work to more recent models for mosquito abundance that
have been developed and studied [28, 27]. These models, based on the fact that mosquitoes have
a human biting habit, have confirmed the result that perhaps the most efficient mosquito control
measure should be civic attitude by permanent human residents in a particular geographic locality
in avoiding the creation of breeding sites for the Anopheles sp. mosquito. Since, unfortunately,
community awareness develops slowly and fades away quickly, we have presented here another
reminder that malaria is a real concern, and that the fight to eradicated the infection should be
intensified in the face of the realization that the time to extinction is infinite when ever R0 > 1.

When R0 ≤ 1, the story is different and we expect finite time to extinction. But this and
some other aspects of the malaria problem, such as the issue of partial immunity, the length of the
incubation period in humans, the analysis of the stochastic model when total human population
is not constant and disease induced deaths are taken into account, numerical computations for
approximating the three distributions studied here and other issues are subjects for future work.
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