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ABSTRACT: The ability to fabricate advanced materials with specific properties efficiently 

requires a complete understanding of the polymerization kinetics and the effect of several 

preparative variables such as temperature, monomer and initiator. This paper presents an 

analytical method for describing anterior polymerization in two adjacent thin layers. Both the 

initial temperatures and initial monomer and initiator concentrations are assumed to depend on 

the space variable. We prove the existence and uniqueness of solution of the model by actual 

solution method. The equations are solved using parameter-expanding method and 

eigenfunctions expansion technique. The results obtained were discussed. The study shows that 

the Frank-Kamenetskii number and frequency factors of the two reactions have significant 

effects on the propagation of the polymerization wave. © JASEM 

http://dx.doi.org/10.4314/jasem.v21i1.11   
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Polymers, either synthetic or natural, are present in 

every aspect of our daily lives. Many modern 

functional materials, pharmaceutical equipment, 

electronic devices, automobile parts, etc., have 

polymeric components. Polymers are replacing 

traditional materials because of their low cost and 

special applications. Our lives have been thoroughly 

changed with the advent of mobile phones, 

computers, refrigerators, electrical domestic 

appliances, television, etc.; all of these appliances 

have parts made of synthetic polymeric materials to a 

large extent. Polymeric materials are also everywhere 

in our homes: floor carpeting, glue, pipes, paint, 

wallpaper, foils, electric insulation and mouldings are 

examples of components based on synthetic polymers 

(Olayiwola et al., 2013).  

 

A promising new technique for synthesizing uniform 

polymers and polymeric networks in a rapid fashion 

is frontal polymerization (FP). Frontal polymerization 

(FP) is a chemical process whereby monomer is 

converted to polymer via a localized reaction zone 

(Washington and Steinbock, 2003).  

 

The development of new polymers and the 

modification and enhancement of the old ones are 

goals of many researchers in both industry and 

academia. Almeida et al. (2008) developed a 

mathematical model for the free radical 

polymerization of styrene. Cardarelli et al. (2005) 

used numerical simulation to study the influence of 

reaction kinetics on one-step frontal polymerization 

in one dimension in the absence of material diffusion. 

They neglected the material diffusion and showed 

that the long-time behaviour of systems governed by 

approximate kinetics significantly differs from the 

long-time behaviour of systems governed by 

Arrhenius kinetics. Olayiwola et al. (2013) presented 

a mathematical model for the free radical 

Polymerization in the presence of material diffusion. 

They assume both the initial monomer concentration 

and initial temperature of the mixture depend on 

space variable. They discovered that the mixture 

temperature and monomer concentration are 

significantly influenced by the Frank-Kamenetskii 

number, material diffusion coefficient and thermal 

diffusivity of the mixture. Comissiong et al. (2006) 

considered the steady propagation of a one-

dimensional frontal polymerization (FP) wave in a 

sandwich-type two-layer model. A single stationary 

solution is found for the reactive layer in the presence 

of very thin inert layers. They carry out a linear 

stability analysis of the uniformly propagating waves.   

  

 The objective of this paper is to obtain an analytical 

solution for describing polymerization in the presence 

of an inert material.  

 

MATERIALS AND METHODS  
We consider two adjacent thin layers in formulating a 

mathematical model for the problem. One layer is 

made up of an inert material, and the other layer is a 

reactive mixture, which initially consists of monomer 

and initiator. There is thermal contact between the 

two layers. The polymerization process occurring in 

the reactive layer is exothermic, and therefore there is 

exchange of heat between the layers as shown in fig. 

1. 
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Fig. 1: Diagram showing system under study. 

 

The polymerization process occurring in the reactive 

layer is the free-radical polymerization which 

involves a standard sequence of chemical reactions 

(Odian, 1991). The process begins when the initiator 

decomposes, forming two radicals. Each radical can 

then combine with a monomer, initiating a polymer 

chain. A polymer chain grows by combining with 

another monomer to form a longer chain, and 

terminates by combining with a radical, either another 

growing chain or an initiator radical. Thus, the kinetic 

scheme involves the decomposition step, initiation 

step, propagation step and the termination step. This 

kinetic scheme can be represented by the Kinetic 

equations for the concentration of the initiator and the 

monomer. 
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The heat equation in the reactive layer has the form 
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The heat balance in the inert layer is given by the equation 
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Here, we assume both the initial concentration of monomer and initiator and initial temperature of the mixture 

depend on the space variable x and we impose the adiabatic boundary conditions on the temperatures. Thus, the 

initial and boundary conditions were formulated as follows: 
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where I  is the concentration of the initiator, M  is the monomer concentration, t  is the time, 
dk  and 

ek  are 

the decomposition and the polymerization reaction rate parameters which depend on the temperature 
rT  of the 

reactive layer, R  is the gas constant, 
0

dk , 
0

ek  are the frequency factors of the two reactions, 
dE , eE  are the  
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activation energies of the two reactions, 
rλ  is the thermal conductivity of the reactive layer, 

iλ  is the thermal 

conductivity of the inert layer, h∆  is the enthalpy of the reaction, 
rc  is the specific heat capacity of the 

reactive layer, 
ic  is the specific heat capacity of the inert layer, ρ  is the mixture density, 

iT  is the temperature 

of the inert layer, 
rT  is the temperature of the reactive layer, φ  is the ratio of the thickness of the reactive layer 

to the total thickness of the two layers. 

 

Method of Solution: Non-dimensionalization  

Here, we non-dimensionalized equations (1) – (5), using the following dimensionless variables: 
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where 0t  is the initial time for ignition to occur and we obtain 
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 Together with initial and boundary conditions: 
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Existence and Uniqueness of Solution 

 

Theorem 1: Let δσααα === ,12 . Then the equations (7) – (10) with initial and boundary conditions 

(11) has a unique solution for all 0≥t . 
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Proof: Let δσααα === ,12
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Integrating both sides with respect to x , we obtain the solution of problem (13) as 
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Then, we obtain  
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By direct integration, we obtain the solution of (12) as 
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Hence, there exists a unique solution of problem (7) – (10). This completes the proof. 

 

Analytical Solution 

Here, we let 1=γ  and solve equations (7) – (11) using parameter-expanding method (where details can be 

found in He, 2006) and eigenfunctions expansion method (where details can be found in Myint-U and 

Debnanth, 1987). 
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So that equations (7) - (10) can be approximated as: 
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Suppose that the solution of equations (20) – (23) can be expressed as:       



Modeling and Analytical Simulation of Anterior Polymerization 
105 

 

JIMADA, AM; OLAYIWOLA, RO; M. D. SHEHU; COLE, AT; A. A. MOHAMMED 

 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 












+∈+=

+∈+=

+∈+=

+∈+=

...,,,

...,,,

...,,,

...,,,

10

10

10

10

txMtxMtxM

txItxItxI

txtxtx

txtxtx

φφφ

θθθ

                                                               

(24) 

Substituting (24) into (20) – (23) and processing, we obtain 
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Using eigenfunctions expansion method and direct integration, we obtain the solution of equations (25) - (32) as  
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The computations were done using computer symbolic algebraic package MAPLE. 

 

RESULTS AND DISCUSSION 
We solve the systems of coupled nonlinear partial differential equations describing polymerization in the 

presence of an inert material analytically. We decouple the equations using parameter-expanding method and 

solve the resulting equations using Eigen functions expansion technique. Analytical solutions of equations (7) - 

(11) are computed for the following parameter values: 

 

125.0,2.0,2.0,01.0,00025.0,1.0,1.0,4.0 2121 ===∈===== αβσαλλδ .  

 

The following figures explain the temperatures, initiator mass fraction and monomer mass fraction distributions 

against different dimensionless parameters.  

 

 

Fig. 2: Variation of reactive layer temperature ( )tx,θ  with Frank-Kamenetskii number δ . 
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Fig. 3: Variation of inert layer temperature ( )tx,ϕ  with Frank-Kamenetskii number δ . 

 

Fig. 4: Variation of monomer concentration ( )txM ,  with frequency factor for polymerization reaction σ . 

 

Fig. 5: Variation of initiator concentration ( )txI ,  with frequency factor for decomposition reaction β . 

 

Fig. 2 shows the effect of Frank-Kamenetskii number 

( )δ  on the reactive layer temperature profile. It is 

observed that the reactive layer temperature increases 

significantly with time and decreases with distance. 

Clearly, the Frank-Kamenetskii number enhances the 

reactive layer temperature. This is as a result of  

 

 

increase in heat of reaction because the reaction that 

occurred in this layer is exothermic. 

Fig. 3 depicts the effect of Frank-Kamenetskii 

number ( )δ  on the inert layer temperature profile. It 

is observed that the inert layer temperature increases 

significantly with time and decreases with distance. 

Clearly, the Frank-Kamenetskii number enhances the 
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inert layer temperature. This is as a result of exchange 

of heat between the layers. 

 

Fig. 4 presents the effect of frequency factor for 

polymerization reaction ( )σ  on the monomer 

concentration profile. It is observed that the monomer 

concentration decreases significantly with time and 

distance. Clearly, the frequency factor for 

polymerization reaction decreases the monomer 

concentration.  

 
Fig. 5 displays the effect of frequency factor for 

decomposition reaction ( )β  on the initiator 

concentration profile. It is observed that the initiator 

concentration decreases significantly with time and 

distance. Clearly, the frequency factor for 

decomposition reaction decreases the initiator 

concentration.  

These curves are in semi quantitative agreement with 

experiment. 

 

Note that the effects observed in figs. 4 and 5 are of 

great economic importance, since the major reason 

for using Frontal Polymerization for polymer 

synthesis is conversion. For polymer synthesis to be 

effective there must be rapid conversion without the 

use of solvent and there mustn’t be initiator ‘burn 

out’, that is, a situation when all the initiator has 

decomposed before the monomer has been 

completely reacted. However, if conversion is low 

and the product must be purified, those advantages 

will be non-existent. 

 

Conclusion: We have formulated and solved 

analytically a mathematical model of polymerization 

in the presence of an inert material to determine the 

concentration and temperature distributions. In 

particular, we have proved by actual solution method 

that the model formulated has a unique solution for 

all 0≥t . We decoupled the equations using 

parameter expanding method and solved the resulting 

equations using Eigen functions expansion technique. 

Finally, we have provided the graphical summaries of 

the system responses. 

 

REFERENCES 
Almeida, AS; Wada, K; Secchi, AR (2008). 

Simulation of Styrene Polymerization Reactors: 

Kinetics and Thermodynamic Modeling. 

Brazilian Journal of Chemical Engineering. 

25(2): 337-349.  

 

Ayeni, RO (1982). On the explosion of Chain-

thermal Reactions. J. Austral. Math. Soc. (Series 

B). 24: 194-202.  

 

Cardarelli, SA; Golovaty, D; Gross, LK; Gyrya, VT; 

Zhu, J (2005). A Numerical Study of One-Step 

Models of Polymerization: Frontal versus Bulk 

Mode. Elsevier Physica D. 206:145–165. 

  

Comissiong, DMG; Gross, LK; Volpert, VA (2006). 

Frontal polymerization in the presence of an inert 

material. Journal of Engineering Mathematics. 

54: 389–402. 

 

He, JH (2006): Some asymptotic methods for 

strongly nonlinear equations, Int. J. Modern 

Phys. B. 20(10): 1141 – 1199. 

 

Myint-U, T; Debnath, L (1987). Partial Differential 

Equation for Scientists and Engineers. PTR 

Prentice – Hall, Englewood Cliffs, New Jersey 

07632. 

 

Odian, GG (1991). Principles of Polymerization, 3rd 

edition. New York, Wiley-Interscience, 768. 

 

Olayiwola, RO; Durojaye, MO; Immam, MS; Shuaib, 

SE (2013). A Mathematical Study of One-Step 

Models of Polymerization. Pacific Journal of 

Science and Technology. 14(2):153- 162. 

http://www.akamaiuniversity.us/PJST.htm 

 

Washington, RP; Steinbock, O (2003). Frontal Free-

Radical Polymerization: Applications to 

Materials Synthesis. Polymer News, 28: 303–310

. 


