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ABSTRACT: In this work we present an infection-age-structured mathematical 

model of AIDS disease dynamics and examine the endemic equilibrium state for 

stability. An explicit formula for the basic reproduction number 0R  was obtained 

in terms of the demographic and epidemiological parameters of the model. The 

endemic equilibrium state was found to be locally asymptotically stable under 

certain conditions. Furthermore, by constructing a suitable Lyapunov functional, 

the endemic equilibrium state was found to be globally asymptotically stable 

under certain conditions prescribed on the model parameters. © JASEM 

 
http://dx.doi.org/10.4314/jasem.v20i2.16 

 

KEYWORDS: Basic reproduction number, HIV/AIDS, Lyapunov functional 

 

INTRODUCTION 

This paper presents an infection-age-

structured mathematical model of the AIDS 

disease dynamics proposed by Akinwande 

(2005). The population considered was 

partitioned into the Susceptibles )(tS and the 

infected ).(tI  The susceptible individuals are 

those who are free from HIV/AIDS but are 

open to get the virus as they interact with 

those who are infected while the infected 

individuals are those who have contracted the 

virus and are at various stages of infection. 

The infected class was structured according 

to time and age of infection ),,( τρ t where t

the time parameter andτ is the infection age. 

They assumed that while the new births in the 

susceptible class )(tS are born therein, the 

off-springs of the infected )(tI are divided 

between )(tS and )(tI in the proportionsθ and

( )θ−1 respectively. This implied that a 

proportion ( )θ−1 of the off-springs of the 

infected are born with the virus. In 

Akinwande (2005) a characteristic equation 

was obtained and analysed using the results 

of Bellman and Cooke (1963).This paper 

presents a variant of the model by Akinwande 

(2005) and we study the stability analysis of 

the endemic equilibrium state using the 

method of linearization and the Lyapunov 

method. The model equations are presented 

in section two while the results and 

discussion in section three. 

 

MATERIAL AND METHODS 
We reproduce the model by Akinwande 

(2005) on ‘a mathematical model perspective 

of chaos in the dynamics of AIDS disease 

pandemic as follows: 
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1)( τδτσ −−= Tk
e         (3)  

∫=
T

dttI
0

),()( ττρ       (4)  

)()1()()()()0,( tItItStBt βθαρ −+==   (5)  

)(),0( τφτρ =              (6)   

00 )0(;)0( IISS ==       (7) 

where 

β       natural birth rate for the population; µ       

natural death rate for the population 

α       rate of contracting the HIV virus; ( )τσ  

death rate due to HIV virus infection 

δ        constant; k     is the measure of the 

efficacy of the anti-retroviral therapy (ART); 

θ  is       the proportion of the off-springs of 

the infected who are virus-free at birth; 

.10 ≤≤ θ t    is        time; τ    is the      infection 

age and T  is the maximum infection age, We 

re-write (1)-(7) as follows 
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)(),0( ττ ii =            (13) 

 
00 )0(;)0( IISS ==       (14) 

 

RESULTS AND DISCUSSION 
We present the results of our stability analysis 

of the endemic equilibrium state namely: the 

local and global stability of the endemic 

equilibrium state. 

 

Equilibrium State: At the endemic 

equilibrium state, we set 

,)( *
xtS =   *)( ztI =           (15) 

 )(),( * ττ iti =        (16)  

and so 

 ∫=
T

diz
0

**
)( ττ                    (17) 

( ) ( ) **** 10)0( zzxBi βθα −+==      (18), 

 substituting (15)-(17) into (8), (9) and (12) 

give 

( ) 0**** =−+− zxzx αθβµβ        (19)  

( ) ( ) 0
)( *

*

=+ ττ
τ

τ
ih

d

di
       (20) 

where 

( ) ( ))(τσµτ +=h                    (21), 

 ( ) ( ) **** 10 zzxi βθα −+=            (22)   

From (19) we obtain  
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From (20) we obtain 

( ) ( ) ( )
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τ
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Integrating (24) over the interval [ ]T,0  
and using (18) give  

( )[ ]Azzxz
**** 1 βθα −+=       (25) 

where  
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 From (25) we get  
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substituting (27) into (23) give 
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11*

−
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From (20) we get 

 ( ) ( ) ( )τπτ 0**
ii =           (29) 

where 

( )
( )∫

=
−

−

τ

σ
µττπ 0

dss

ee             (30) 

Basic Reproduction Number: The basic 

reproduction number is one of the 

fundamental concepts in mathematical 

biology that determines the future of an 

epidemic. According to Diekmann et al. 

(2000) and Murray (2002), the basic 

reproduction number denoted by 
0R is the 

expected number of secondary cases 

produced, in a completely susceptible 

population, by a typical infective individual. 

It is one of the most useful threshold 

parameters, which characterize mathematical 

problems concerning infectious diseases. 
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If ,10 <R this implies that, on average an 

infected individual produces less than one 

new infected individual during the infectious 

period and the infection can be wiped out. 

Conversely, if ,10 >R then, each infected 

individual produces, on average, more than 

one new infection, and the disease is spread 

in the population. For a single infected 

compartment, 0R is simple the product of the 

infection rate and the mean duration of the 

infection. But for complicated models, this 

simple definition of 
0R is insufficient. For 

infection-age-structured models, the basic 

reproduction number is defined as the sum of 

the total infectivity of each infected 

compartment. In other words the total 

infectivity’s give the basic reproduction 

number. In view of this, our basic 

reproduction number becomes: 

( ) ( ) ( ) ττπβθττπα ddxR

TT

∫∫ −+=
00

0 1      (31) 

 

Local Stability of the Endemic 

Equilibrium State. 

 

Lemma 1: The unique endemic 

equilibrium ( )( )τ*** , ixE  given by (27) and 

(29) with ( )0*
i given by (22) is locally 

asymptotically stable if .10 >R  

Proof: To show the local stability we 

linearize the system (8)-(12) around the 

endemic equilibrium .*E In particular we 

set  

( ) ( )txxtS += *             (32), 

 ( ) ( ) ( )τττ ,, *
tziti +=           (33) 

We look for solutions of the linearized 

system in exponential form ( ) t
xetx

λ= and

( ) ( ) ., t
eztz

λττ =  

From (8) we have that 
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Expanding (35) and using (19) give 
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using (18), (32) and (33) in (12) and 

simplifying gives  
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adding (36) and (41) give, 
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substituting (42) into (41) and using (39) 
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(43) 

We note that when λ is real and ( ) ( ),00*
zi <

then the right hand side of (43) is a 

decreasing function of .λ Therefore, 

equation (43) has a solution 0>λ if .10 >R

The local asymptotic stability of the 

endemic equilibrium *E is completed by 

observing that the real root of (43) has the 

dominant real part and this is obtained by 

considering absolute values as in Ashezua 

et al. (2015). This completes the proof of 

the lemma. 

 

Global Stability of the Endemic 

Equilibrium State:  

 

Before we prove the global stability of the 

endemic equilibrium state, we state the 

following lemma as outlined in the works 

of Brauer et al. (2013). 

 

Lemma2:  

Let ( ) ( ) ( )( ) .,, *

0

3 τdapatpGaV

T

∫Ψ= Then 

( ) ( )

( ) ( )∫ Ψ−Ψ′+

Ψ=′

T

daapatpGaaa

aptpGV

0

*

*

3

)(),,()()()(

)(,0,(0

δ
. 

We construct the following Lyapunov 

functional following the approach as 

outlined in Huang et al. (2012) and Brauer 

et al. (2013). 
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Direct differentiation of (45) and using (8) 

gives,  
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Direct differentiation of (46) using lemma 2 

gives 
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Using (20) in (48) gives 
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adding (47) and (49) gives 
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From (53) we see that 0≤Z since 

0ln1 ≤+− xx for all 0>x with equality 

holding if and only if .1=x From (50), if 

YX <  then 
( )

dt

tdV
 will be negative 

definite, meaning that 
( )

.0<
dt

tdV
Also it 

follows that, 
( )

0=
dt

tdV
if and only if 

*
xx =

and ,
)(

),(

)0(

)0,(
** τ

τ

i

ti

i

ti
= for all .0≥τ  Therefore 

the largest compact invariant set in 

( ) ( )








=Ω∈ 0:)(, **

dt

tdV
ix τ  is the 

singleton { }.*
E  If ,10 >R then by the 

LaSalles’s invariant principle, *E is 

globally asymptotically stable in Ω if 

.YX <  
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