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ABSTRACT 

 
 We have investigated the chaotic dynamics of two coupled quintic oscillators in a single well potential as the 
energy of the oscillator increases, keeping the coupling strength constant. The degree of chaoticity does not increase 
monotonously with the energy as regular regions reappear within chaotic seas as the energy increases. After the 
critical energy, however, the motion becomes fully chaotic.  
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1.0 INTRODUCTION 
 
 The Poincare surface of section, which is one of 
the commonly used methods in the study of chaotic 
systems, effectively reduces the number of dimensions 
needed to analyse such a system. Thus, for a two 
degree of freedom Hamiltonian system, the Poincare 
surface is two dimensional, a plane. Traditionally, this 
could be defined by keeping one of the coordinates 
constant, and reckoning with only positive values of the 
corresponding momentum. The latter condition ensures 
that crossings in only one direction are of relevance.  
 The Poincare surface of section is the most 
commonly used method of analyzing chaotic systems. 
As such, it has found application in chaos literature: the 
Henon-Heiles system (Henon and Heiles, 1964; Henon, 
1981), hydrogen atom in the presence of a uniform 
magnetic field (Friedrich and Wintgen, 1989; Simonovic, 
1997; Inarrea, et al., 2002; Rajan, et al., 2003) and 
control in the problem of a satellite (Khan, 2010), to 
mention a few. 
 As some parameter of the system, energy or 
coupling increases, the Poincare surface of a chaotic 
system is usually initially entirely characterised by 
regular regions, which subsequently degenerate into 
regions demonstrating regular motion and chaoticity as 
Kolmogorov-Arnold-Moser (KAM) tori are destroyed. 
Eventually, after the critical value of the parameter, 
coupling or energy, the whole surface is covered by 
chaotic regions. For some systems, the degree of 
chaoticity increases monotonously with increase in the 
parameter (Henon, 1964; Friedrich and Wintgen, 1989). 
In some other chaotic systems, however, the 
degeneration into chaoticity is not a unidirectional 
phenomenon as regions of regular motion appear inside 
chaotic seas as the parameter increases. In some cases 
there is a regular-partial chaos-regular transition as 
observed in the case of two linearly coupled double-well 
oscillators (Paar and Pavin, 2003) or a regular-chaotic-

regular transition as reported in the case of a finite chain 
of damped spins (Jaroszewicz and Sukiennicki, 1998).  
 The quintic potential is of the 

form
6422)( hqgqqmqV ++= . The shape of this 

potential, with the right choice of the parameters m , g  

and h  could be a single well, double well, triple well, 

single well with double hump, double well with double 
hump or an inverted single well. This potential has 
received much attention in recent times. Wang and Yu 
(2005) explores the bifurcation of limit cycles for planar 
polynomial systems with even number of degrees. Ganji, 
et al. (2008) explored the variational approach method 
for the nonlinear oscillators of the motion of a rigid rod 
rocking back and cubic-quintic doffing oscillators, Ganji, 
et al. (2009) applied He’s energy balance method to 
solve strong nonlinear doffing oscillators with cubic-
quintic nonlinear restoring force, and Jeyakumari, et al. 
(2009) analysed the occurrence of vibrational resonance 
in a damped quintic oscillator. 
 The above-mentioned authors considered the 
dynamics of only one quintic oscillator. The present 
study considers a Hamiltonian system of two coupled 
quintic oscillators as the coupling parameter increases 
from a negative value, through zero, and then to positive 
values. It is known that in some chaotic systems only 
one range of values of the coupling leads to chaoticity 
while the other range engenders only regular behaviour 
as is the case in Friedrich and Wintgen (1989). 
 
2. Theory and Calculations 

The Hamiltonian of each of the oscillators is of the form, 
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which is a single well potential with a local minimum at 

0=x  (Fig. 1). The line E = 1.0 in the figure represents 

the energy of the oscillator chosen for this work. 
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Fig. 1: The potential V(q) and energy E = 1.0 

 
With the energy fixed, the displacement of the oscillator 
is limited by the extents of the potential.  
 
When two such oscillators are coupled, the resulting 
potential is, 
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where the coupling parameter is s . When s  is zero, the 

two oscillators are effectively decoupled. The coupling 

term, 2/)(
2

2

2

1 qqs  has been chosen to ensure that the 

potential is symmetric for 1q  and 2q . 

 
The corresponding Hamiltonian is, 
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The resulting equations of motion are: 

1
1 p
dt

dq
=     (4) 

2
2 p
dt

dq
=     (5) 
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 For a given coupling strength, 0.5, the system of 
equations (4) to (7) was solved by the fourth-order 
Runge-Kutta method. The phase space is four 

dimensional, ),,,( 2121 ppqq , representing the two 

coordinates and the corresponding momenta. A 
subspace of the phase space is defined by the Poincare 

surface as ( 01 =q , 01 >p ). Setting =1q 0 fixes one 

of the coordinates; 01 >p  ensures that the Poincare 

surface is crossed in only one direction. Thus, the 
Poincare surface is characterised by the coordinate and 

momentum, ),( 22 pq . With various initial conditions, the 

intersections of the orbits with the two-dimensional 

surface, ),( 22 pq were noted and plotted (Figs. 2 and 

3).   
 

 
 
 

3. RESULTS AND DISCUSSION 
 Up to energy 0.8, the Poincare surface consists 
of only regular orbits (Fig. 2a). Fig. 2b shows that by 
energy 0.85, homoclinic points are evident. In Fig. 2c, 
the energy is 0.9, and by this energy, chaotic orbits have 
appeared. The innermost regular region shown in Fig. 
2c has degenerated into a homoclinic orbit at energy 
0.95 (Fig. 2d). The Poincare surface of section varies 
little between energy 0.95 and 1.0 as is evident in Fig. 
2e (compared to 2d). However, the chaotic sea grows at 
the expense of the three regular regions between 
energies 1.0 and 1.2 (Fig. 2f). With a further increase in 
the energy to 1.4, the middle regular region narrows and 
divides into two, albeit with the upper and lower regular 
regions slightly increasing (Fig. 2g). Fig. 2h shows that 
at energy 1.6, the central regular regions have 
disappeared. By energy 1.7, the upper and the lower 
regular regions have increased in extent. In addition, two 
new areas of regular motion are evident (Fig. 3a). With 
the energy increasing to 1.75, all the regular regions 
hitherto visible have shrunken and are barely perceptible 
(Fig. 3b). Thereafter, the upper and lower regular 
regions disappear altogether, but the ones in the middle 
of the figure widen until the energy is 1.9 (Fig. 3c). 
These remain practically unchanged until the energy is 
2.0 (Fig. 3d). From energy 2.0 to 2.1, the remaining 
regular regions shrink (Fig. 3e). If Fig. 3f, these regular 
regions have become two localised chaotic seas. In Fig. 
3g, the two localised seas have degenerated further as 
the energy increases to 2.18, giving rise to the outer 
fringe surrounding the entire Poincare surface. Beyond 
this energy, the Poincare surface shows that the system 
is fully chaotic (Fig. 3h).  
 
4. CONCLUSION 

 The motion of a coupled quintic oscillator in a 
single well with a fixed coupling strength 0.5 
demonstrates regular and chaotic behaviour as the 
energy increases. Only regular motion is observed 
before energy 0.85. Chaotic motion has sets in at 
energy 0.9. The degree of chaoticity increases until the 
energy is 1.6. Between 1.6 and 1.7, the regular regions 
grow in extent. The regular regions decay yet again until 
the energy is 1.75. Another set of regular regions open 
up after energy 1.75, increasing in extent until 1.9 value 
of energy. From energy 2.0, the system becomes 
progressively more chaotic as the regular regions shrink. 
Beyond the threshold energy 2.18, the system becomes 
fully chaotic, and remains so as the energy increases 
further. 
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  (a) E = 0.8     (b) E = 0.85 

             
              
              
              
      

 (c) E = 0.9     (d) E = 0.95 
  
 
              
              
              
       

 (c) E = 0.9     (d) E = 0.95 
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 (e) E = 1.0     (f) E = 1.2 

 
 

              

              

              

   

 

 

 

 

              

(g) E = 1.4     (h) E = 1.6 

 
Fig. 2: Poincare surface of section for s = 0.5, with energy from 0.8 to 1.6 
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  (a) E = 1.7     (b) E = 1.75 

             

              

              

              

      

 (c) E = 1.9     (d) E = 2.0 

  

 

              

              

              

       

 

 

              

(e) E = 2.1     (f) E = 2.17 

   

 

              

              

        

 

 

 

 

              

(g) E = 2.18     (h) E = 2.19 

 

 

Fig. 3: Poincare surface of section for s = 0.5, with energy from 1.7 to 2.19 
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