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ABSTRACT 
 
 

 
Steady and transient laminar two-dimensional natural 
convection of a Newtonian fluid in an inclined square 
enclosure was numerically investigated. The enclosure 
was heated on the opposite sides while it was cooled on 
the other two sides. The inclined angles were 25° and 
65° to the horizontal plane. The effect of Rayleigh 
numbers ranging between 103 and 2.106 on the flow 
development and heat transfer was studied. It was found 
that Nusselt number increases with the increase of 
Rayleigh number. Under low Rayleigh numbers the 
numerical studies predict the onset of stationary bi-
cellular flow. The study showed that when the Rayleigh 
number was increased, an overcritical Hopf bifurcation 
transformed the fixed point to a limit cycle and the 
steady-state flow becoming oscillatory.     
 

KEYWORDS: Natural Convection, Closed Enclosure, 
Bifurcations, Limit Point, Limit Cycle, Tilt Angle.  
 
 

Nomenclature 
Latin symbols 
a             thermal diffusivity [m2.s-1] 
dt             nondimensional time step 
g             gravitational acceleration [m.s-2] 
H            height of the cavity [m]  
n              number of iterations 
Nuc       global Nusselt number on the sides AB and CD 

[ ∫ ∂∂
1

0
)/( yT y=0.dx  

+ ∫ ∂∂
1

0
)/( yT y=1.dx]  

Nu           mean Nusselt number 
Nx           number of nooses in the Ax direction 
Ny           number of nooses in the Ay direction 
 

Pr:           Prandtl number [ν/a] 

Ra           Rayleigh number [gβ( /). 3** HTT ch − (ν.a)] 

Rac          critical Rayleigh number 
t               nondimensional time [t*a/H2] 
u              nondimensional x direction velocity [u*.a/H] 
 
v               nondimensional x direction velocity [v*.a/H] 
x, y, z      nondimensional Cartesian coordinates [x*/H], 
[y*/H] and [z*/H] 
 

Greek symbols 

α             inclination angle of side AB in relation to the 
horizontal axis [rad]. 
β             coefficient of thermal expansion [1/K]. 
λ             thermal conductivity [W.m-1.K-1] 
ν             cinematic viscosity [m2.s-1]. 
ψ            nondimensional stream function [ψ*/a]. 
ω            nondimensional vorticity [ω*.H2/a]. 
 
 

Subscripts: 
c             cold surface. 
h             hot surface. 
m            middle 
max        maximum. 
min         minimum 
0             initial value   
 
 

Superscripts 
*             Dimensional quantity 
 
INTRODUCTION 
 Natural convection in rectangular enclosures 
has been widely studied both numerically and 
experimentally due to its applications in numerous 
natural phenomena such as field temperature prediction 
in buildings and in industrial processes such cooling of 
electronics fittings. Natural convection steps as in 
thermal insulation of buildings with hollow bricks and 
doubling glazing, flat-plate collectors, cooling by natural 
radiation. 
Studies are numerical or experimental. Important 
reviews of such heat and mass transfer have been 
presented and discussed by Ostrach S, Bejan A., Yang 
K. T. and Berger P.  
 The most studied cases are rectangular cavities 
with one wall heated, the opposite side maintained cold  
and the two remaining sides assumed perfectly 
insulated. Muzishima et al have studied natural 
convection in a rectangular cavity at titled angle 0° and  
1° in relation to the horizontal plane and differentially 
heated. They obtained a pitchfork bifurcation. Chen J. C. 
et al studying natural convection in a rectangular cavity 
heating    from   below  and   cooling   from  ceiling   with 
adiabatic sides, showed that at low Grashof Gr numbers 
(Gr ≤ 103) the conductive heat transfer dominates while 
at high Grashof numbers (Gr ≥ 104) the convective heat 
transfer dominates.  
 Skouta A. and Skoua R. studied the convective 
heat transfer in a square enclosure titled at 45° in 
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relation to the horizontal plane, heated from the opposite 
sides and cooled on the other. They showed that the 
larger the Rayleigh number is, the more sensitive the 
attractor becomes to time steps and mesh grids. The 
attractor bifurcates from a limit point to a limit cycle via 
an overcritical Hopf bifurcation for a Rayleigh number 
value between 1,11.105 and 1,12.105. For tilt angle of 
25° or 65°, the attractor bifurcates from a limit point to a 
limit cycle via an overcritical Hopf bifurcation for a 
Rayleigh number value equal 2.106. 
 Hamady F. J. et al studied numerically and 
experimentally the local natural convection in an air-filled 
differentially heated inclined enclosure for Rayleigh 
number between 104 and 106. Measurements of local 
and mean Nusselt numbers are obtained at various 
inclination angles ranging between 0° (heated from 
above) and 180° (heated from below). They showed that 
the heat flux at the hot and cold boundaries had a strong 
dependence on the angle of inclination and the Rayleigh 
number.      
      In this investigation, natural convection in enclosure 
with aspect ratio 1 at inclined angle 25° and 65° were 
solved numerically by formulation the equations of 
transfer, of the vorticity and the stream function by 
central finite-difference (CFD) discretization, which are 

then solved by using an alternate direction implicit 
method (ADI).  
 
2  MATHEMATICAL FORMULATIONS 
 
 The system under study is an air-filled square 
enclosure with vertical square section. Figure1 depicts 
its transversal section along the Cartesian coordinates 
(A, x, y). This enclosure is assumed to be very 
elongated along the horizontal Az direction and 
perpendicular to the right section. Its sides are inclined 
at an angle α = 25° or α = 65° with the horizontal plane.   
       Initially, the system is in thermodynamic equilibrium 
at temperature Tc. At an initial time t0, two opposite walls 
are raised to a warm temperature Th while the sides BC 
and AD were maintained at a temperature Tc with Th > 
Tc. We assume that the fluid is Newtonian and 
incompressible. All the physical properties of the fluid 
are constant except the density in the buoyancy term, 
witch obeys the Boussinesq approximation so that the 
Prandlt number of air is fixed to 0.71. Radiation, viscous 
dissipation and pressure effects in the heat transfer 
equation were negligible. Under the above assumptions, 
the dimensionless unsteady governing equations in 
terms of temperature (T), vorticity (ω) and stream 
function (ψ), using the Cartesian coordinate system are:
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- Stream function equation: 
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-boundary conditions: 

  These equations are to be completed with the appropriate boundary and initial conditions. 

Initial conditions (t≤t0): 

U = 0 ;  v= 0 ;  ψ = 0 ;  T = 0                                                                           (4) 

Conditions at AB and CD (for > t0): for 0 ≤ x ≤ 1; y = 0 and y = 1 

U = 0; v = 0; ψ = 0 and T =1                                                                             (5) 

Conditions at BC and AD (for t > t0): for 0 < y < 1; x = 0 and x = 1 

U = 0;  v = 0 ;  ψ = 0 and T = 0                                                                        (6) 
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3 NUMERICAL RESOLUTION  METHOD  

The differential system (1 – 6) is solved using 
finite difference method. The discretization scheme used 
is centred for the space derivative and first order forward 
for the time derivatives. The wall condition on the 
vorticity function is evaluated by extrapolation on the 
internal nodes according to the technique of Woods. The 

discretized forms of the temperature and vorticity 
equations are solved by means of an implicit method 
with alternate directions (A.D.I.) associated with the 
Gauss elimination method. The stream function is 
obtained by solving the equation (3) using a successive 
over relaxation method (S.O.R.) and the velocity field is 
inferred from stream function. 

  
 At each iteration, the test of onvergence is  
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A same criterion has been imposed on temperature and vorticity. 

For temperature the test of convergence is  5
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and for vorticity the test of convergence is: 
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All calculations are carried out in double precision. The 
reliability of the computer code was established by 
comparing with the results of G. De Vahl Davis when the 
attractor was a fixed point (Table1). The cavity is vertical 
and heated differentially along the two vertical walls.  The 
other two horizontal walls are insulated. This table shows 

that our results are most near of those obtained by G. De 
Valh Davis. The relative incertitude is below 1%. When 
the Rayleigh number increases, space mesh must be 
tightened to obtain good results as those of G. De Valh 
Davis 

A 

B 

C 

D 
g 

α=25° 

Th 

Tc<Th 

Th 

Tc 

x 

y 

z 
Horizontal plane 

Figure 1:  Schematic representation of the system section in the 

Cartesian frame (A, x, y) at    25° angle tilt. 
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.                       
Table 1:  Results obtained by G. De Vahl Davis and those of present calculations. 

 
Variables Authors Ra = 103 Ra = 104 Ra = 105 Ra = 106 

 
Nusseltglobal 

De Vahl Davis 
 

Present 
calculation 

1,116 
 

0,75% 
 

1,1077 

2,234 
 

0,14% 
 

2,2372 

5,512 
 

0,29% 
 

5,5252 

8,798 
 

0,97% 
 

8,8844 
 

Psimax 
De Vahl Davis 

 
Present 

calculation 

1,174 
 

0,03% 
 

1,1736 

5,098 
 

0,52% 
 

5,0717 

9,644 
 

0,23% 
 

9,6662 

16,961 
 

0,19% 
 

16,993 
 

Psimax,middle 
De Vahl Davis 

 
Present 

calculation 

1,174 
 

0,03% 
 

1,1736 

5,098 
 

0,52% 
 

5,0717 

9,142 
 

0,16% 
 

9,1277 

16,53 
 

0,44% 
 

16,457 
 

Vxmax,middle 
De Vahl Davis 

 
Present 

calculation 

3,679 
 

0,08% 
 

3,6819 

19,509 
 

0,49% 
 

19,413 

68,22 
 

0,30% 
 

68,013 
 

216,75 
 

0,18% 
 

217,14 

 
Vymax,middle 

De Vahl Davis 
 

Present 
calculation 

3,629 
 

0,37% 
 

3,6426 

16,182 
 

0,40% 
 

16,117 

34,81 
 

0,25% 
 

34,723 

65,33 
 

0,68% 
 

64,891 
 
4 RESULTS AND DISCUSSION 
 
4.1 Choice of space mesh and time step 
 
 At first time we have made calculations to test 
the sensibility of solutions to space mesh and time step 
for various Rayleigh numbers. Table 2 and figure 2 
show the influence of space mesh for time step dt = 10-5. 
Table 2 assembles the values of global Nusselt number 
Nuh on hot walls, on cold walls Nuc, maximal stream 
function Psimax, minimal stream function Psimin, central 

stream function Psim and central temperature Tm for 
different space mesh for time step dt = 10-5 while table 3 
and figure 3 show the influence of time step on the 
same variables.  
The calculations show that when the Rayleigh number 
increases, the results are sensitive to the choice of 
space mesh and time step. When the solution is 
stationary, figures 2 and 3 as tables 2 and 3 show that 
the space mesh and the time step can be chosen 
respectively equal to 141 x141 and 9.10-6.   

 
Table 2: Variations of thermodynamic variables for different space mesh when the Rayleigh number Ra = 1,8.106 and 
time step dt = 1.10-5.  In brackets, the number indicates the relative gap. 

Space mesh Nuh Nuc Psimax Psimin Psim Tm 
 

111x111 
 

22,959 
 

-22,940 
 

34,471 
 

-27,861 
 

16,006 
 

0,553 
121x121 0,76% 

23,134 
0,79% 

-23,121 
0,57% 
34,669 

0,05% 
-27,847 

0,46% 
16,080 

0,00% 
0,553 

131x131 0,72% 
23,302 

0,75% 
-23,297 

0,01% 
34,665 

0,03% 
-27,838 

0,28% 
16,126 

0,00% 
0,553 

141x141 0,69% 
23,463 

0,69% 
-23,462 

0,00% 
34,667 

0,03% 
-27,829 

0,25% 
16,167 

0,00% 
0,553 

151x151 0,66% 
23,619 

0,66% 
-23,618 

0,00% 
34,666 

0.03% 
-27,819 

0,24% 
16,206 

0,00% 
0,553 

161x161 0,59% 
23,766 

0,63% 
-23,768 

0,00% 
34,667 

0,02% 
-27,814 

0,13% 
16,227 

0,00% 
0.553 

171x171 0,59% 
23,908 

0,59% 
-23,909 

0,01% 
34,669 

0,02% 
-27,809 

0,18% 
16,256 

0,00% 
0,553 

 
 
Table 3: Variations of thermodynamic variables for different values of time step when Ra = 1,8.106 and Nx x Ny = 141 x 
141. 

Time step Nuh Nuc Psimax Psimin Psim Tm 
1.10-5 23,4634 -23,4623 34,6667 -27,8286 16,1669 0,5527 
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9.10-6 23,4634 -23,4625 34,6675 -27,8287 16,1627 0,5527 
8.10-6 23,4634 -23,4625 34,6673 -27,8286 16,1624 0,5527 
7.10-6 23,4634 -23,4625 34,6675 -27,8286 16,1631 0,5527 
6.10-6 23,4634 -23,4625 34,6675 -27,8287 16,1633 0,5527 
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  Figure 2: Variations of thermodynamic variables for Ra = 1,8.106 and dt = 1.10-5 

                    (a): Influence of the space mesh on Psimax 

                   (b): Influence of the space mesh on Tm   
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 Figure 3: Variations of thermodynamic variables for Ra = 1,8.106 and Nx x Ny = 141 x 141 

            (a): Influence of the time step on Nuh 

            (b): Influence of the time step on Tm 

 

4.2 Fixed point 

 Even at very low Rayleigh numbers, when the 
heat transfer is essentially conductive, there is a 
movement due to the tilt of the walls. The dynamic 
parameters evolve to a stationary asymptotic limit. 
 For Ra ≤ 1,95.106, the thermodynamic 
parameters evolve at long time towards a stationary 
asymptotic limit. This behaviour is illustrated on figure 4 
which represents the temporal variation of maximal 
stream function (a), the trajectory in the phase plane 
(Psimax, Psimin) (b), the streamlines (c) and the 
isotherms (d) for Ra = 1,8.106. We see that the flow 
involves two cells which rotate in the opposite direction 
(figure 4 (c)). One cell rotates clockwise (negative) 
while the other rotates counter clockwise (positive). 
Temporal variations of all parameters converge on a 
point. All thermodynamic parameters evolve according 
amortized oscillations before becoming stable at their 
average value at long time. If one builds up the 
trajectories of phase of these different parameters, one 
obtains spirals which start from exterior and lead each 
one to a point and the attractor is a fixed point.  

When Rayleigh number increases from Ra = 1,958.106, 
the oscillations of temporal curves dump down more and 
more with difficulty. 
 We have also tested the sensibility of the 
attractor fixed point to initial conditions. Figures 5 (a) 
and (b) represent respectively temporal signal of Tm 
and the trajectory in the phase plane (Psimax, Tm). One 
shows that the two branches of solutions for figure 5 (a) 
and the three branches of solutions for figure 5 (b), 
corresponding to initial conditions of very different 
temperatures at starting, meet at long time. 
 Progressively that Rayleigh number increases, 
natural convection expands and thermodynamic 
parameters increase also except central temperature 
Tm who decreases. Both temperatures Tm are 
symmetrical with regard to central temperature T0 = 0.5 
(Figure 6).       
          With complementary inclination angle of 65°, there 
is symmetry between the two results concerning the 
streamlines for example (figure 7). In case of inclination 
angle of 65°, one cell rotates clockwise (positive) while 
the other rotates counter clockwise (negative). These 
results have been obtained also by Skouta R.     
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Figure 4: Representation of time evolutions of the maximal stream function (a), of the trajectory in the phase 
plane (Psim, dPsim/dt), (b), of the streamlines (c) and of the isotherms (d) for Ra = 1,8.106 
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Figure 5: Representation of isotherms (a), (c) and the streamlines ((b), (d) for Ra = 1,8.106. 

  (a), (b): inclination angle α = 25°  (c), (d): inclination angle α = 65° 

(a) (b) 

(c) (d) 

(a) (b) 

(c)  
(d) 
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Figure 6: Variations of central temperature versus Ra.10-6 for the two tilt angles 25° and 65° 

The upper curve corresponds to inclination angle of 25° 
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Figure7 : Nosensitive dependance of attractor on the initial conditions To for Ra = 1,8.106 . (a) Psimax 
temporal signal; (b) phase plane (Psimax, Tm) 

 

4.3 Hopf bifurcation 
 For Ra > 1,958.106, mesh grid was 151 x 151 
and dt = 9.10-6. These results have been obtained as we 
have done in the fixed point case.  
When Rayleigh number increases from Ra > 1,958.106, 
the flow expands and the computing time necessary to 
obtain the attractor is increasingly large. There is thus a 
critical Rayleigh number Rac situated in interval 
[1,958.106; 1,96.106] from which the attractor is periodic 
as one sees on figure 8 who represents temporal 
evolution (a), the amplitude spectrum (b) of Tm and the 
trajectory in the phase plane (Tm, Psim) (c) for Ra = 
1,96.106. The plotting of the amplitude spectrum 
obtained by Fast Fourier Transform (Figure 9 (c)) 
corroborates the existence of a limit cycle. There is a 
critical value of the Rayleigh number above which the 

attractor is periodic and independent of initial conditions 
(figure 9 (d)). 

 To determine the nature of the phenomenon 
corresponding to the transition from fixed point to limit 
cycle, we have studied both the variations of oscillatory 
amplitude versus the square root of the gap between 
(Ra.10-6 - Rac.10-6)1/2 in witch Rac is the critical Rayleigh 
number and also the variations of the fundamental 
frequency in vicinity of bifurcation point. Figure 9 
represents the variations of oscillatory amplitude versus 
(Ra.10-6 - 1,958.10-6). It shows that the amplitude of 
cycle is proportional to this gap, witch increases as the 
square root of the gap at bifurcation point. There two 
characteristics allow us to conclude that the bifurcation 
is an over critical Hopf bifurcation. 

(b) 
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Figure 8 : Illustration of limit cycle for Ra = 1,96.106 
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Figure 9: Influence of Rayleigh number in vicinity of bifurcation point 

(a) Variation of amplitude of Nuh versus (Ra.10-6-1,960)1/2 

(b) Variation of amplitude of Psim versus (Ra.10-6-1,960)1/2 

(c) Variation of amplitude of Tm versus (Ra.10-6-1,960)1/2 

(d) Variation of fundamental frequency of spectrum amplitude of Nuh, of Psim and of Tm versus Ra.10-6 

 

4.4 Mean Nusselt number  

 At each step time, we have obtained Nuh = 
│Nuc│ for the Rayleigh numbers ranging between 1.103 

and 2.106 with a precision of 0.03%. We have calculated 

the mean value Nu  of both global Nusselt numbers 
situated in this interval for a few Rayleigh numbers. For 

(a) (b) 

(d) 

(a): temporal signal of Tm 
(b): amplitude spectrum of Tm 
(c):  trajectory in the (Tm, Psim) phase plane 
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the numerical data presented here, the correlation of the 
mean Nusselt number for the inclined (25°) enclosure as 
a function of Rayleigh number with an error of the order 
of 1% is found to be 

1818.07178.1 RaNu ×=  

Figure 10 presents the comparison of the global Nusselt 
number Nuh obtained by the calculation and the mean 

Nusselt number Nu as a function of Rayleigh number for 

the inclined (25°) enclosure. The effect of inclination 
angle on Nusselt number is more pronounced when the 
Rayleigh number increases. This is due to the fact that 
when the Rayleigh number increases the convection is 
the dominant mode of the heat transfer and the 
orientation of gravity vector with respect to the density 
gradient in the enclosure influences the convection and 
heat transfer more.    
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5 CONCLUSION 

 The present study has presented a numerical 
data showing the influence of inclination on 
thermodynamic parameters as global Nusselt numbers, 
stream function and temperatures distributions in the 
cavity for 25° and 65° tilt angles and Rayleigh number 
included in the interval [1.103, 2.106]. 
 The implicit centred finite difference method 
used, allowed us to find with an excellent agreement the 
results of the literature concerning problems similar to 
that considered here when the attractor is a fixed point 
or limit cycle. Generally, the results are more sensitive to 
space and time steps when Rayleigh number increases. 
 It has been shown that when Rayleigh number 
increases, there is a critical value of it included in the 
interval [1,958.106, 1,96.106] where the flow undergoes 
a Hopf bifurcation. 
 Theoretically, the routes toward Hopf bifurcation 
for complementary angles (25 ° and 65° for example) 
are identical. If the cavity elements of symmetry are 
considered, it is sufficient to solve the Boussinesq 
equations for tilt angles included in the interval [0°, 45°].  
 In general, heat transfer increases with increase 
in Rayleigh number. From the predicted results, simple 
correlation for mean Nusselt number as a function of 
Rayleigh number is obtained for design applications.  
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