F. P. KIENO AND A. OUÉDRAOGO

(Received 9 December 2008; Revision Accepted 2, December 2009)

ABSTRACT

Abstract

Steady and transient laminar two-dimensional natural convection of a Newtonian fluid in an inclined square enclosure was numerically investigated. The enclosure was heated on the opposite sides while it was cooled on the other two sides. The inclined angles were 25° and 65° to the horizontal plane. The effect of Rayleigh numbers ranging between 10^{3} and 2.10^{6} on the flow development and heat transfer was studied. It was found that Nusselt number increases with the increase of Rayleigh number. Under low Rayleigh numbers the numerical studies predict the onset of stationary bicellular flow. The study showed that when the Rayleigh number was increased, an overcritical Hopf bifurcation transformed the fixed point to a limit cycle and the steady-state flow becoming oscillatory.

KEYWORDS: Natural Convection, Closed Enclosure, Bifurcations, Limit Point, Limit Cycle, Tilt Angle.

Nomenclature

Latin symbols
a thermal diffusivity $\left[\mathrm{m}^{2} . \mathrm{s}^{-1}\right]$
dt nondimensional time step
$\mathrm{g} \quad$ gravitational acceleration [m.s ${ }^{-2}$]
$\mathrm{H} \quad$ height of the cavity [m]
n number of iterations
$\mathrm{Nu}_{\mathrm{c}} \quad$ global Nusselt number on the sides AB and CD
[$\int_{0}^{1}(\partial T / \partial y)_{\mathrm{y}=0} . \mathrm{dx}$
$\left.+\int_{0}^{1}(\partial T / \partial y)_{\mathrm{y}=1} . \mathrm{dx}\right]$
$\overline{N u} \quad$ mean Nusselt number
$\mathrm{Nx} \quad$ number of nooses in the Ax direction
Ny number of nooses in the Ay direction
Pr: Prandtl number [v/a]
Ra Rayleigh number $\left[\mathrm{g} \beta\left(T_{h}^{*}-T_{c}^{*}\right) \cdot H^{3} /\right.$ (v.a) $]$
Rac critical Rayleigh number
$t \quad$ nondimensional time $\left[t * a / H^{2}\right]$
$u \quad$ nondimensional x direction velocity $\left[u^{*} . a / H\right]$
a inclination angle of side $A B$ in relation to the horizontal axis [rad].
$\beta \quad$ coefficient of thermal expansion [1/K].
$\lambda \quad$ thermal conductivity [W. $\mathrm{m}^{-1} \cdot \mathrm{~K}^{-1}$]
$v \quad$ cinematic viscosity $\left[\mathrm{m}^{2} . \mathrm{s}^{-1}\right]$.
$\psi \quad$ nondimensional stream function [$\left.\psi^{*} / \mathrm{a}\right]$. $\omega \quad$ nondimensional vorticity $\left[\omega^{*} . \mathrm{H}^{2} / \mathrm{a}\right]$.

Subscripts:

c	cold surface.
h	hot surface.
m	middle
\max	maximum.
\min	minimum
0	initial value

Superscripts

* Dimensional quantity

INTRODUCTION

Natural convection in rectangular enclosures has been widely studied both numerically and experimentally due to its applications in numerous natural phenomena such as field temperature prediction in buildings and in industrial processes such cooling of electronics fittings. Natural convection steps as in thermal insulation of buildings with hollow bricks and doubling glazing, flat-plate collectors, cooling by natural radiation.
Studies are numerical or experimental. Important reviews of such heat and mass transfer have been presented and discussed by Ostrach S, Bejan A., Yang K. T. and Berger P.

The most studied cases are rectangular cavities with one wall heated, the opposite side maintained cold and tho thin ramaining cidac secumod norfartlo, 334
coriveciluil in a rectanligular cavity al mieu antyle u anlu
1° in relation to the horizontal plane and differentially heated. They obtained a pitchfork bifurcation. Chen J. C. et al studying natural convection in a rectangular cavity heating from below and cooling from ceiling with adiabatic cidec chowed that at low Grachof Gr numbere

F. P. Kieno, Unit of Formation and Research in Exact and Applied Sciences, University of Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso

A. Ouédraogo, Unit of Formation and Research in Exact and Applied Sciences, University of Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso
relation to the horizontal plane, heated from the opposite sides and cooled on the other. They showed that the larger the Rayleigh number is, the more sensitive the attractor becomes to time steps and mesh grids. The attractor bifurcates from a limit point to a limit cycle via an overcritical Hopf bifurcation for a Rayleigh number value between $1,11.10^{5}$ and $1,12 \cdot 10^{5}$. For tilt angle of 25° or 65°, the attractor bifurcates from a limit point to a limit cycle via an overcritical Hopf bifurcation for a Rayleigh number value equal 2.10^{6}.

Hamady F. J. et al studied numerically and experimentally the local natural convection in an air-filled differentially heated inclined enclosure for Rayleigh number between 10^{4} and 10^{6}. Measurements of local and mean Nusselt numbers are obtained at various inclination angles ranging between 0° (heated from above) and 180° (heated from below). They showed that the heat flux at the hot and cold boundaries had a strong dependence on the angle of inclination and the Rayleigh number.

In this investigation, natural convection in enclosure with aspect ratio 1 at inclined angle 25° and 65° were solved numerically by formulation the equations of transfer, of the vorticity and the stream function by central finite-difference (CFD) discretization, which are
then solved by using an alternate direction implicit method (ADI).

2 MATHEMATICAL FORMULATIONS

The system under study is an air-filled square enclosure with vertical square section. Figure1 depicts its transversal section along the Cartesian coordinates ($\mathrm{A}, \mathrm{x}, \mathrm{y}$). This enclosure is assumed to be very elongated along the horizontal Az direction and perpendicular to the right section. Its sides are inclined at an angle $\alpha=25^{\circ}$ or $\alpha=65^{\circ}$ with the horizontal plane.

Initially, the system is in thermodynamic equilibrium at temperature T_{c}. At an initial time t_{0}, two opposite walls are raised to a warm temperature T_{h} while the sides $B C$ and AD were maintained at a temperature T_{c} with $T_{h}>$ T_{c}. We assume that the fluid is Newtonian and incompressible. All the physical properties of the fluid are constant except the density in the buoyancy term, witch obeys the Boussinesq approximation so that the Prandlt number of air is fixed to 0.71 . Radiation, viscous dissipation and pressure effects in the heat transfer equation were negligible. Under the above assumptions, the dimensionless unsteady governing equations in terms of temperature (T), vorticity (ω) and stream function (ψ), using the Cartesian coordinate system are:

- Heat equation:

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\frac{\partial(u T)}{\partial x}+\frac{\partial(v T)}{\partial y}=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}} \tag{1}
\end{equation*}
$$

- Vorticity equation

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}+\frac{\partial(u \omega)}{\partial x}+\frac{\partial(v \omega)}{\partial y}=R a \cdot \operatorname{Pr}\left[\cos \alpha \frac{\partial T}{\partial x}-\sin \alpha \frac{\partial T}{\partial y}\right]+\operatorname{Pr}\left[\frac{\partial^{2} \omega}{\partial x^{2}}+\frac{\partial^{2} \omega}{\partial y^{2}}\right] \tag{2}
\end{equation*}
$$

- Stream function equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=-\omega \tag{3}
\end{equation*}
$$

-boundary conditions:

These equations are to be completed with the appropriate boundary and initial conditions.
Initial conditions ($\mathrm{t} \leq \mathrm{t}_{0}$):
$\mathrm{U}=0 ; \mathrm{v}=0 ; \psi=0 ; \mathrm{T}=0$
NUMERICAL TWO-DIMENSIONAL NATURAL CONVECTION IN AN AIR FILLED SQUARE ENCLOSURE
$U=0 ; v=0 ; \psi=0$ and $T=1$
Conditions at $B C$ and $A D\left(\right.$ for $\left.t>t_{0}\right)$: for $0<y<1 ; x=0$ and $x=1$
$U=0 ; v=0 ; \Psi=0$ and $T=0$

Figure 1: Schematic representation of the system section in the
Cartesian frame (A, x, y) at $\quad 25^{\circ}$ angle tilt.

3 NUMERICAL RESOLUTION METHOD

The differential system $(1-6)$ is solved using finite difference method. The discretization scheme used is centred for the space derivative and first order forward for the time derivatives. The wall condition on the vorticity function is evaluated by extrapolation on the internal nodes according to the technique of Woods. The
discretized forms of the temperature and vorticity equations are solved by means of an implicit method with alternate directions (A.D.I.) associated with the Gauss elimination method. The stream function is obtained by solving the equation (3) using a successive over relaxation method (S.O.R.) and the velocity field is inferred from stream function.

At each iteration, the test of onvergence is

$$
\frac{\sum_{i} \sum_{j}\left|\psi^{n+1}(i, j)-\psi^{n}(i, j)\right|}{\sum_{i} \sum_{j}\left|\psi^{n+1}(i, j)\right|}<10^{-6} \text { for stream function. }
$$

A same criterion has been imposed on temperature and vorticity.

$$
\text { For temperature the test of convergence is } \frac{\sum_{i} \sum_{j}\left|T^{n+1}(i, j)-T^{n}(i, j)\right|}{\sum \sum\left|T^{n+1}(i, i)\right|}<10^{-5} \text {, }
$$

336
F. P. KIENO AND A. OUÉDRAOGO

$$
\frac{\sum_{i} \quad \sum_{j}\left|\omega^{n+1}(i, j)-\omega^{n}(i, j)\right|}{\sum_{i} \sum_{j}\left|\omega^{n+1}(i, j)\right|}<10^{-5} .
$$

All calculations are carried out in double precision. The reliability of the computer code was established by comparing with the results of G. De Vahl Davis when the attractor was a fixed point (Table1). The cavity is vertical and heated differentially along the two vertical walls. The other two horizontal walls are insulated. This table shows
that our results are most near of those obtained by G. De Valh Davis. The relative incertitude is below 1%. When the Rayleigh number increases, space mesh must be tightened to obtain good results as those of G. De Valh Davis

Table 1: Results obtained by G. De Vahl Davis and those of present calculations.

Variables	Authors	$\mathrm{Ra}=10^{3}$	$\mathrm{Ra}=10^{4}$	$\mathrm{Ra}=10^{5}$	$\mathrm{Ra}=10^{6}$
Nusselt ${ }_{\text {global }}$	De Vahl Davis	1,116	2,234	5,512	8,798
	Present calculation	0,75\%	0,14\%	0,29\%	0,97\%
		1,1077	2,2372	5,5252	8,8844
Psi ${ }_{\text {max }}$	De Vahl Davis	1,174	5,098	9,644	16,961
	Present calculation	0,03\%	0,52\%	0,23\%	0,19\%
		1,1736	5,0717	9,6662	16,993
Psi ${ }_{\text {max }, \text { middle }}$	De Vahl Davis	1,174	5,098	9,142	16,53
	Present calculation	0,03\%	0,52\%	0,16\%	0,44\%
		1,1736	5,0717	9,1277	16,457
Vx $\mathrm{max}_{\text {, middle }}$	De Vahl Davis	3,679	19,509	68,22	216,75
	Present calculation	0,08\%	0,49\%	0,30\%	0,18\%
		3,6819	19,413	68,013	217,14
V $\mathrm{ymax}_{\text {middle }}$	De Vahl Davis	3,629	16,182	34,81	65,33
	Present calculation	0,37\%	0,40\%	0,25\%	0,68\%
		3,6426	16,117	34,723	64,891

4 RESULTS AND DISCUSSION

4.1 Choice of space mesh and time step

At first time we have made calculations to test the sensibility of solutions to space mesh and time step for various Rayleigh numbers. Table 2 and figure 2 show the influence of space mesh for time step $\mathrm{dt}=10^{-5}$. Table 2 assembles the values of global Nusselt number $\mathrm{Nu} \mathrm{h}_{\mathrm{h}}$ on hot walls, on cold walls Nu_{c}, maximal stream function Psi $_{\text {max }}$, minimal stream function Psi $_{\text {min }}$, central
stream function $\mathrm{Psi}_{\mathrm{m}}$ and central temperature T_{m} for different space mesh for time step $\mathrm{dt}=10^{-5}$ while table 3 and figure 3 show the influence of time step on the same variables.
The calculations show that when the Rayleigh number increases, the results are sensitive to the choice of space mesh and time step. When the solution is stationary, figures 2 and $\mathbf{3}$ as tables 2 and $\mathbf{3}$ show that the space mesh and the time step can be chosen respectively equal to 141×141 and 9.10^{-6}.

Table 2: Variations of thermodynamic variables for different space mesh when the Rayleigh number $\mathrm{Ra}=1,8.10^{6}$ and time step $\mathrm{dt}=1.10^{-5}$. In brackets, the number indicates the relative gap.

Space mesh	Nu_{h}	Nu_{c}	$\mathrm{Psi}_{\text {max }}$	$\mathrm{Psi}_{\text {min }}$	Psi	T_{m}

NUMERICAL TWO-DIMENSIONAL NATURAL CONVECTION IN AN AIR FILLED SQUARE ENCLOSURE,

121×121	$0,76 \%$	$0,19 \%$	$0,57 \%$	$0,05 \%$	$0,46 \%$	$0,00 \%$
	23,134	$-23,121$	34,669	$-27,847$	16,080	0,553
131×131	$0,72 \%$	$0,75 \%$	$0,01 \%$	$0,03 \%$	$0,28 \%$	$0,00 \%$
	23,302	$-23,297$	34,665	$-27,838$	16,126	0,553
141×141	$0,69 \%$	$0,69 \%$	$0,00 \%$	$0,03 \%$	$0,25 \%$	$0,00 \%$
	23,463	$-23,462$	34,667	$-27,829$	16,167	0,553
151×151	$0,66 \%$	$0,66 \%$	$0,00 \%$	$0,03 \%$	$0,24 \%$	$0,00 \%$
	23,619	$-23,618$	34,666	$-27,819$	16,206	0,553
161×161	$0,59 \%$	$0,63 \%$	$0,00 \%$	$0,02 \%$	$0,13 \%$	$0,00 \%$
	23,766	$-23,768$	34,667	$-27,814$	16,227	0.553
171×171	$0,59 \%$	$0,59 \%$	$0,01 \%$	$0,02 \%$	$0,18 \%$	$0,00 \%$
	23,908	$-23,909$	34,669	$-27,809$	16,256	0,553

Table 3: Variations of thermodynamic variables for different values of time step when $R a=1,8 \cdot 10^{6}$ and $N_{x} \times N_{y}=141 \times$ 141.

Time step	Nu_{h}	Nu_{c}	Psi $_{\max }$	Psi $_{\text {min }}$	Psi $_{m}$	$\mathrm{~T}_{m}$
1.10^{-5}	23,4634	$-23,4623$	34,6667	$-27,8286$	16,1669	0,5527

9.10^{-6}	23,4634	$-23,4625$	34,6675	$-27,8287$	16,1627	0,5527
8.10^{-6}	23,4634	$-23,4625$	34,6673	$-27,8286$	16,1624	0,5527
7.10^{-6}	23,4634	$-23,4625$	34,6675	$-27,8286$	16,1631	0,5527
6.10^{-6}	23,4634	$-23,4625$	34,6675	$-27,8287$	16,1633	0,5527

Figure 2: Variations of thermodynamic variables for $\mathrm{Ra}=1,8.10^{6}$ and $\mathrm{dt}=1.10^{-5}$
(a): Influence of the space mesh on Psimax
(b): Influence of the space mesh on Tm

Figure 3: Variations of thermodynamic variables for $R a=1,8.10^{6}$ and $N_{x} \times N_{y}=141 \times 141$
(a): Influence of the time step on Nu_{h}
(b): Influence of the time step on Tm

4.2 Fixed point

Even at very low Rayleigh numbers, when the heat transfer is essentially conductive, there is a movement due to the tilt of the walls. The dynamic parameters evolve to a stationary asymptotic limit.

For $\mathrm{Ra} \leq 1,95.10^{6}$, the thermodynamic parameters evolve at long time towards a stationary asymptotic limit. This behaviour is illustrated on figure 4 which represents the temporal variation of maximal stream function (a), the trajectory in the phase plane (Psimax, Psimin) (b), the streamlines (c) and the isotherms (d) for $\mathrm{Ra}=1,8.10^{6}$. We see that the flow involves two cells which rotate in the opposite direction (figure 4 (c)). One cell rotates clockwise (negative) while the other rotates counter clockwise (positive). Temporal variations of all parameters converge on a point. All thermodynamic parameters evolve according amortized oscillations before becoming stable at their average value at long time. If one builds up the trajectories of phase of these different parameters, one obtains spirals which start from exterior and lead each one to a point and the attractor is a fixed point.

When Rayleigh number increases from $\mathrm{Ra}=1,958.10^{6}$, the oscillations of temporal curves dump down more and more with difficulty.

We have also tested the sensibility of the attractor fixed point to initial conditions. Figures 5 (a) and (b) represent respectively temporal signal of Tm and the trajectory in the phase plane (Psimax, Tm). One shows that the two branches of solutions for figure 5 (a) and the three branches of solutions for figure 5 (b), corresponding to initial conditions of very different temperatures at starting, meet at long time.

Progressively that Rayleigh number increases, natural convection expands and thermodynamic parameters increase also except central temperature Tm who decreases. Both temperatures Tm are symmetrical with regard to central temperature $T_{0}=0.5$ (Figure 6).

With complementary inclination angle of 65°, there is symmetry between the two results concerning the streamlines for example (figure 7). In case of inclination angle of 65°, one cell rotates clockwise (positive) while the other rotates counter clockwise (negative). These results have been obtained also by Skouta R.

Figure 4: Representation q dftime evolutions of the maximal stream(8 f) nction (a), of the trajectory in the phase plane (Psim, dPsim/dt), (b), of the streamlines (c) and of the isotherms (d) for Ra=1,8.10 ${ }^{6}$

Figure 5: Representation of isotherms (a), (c) and the streamlines ((b), (d) for $\operatorname{Ra}=1,8.10^{6}$.
(a), (b): inclination angle $\alpha=25^{\circ}$
(c), (d): inclination angle $\alpha=65^{\circ}$

Figure 6: Variations of central temperature versus Ra. 10^{-6} for the two tilt angles 25° and 65°
The upper curve corresponds to inclination angle of $\mathbf{2 5}^{\circ}$

(b)

Figure7 : Nosensitive dependance of attractor on the initial conditions To for Ra=1,8.10 ${ }^{6}$. (a) Psimax temporal signal; (b) phase plane (Psimax, Tm)

4.3 Hopf bifurcation

For $R a>1,958.10^{6}$, mesh grid was 151×151 and $\mathrm{dt}=9.10^{-6}$. These results have been obtained as we have done in the fixed point case.
When Rayleigh number increases from $\mathrm{Ra}>1,958.10^{6}$, the flow expands and the computing time necessary to obtain the attractor is increasingly large. There is thus a critical Rayleigh number Ra_{c} situated in interval [$1,958.10^{6} ; 1,96.10^{6}$] from which the attractor is periodic as one sees on figure 8 who represents temporal evolution (a), the amplitude spectrum (b) of Tm and the trajectory in the phase plane (Tm, Psim) (c) for Ra $=$ $1,96.10^{6}$. The plotting of the amplitude spectrum obtained by Fast Fourier Transform (Figure 9 (c)) corroborates the existence of a limit cycle. There is a critical value of the Rayleigh number above which the
attractor is periodic and independent of initial conditions (figure 9 (d)).

To determine the nature of the phenomenon corresponding to the transition from fixed point to limit cycle, we have studied both the variations of oscillatory amplitude versus the square root of the gap between (Ra. $\left.10^{-6}-\mathrm{Ra}_{\mathrm{c}} \cdot 10^{-6}\right)^{1 / 2}$ in witch Ra_{c} is the critical Rayleigh number and also the variations of the fundamental frequency in vicinity of bifurcation point. Figure 9 represents the variations of oscillatory amplitude versus (Ra. $10^{-6}-1,958 \cdot 10^{-6}$). It shows that the amplitude of cycle is proportional to this gap, witch increases as the square root of the gap at bifurcation point. There two characteristics allow us to conclude that the bifurcation is an over critical Hopf bifurcation.

Figure 8 : Illustration of limit cycle for $R a=1,96.10^{6}$
(a): temporal signal of Tm
(b): amplitude spectrum of Tm
(c): trajectory in the (Tm, Psim) phase plane

Figure 9: Influence of Rayleigh number in vicinity of bifurcation point
(a) Variation of amplitude of Nu_{h} versus (Ra.10-6-1,960) ${ }^{1 / 2}$
(b) Variation of amplitude of Psim versus (Ra.10-6-1,960) $)^{1 / 2}$
(c) Variation of amplitude of Tm versus (Ra.10-6 $-1,960$) ${ }^{1 / 2}$

4.4 Mean Nusselt number

At each step time, we have obtained $\mathrm{Nu}_{\mathrm{h}}=$ $\left|N u_{c}\right|$ for the Rayleigh numbers ranging between 1.10^{3}
and 2.10^{6} with a precision of 0.03%. We have calculated the mean value $\overline{N u}$ of both global Nusselt numbers situated in this interval for a few Rayleigh numbers. For
the numerical data presented here, the correlation of the mean Nusselt number for the inclined $\left(25^{\circ}\right)$ enclosure as a function of Rayleigh number with an error of the order of 1% is found to be $\overline{N u}=1.7178 \times R a^{0.1818}$

Figure 10 presents the comparison of the global Nusselt number $N u_{n}$ obtained by the calculation and the mean Nusselt number $\overline{N u}$ as a function of Rayleigh number for
the inclined $\left(25^{\circ}\right)$ enclosure. The effect of inclination angle on Nusselt number is more pronounced when the Rayleigh number increases. This is due to the fact that when the Rayleigh number increases the convection is the dominant mode of the heat transfer and the orientation of gravity vector with respect to the density gradient in the enclosure influences the convection and heat transfer more.

Figure 10: Comparison of mean Nusselt number $\overline{N u}$ (a) and global Nusselt number $\mathrm{Nu}_{\mathrm{h}}(\mathrm{b})$ for $\alpha=25^{\circ}$

5 CONCLUSION

The present study has presented a numerical data showing the influence of inclination on thermodynamic parameters as global Nusselt numbers, stream function and temperatures distributions in the cavity for 25° and 65° tilt angles and Rayleigh number included in the interval $\left[1.10^{3}, 2.10^{6}\right]$.

The implicit centred finite difference method used, allowed us to find with an excellent agreement the results of the literature concerning problems similar to that considered here when the attractor is a fixed point or limit cycle. Generally, the results are more sensitive to space and time steps when Rayleigh number increases.

It has been shown that when Rayleigh number increases, there is a critical value of it included in the interval $\left[1,958.10^{6}, 1,96.10^{6}\right.$] where the flow undergoes a Hopf bifurcation.

Theoretically, the routes toward Hopf bifurcation for complementary angles (25° and 65° for example) are identical. If the cavity elements of symmetry are considered, it is sufficient to solve the Boussinesq equations for tilt angles included in the interval [$0^{\circ}, 45^{\circ}$].

In general, heat transfer increases with increase in Rayleigh number. From the predicted results, simple correlation for mean Nusselt number as a function of Rayleigh number is obtained for design applications.

ACKNOWLEDGEMENTS

This work was supported by the Coopération Universitaire Institutional, Universités Francophones de Belgique (CIUF) with financial support of the A.G.C.D. The authors like to thank them kindly.

REFERENCES

Bejan, A., 1980. A synthesis of analytical results for natural convection heat transfer across rectangular enclosures, Int. J. Heat and Mass Transfer, 23: 723-726.

De Vahl Davis G., 1968. Laminar natural convection in 344

De Vahl Davis G., 1982. Natural convection of air in square cavity: a benchmark solution, Int. J. for Numerical Methods in Fluids, 3: 249-264.

Musushima J., Adachi T., 1995. Structural stability of the pitchfork bifurcation of thermal convection in a rectangular cavity, Journal of Physical Society of Japan, 64, (12): 4670-4683.

Ostrach S., 1988. Natural convection in enclosures, Journal of Heat Transfer, 110/1175: 1175-1190.

Skouta A., Randriazanamparany M.A., Daguenet M., 2001. Etude numérique de la convection naturelle
instantionnaire bidimensionnelle dans une enceinte allongée, de grand axe horizontal et de section carrée, inclinée eu égard au plan horizontal et chauffée par deux côtés opposés, Int. Journal Thermice Science, (40): pp.352-365.

Sktouta R, Skouta A., Daguenet M., 2008. Numerical study of the transition toward chaos of two dimensional natural convection within an inclined square cavity, Adv, Studies Theor. Phys, 2, 2008, (1): 37-50.

Hamady F. J., Lloyd J. R., Yang H. Q., Yang K. T., 1989. Study of local natural convection heat transfer in an inclined enclosure, Int. J. Heat and Mass Transfer, 32: 1697-1708.

Yang K. T., 1988. Transitions and bifurcations in laminar buoyant flows in confined enclosures, Journal of Heat of Heat Transfer, 110: 1191-1204.

Bejan A., 1984. Convection Heat and Mass Transfer, John Wiley and Sons.

Bergé P., Pomeau Y., Vidal C., 1988. L'ordre dans le chaos, vers une approche déterministe de la
turbulence, Hermann, Paris.
Ostrach S., 1972. Natural convection in enclosures, Hartnet, Irvine (Eds.) Advances in Heat Transfer, volume 8, Acadamic Press.
Yang K. T., 1987. Natural convection in enclosures, handbook of Single Phase Convection Heat Transfer, John Wiley, New-York, pp.1-51.

Woods L. C., 1954. A note on the numerical solution of fourth order differential equations, Aenauit. Q. 5 (3).

