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Abstract
Investing in projects involving huge financial risks demands great care. Dealing with market 
uncertainty and taking effective investment decision in oil field project, therefore, requires a 
reliable guide. The strategy emerged from addressing a problem involving an optimal stopping 
time with singular stochastic control for jump diffusions. The strategy identified two unique 
thresholds, one indicating when to apply the control and the other showing when to quit. Optimal 
strategy for investment in oil field project were obtained. Two particular cases of Brownian motion 
and Geometric Brownian motion are presented. The model is set to include jumps in the analysis: 
to obtain better investment strategies in oil field project.

Introduction
The huge financial involvement in oil projects 
demand that a project manager and investor take 
great care in decision making. Oil field 
development projects face market risks largely 
because the parameter of key importance, the oil 
price, fluctuates rapidly over time. Moreover, 
there are other largely technical uncertainties 
such as the quantity of oil and gas reserves in the 
ground, as well as geological and reservoir 
structures. The implication of these uncertainties 
is high risk for field development and high risk. 
The problem facing the decision maker is, 
therefore, a problem of imperfect information. 
This makes the decision making process a 
challenging one.

When risk and uncertainty are involved, 
decisions cannot be taken with a “flip of the 
coin” strategy. To tackle the problem of "how 
and when" to invest, this work goes beyond 
calculations of expected return, and proposes an 
optimal strategy for investment in the project. A 
model that delivers this optimality is desired and 
presented. In the face of uncertainty over future 
market conditions, a viable model is set to obtain 
an optimal strategy. There is an attempt to 
answer the following questions: when should the 

investor invest and how should the 
investment be made. Ogbogbo (2016) has 
determined that the crude oil spot price 
process is a Jump-diffusion. The aim of 
the work is to obtain an optimal strategy 
for investment in an oil field project .The 
optimal strategy will involve a singular 
control and an optimal stopping time for 
the investment. Thus, the work will 
identify two unique thresholds for the 
investor; one threshold points out when to 
apply the control and the other indicates 
when to quit.

Some models for optimal strategy and 
control have been obtained for gas 
storage, number of wells to drill and for 
oil discovery and extraction. The work by 
Bringedal (2003) was on gas storage 
valuation. The gas storage facility was 
studied because of expanding gas market 
in Europe. Investing in a gas storage 
facility is similar to investing in an oil 
field development project. The objective 
of the work was to obtain a strategy which 
would identify a benchmark price level at 
which to refill the storage facility or sell 
off gas in it.  The value of the storage 
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facility was calculated with constant volatility 
and mean reversion parameters. Bringedal used 
a technique called stochastic dual dynamic 
programming (SDDP). The optimal strategy 
obtained defined a benchmark price level,
x, at which one would sell if the spot price P  is t

above it, and buy if spot price is below it, i.e. Sell 
if P >x and Buy if P <x. Despite the effort at t t

generating an optimal strategy, the assumption 
of constant volatility is considered a major 
simplification of the model. Though a mean 
reverting process was used in the model, the 
criticism of the Black-Schole model was based 
largely on assumption of constant volatility. 
Benkherouf & Pitts (2005) obtained optimal 
strategy on the number of oil wells to drill. Their 
work developed an oil exploration model. They 
obtained their results analytically, the uncer-
tainty element is in the fact that n and n  are 1 2 

unknown, but are represented by a two-
dimensional distribution p fixed a priori (as 

Euler family of distributions). n  is the number of 1

large undiscovered oil wells and  n  is the 2

number of small undiscovered oil wells. n  and  1

n  are non-negative integers. The objective of the 2

work was to obtain optimal strategy for drilling 
that maximizes the total expected return over an 
infinite horizon, based on the entire history and 
future prospects.                                      
 Maurer & Semmler (2010) worked on an 
optimal control model of oil discovery and 
extraction. They obtained the optimal rate of 
extraction, given the price trajectory for an oil 
extraction and discovery problem. Using the 
Hamiltonian and maximum principles they 
solved the finite horizon optimal control 
problem which they formulated. They solved the 
resulting non- linear programming problem 
numerically using NUDOCCCS, i.e. they used 
discretization technique to transcribe the 
optimal control problem into a non-linear 
p r o g r a m m i n g  p r o b l e m  v i a  t h e  c o d e 
NUDOCCCS. Generally, the Maurer-Semmler 
model was a finite horizon optimal control 
model that used two state variables: known stock 
of resource and cumulated past extraction. 

 The main similarity and differences between 
this paper and the existing Literature is briefly 
explained here to highlight the main contribu-
tion of the work.                                          
 Optimal strategies have been obtained by 
researchers in the works mentioned above, but 
the method and description of the dynamics of 
the oil price process in this model differs. The 
model set in this paper is similar to and in line 
with the general formulation of mixed stochastic 
optimal control and stopping time problems. 
However, beyond the setting of the model, this 
paper went on to obtain optimal strategy for 
investment in oil field project, in terms of 
thresholds (for control and stopping time). 
Basically, a partial differential equation (PDE), 
associated with the model is given and used 
along with Ito's lemma in obtaining the strategy. 
The paper specifically considers a case where 
there is a running cost function g (s,x), defined 

-rs
as:  (s,x)= e ) , and (in particular) for, r=0, 

where the controller pays a constant running cost 
that is not discounted.  This yields a general 
solution, which the paper considers for 
Brownian motion and geometric Brownian 
motion.
The rest of the paper is presented as follows: the 
second section presents model basics, model 
assumption and discusses the mixed optimal 
stopping and singular stochastic control model. 

Experimental
Mixed optimal stopping and singular control 
model for optimal investment strategy in oil field 
project

Model basics, assumptions and preliminaries 
Definition: Jump diffusion. A Jump- diffusion or 
Lévy diffusion is the solution of a stochastic 
differential equation (SDE) driven by Lévy 
processes.
 Consider the following stochastic differen-
tial equation in 

...[1]

Where
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Model basics and assumptions

Let X  be the price of crude oil at time t. We t

make the following assumptions:                                              
i. X   is a jump diffusion. t

ii. The system is stochastically controlled,  
there is a singular control, G  which is the t

intervention. (t) is a right continuous iG

increasing adapted process which could be 
considered as copious production and sales 
at some benchmark high prices from time i 
to t, in order to maximize revenue 
accruing. 

iii.d  may be singular with respect to Lebesque G

measure dt. [Defition: Given an open set 
S= (a ,b ) containing disjoint intervals,  k k k?
the Lebesgue measure is defined by ���
m (s)    (b    a )].L  k k k=

iv. The investor (also called the controller) is 
observing a (price) system that is evolving 
with time, let  h  be the stopping time of the 

process. 
v. There are costs involved. There is a cost for 

observing the system (waiting before 
taking a decision is at a cost, anytime a 
decision is taken a cost is paid). Let this 
cost be, g(t,x  ). There is a terminal cost t

m(h,x ), should the controller decide to h

stop. The control is also applied at a cost 
given as n(t, x  ). t

vi. The jumps are not there at start time t=0 
vii. Expect jumps at some point in time. 
viii. It is assumed that all jumps are positive,    

Z >0 a.s.
Thus, it is a stochastically controlled system, 

The following performance criterion or 
objective functional for the system is defined,

The challenge is to obtain an optimal strategy for 
i nves tmen t  t ha t  wou ld  min imize  the 

,h
performance criterion, J (s,x). We want to find  F

f(s,x), the value function, and obtain the optimal 

strategy:
if (it exists) such that 

where, G*, is the optimal control and h * is the 

optimal stopping time.   ?? ?.  ? is the set of 
admissible controls.  G is admissible if  [2] has a 

G
unique strong solution X (t), and [3] is finite.   

Cost of Waiting to Invest
In reality irreversibility and the possibility of 
delay are very important characteristics of most 
investments, including oil field development 
projects. The ability to delay irreversible invest-
ment expenditures can have a significant effect 
on the decision to invest. According to Lund 
(1997) the flexibility of a project is simply a 
description of the options made available to 
management as part of the project. It is seen as 
the possibility to make adjustments or interven-
tion or wait. One type of flexibility is the 
possibility of waiting for information. Flexibi-
lity, such as “Waiting to Invest” is seldom a free 
good. There is a cost involved. The optimality of 
decision for a potential investor, will emerge 
from two choice paths:  money now or more 
money in the future, i.e. there is a choice of 
selling now, or waiting to watch the market, and 
then sell crude oil in the future. 

The Concept of Optimal control  
Two popular approaches central to optimal 
control theory are, the Hamilton-Jacobi-
Bellman method and the Pontryagin Maximum 
Principle. An optical control problem consists 
of: 
A state process usually denoted X(t).      
e.g. a Price Process.
A Control process G(t). There is a control set G, 

in which  G(t) takes values for every  t. Applica-

tion usually dictates the choice of G(t) G. E

Additional constraints could be placed on G(t),  

e.g. in the stochastic setting, G  could be adapted 

to a certain filtration. 

Admissible controls,G.  

A control process satisfying the constraints is 
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called an admissible control. The set of all 
admissible controls is denoted, .G
An objective functional  J(X(t),G(t)) which is the 

functional to be maximized (or minimized).  J 
has an additive structure, and is given as an 
integral over t.
The Goal in an optimal control problem is 
maximize (or minimize) the objective functional 
J over all admissible controls.

Stopping time  
A stopping time with respect to a sequence of 
random variable X ,X ,…. is a random variable h, 1 2

with property that for each t, the occurrence or 
non-occurrence of the event h = t depends only 

on the values of X ,X ,….X  and furthermore.  1 2 t

Prob(h <    )=1.  h is almost surely finite.

Optimal stopping has to do with target tracking 
problems where one has to decide when one has 
arrived sufficiently close to the target, threshold 
or benchmark. In Finance the stopping time 
question is "when do you pay dividend so you 
don't go bankrupt (i.e. tracking the point when 
you have accumulated enough wealth). In 
population dynamics, when do you start the fish 
harvesting so the fish population does not 
become extinct. And in this work, when do you 
sell to obtain maximum revenue or profit, (not 
invest at a loss). When do you quit.

The concept of singularity 
Generally, singularity arises when a process is 
not well behaved in a particular sense, say, not 
differentiable. e.g.

   1
 f(x)=   has singularity at x = 0.

8

x-

With respect to the (controlled) system which is 
evolving with time, the process is not absolutely 
continuous over the interval. 

A control G  is a Singular control if the control is t

bounded, i.e. a < �G   <  b and t- -

Specifically, if  f is positive at some times, 

negative at others and is only zero instanta-
neously, then the solution is straightforward. 
The case when f remains at zero for a finite 

length of time  t  < t  < t   is  the singular control 1 2

case. 

General formulation of mixed stochastic 
optimal control and stopping time problems 

A probability space, (W, F, P) is operated on.

Definition: A probability space consists of the 
triple (W, F, P) on the sample space, W, where 

(W, F) is a measurable space,  F  is a collection of 

subsets of W , and P is a measure on F.

Definition: For a given set of returns, the rate at 
which the price of an asset (or commodity) 
varies (increases or decreases) is called volatility 
denoted s. Basically, it is the variation from 

average over a given period.

Definition: The drift of an asset, denoted m,  is a 

measure of the average rate of growth of the 
asset(or commodity) price.  
                     
There is a controlled system, given as:

- -

m,�s,and g are given continuous functions and G  

is the control, assumed to be F  adapted and with t

values in the closed, convex set G      .

Associated to a control G�=G(t,�w) and an F  t
stopping time h=h(w)� � h (set of admissible 

stopping times). There is a performance criterion 
of the form

where              is        the profit rate function 

is the bequest function

f and g are giving function
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It is assumed that there is a given set G=G(x) of 
admissible controls, which is the set such that a 
unique strong solution 

GX(t)=X (t) of [4] exists and the following [5] 
holds

where,

The family
 xis uniformly P -

integrable for all x   S,
-where, g (x)= max(0;-g(x))................[6]

g(X(h(w)) is interpreted as 0,if X(w)=    . 8

is fixed Borel set such that             .

S is called “Solvency region or solvency set”.  
One may think of S as the “universe” of the 
system, in the sense that one is interested in the 
system up to time h which may be interpreted as 

the time of bankruptcy.
The combined optimal stopping and control-
problem is therefore given as follows: 

*Find f(x)�and�G �E��G, h* E �h such that 

where,  h is the set of  F    stopping times h < h .                                                                    t s

Oskendal & Sulem (2009) proved a verification 
theorem for this (and every) problem they 
discussed.

_ _

Optimal strategy for investment in oil field 
project: mixed optimal stopping and singular 
stochastic control model
Due to the presence of skewness and kurtosis in 
the empirical distribution of oil price returns, an 
adequate model for oil prices would be a jump-
diffusion model. Ogbogbo (2016) has shown 
that crude oil spot price process is a Jump-
Diffusion process.  Any Lévy process may be 
decomposed into the sum of a Brownian notion, 
a linear drift, and a purely discontinuous process 
composed by superposing independent centered 
Poisson processes, this result is known as the    
Lévy-itô decomposition. This also means that 
every Lévy process can be approximated with 
arbitrary precision by a jump-diffusion process. 

This informs the choice of a Jump diffusion 
Process in this work. 
Definition: Consider the Stochastic differential 
equation, SDE with jumps (Lévy SDE) given in 
[8] below. Solutions to the Lévy SDE are called 
jump-diffusions.

i.e. solutions in the time homogeneous case, 
when 

Dynamics of the system.  Let X  be the stochastic t

system, describing the oil price process. The 
SDE of the system has a jump component and is 
given by [9].

 X(0) = x0

Where

W(t) is an n-dimensional Brownian motion 
independent of     .

     is a martingale measure of jumps 

G (t) is the singular control applied to the process 

X(t)
��GX (s) = X=(X ,... ... ...X )      1 n

G(t) = (G (t), (t), G (t), ... ... ..., G (t))1 2 n

m(X  ) is drift component, s(X ) is diffusion t t

component.

The controller and the objective functional 

The system is evolving with time and being 
observed by the controller or investor. There are 
costs involved. There is a cost paid over time for 
observing the system. Waiting before taking a 
decision is at a cost, anytime decision is taken, a 
cost is paid. Should the controller decide to stop, 
there is a terminal cost. The control is also 
applied at a cost. Giving rise to the following 
objective functional: 
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The objective functional or performance 
criterion

J=J(s,x)  of the form

where, m and g are continuous functions, h =h  s s

(x)=inf{t > 0: x = x* }

g(t,x ) is a running cost or observation cost,    t

m(h, xh) is the terminal cost, and n(t, x ) is the t

cost of applying the control. The running cost 
g(t, x ) is the cost of waiting to take decision. In t

the formulation for this particular problem, it is a 
constant which is not discounted, a sunk cost 
involved in production. The cost of applying the 
control, n(t,x ) is also a constant in this case.t

The stopping cost or terminal cost, m(h, x), is 

actually the value of the project at the point the 
decision is taken. It is the revenue accruing.  

Of interest is the function

Threshold and time  
Starting at some point in time and space the 
interest is in the first time the process hits the 
threshold,

The idea of threshold and time raises the 
question of “how” and “when” with respect to 
the investment. “When” involves the threshold 
and time that the investor should call it quits and 
“how” is concerned with strategy.

Fig. 1. Threshold for stopping time, corresponding 
to price   x= x*

The time (Optimal stopping time)                                                                                     
There is a non- empty time set. Therefore

h*={inf  t > 0 : x  > x* }   t
_

Characterization of the process and domain of 
operation
There is a PDE associated with this model. The 
PDE satisfies

U(X,t) is the solution of the PDE.

Domain of operation
The threshold separates the system into two 
Domains. The non-intervention region is D, 
connoting “Wait” and B region is “below the 
threshold”. Above the threshold, the process is 
described by the PDE, below the threshold we 
have   U(X,t)=m(t, X )   t

Thus, interest is in the solution, U(X,t), that 
defines the threshold. This is illustrated in Fig. 2 
below. 

Fig. 2. Domain of operation

For example, for investor in stock, D region 
connotes “wait” and the threshold is “invest”.
Remark: An important condition in the 
formulation of the model is that the process must 
not jump at the threshold, a jump at the threshold 
implies that the threshold being tracked can be 
missed. Hence, at the threshold, the process 
must be continuous and differentiable.

Generation of PDE
Definition: Ito’s formula for jump processes.
Let X be a diffusion process with jumps, defined 
as the sum of a drift term, a Brownian motion 
and a compound Poisson process 
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where,  m  and  s  are continuous processes witht t

N =N  (w) is a compound Poisson process. t t
1,2Consider Y  = f (t, X  ), f     C , i.e. f  is differen-t t

tiable with respect to time and twice conti-
nuously differentiable with respect to the spatial 
variable X; f [0,T]  ×  . Then with X   tR ? R.
defined as above, the process Y  = f (t, X  ) can be t t

represented in differential form as 

The price process X  satisfies [9] and is a Jump-t

diffusion.

          Let, Y  = V(t,X ) …………………. [14]t t

1,2 1 2
V  is C (C  in time, C  in space), hence by Itô’s 
lemma

With the singular control, dY becomest 

[16] describes the dynamics of the process 
including the control. To have a complete 
description of the control problem, the costs are 
added (through the J(t, x) functional) to dY  t
process. 

Recall the performance criterion  J=J(t,x)   

Let Z   denote J(t,x),  since  J(t,x) is a process.  t

Then the Z  process is added to dYt t

From [10b/17]

dZ  = g(t, x )dt + n(t, x  )dGt t t t

then

_
_

_

To solve for U(x,t) , g(t,x) is chosen to be of an 
exponential form

Since, U(s,x) is the function that solves the PDE, 
by the principle of optimal control

 [20] includes the jumps

From [19], and excluding the jumps in [20], we 
have

U(s,x) is desired. U(s,x) solves this time 
dependent PDE.  Consider

-psg(s,x) = e
-ps a 

U(s,x) = me(s,x)=e x a > 0

-ps g(s,x)=e means that a constant cost is paid for 
observing the system, which is discounted in 
time.

By the theory of PDE for optional control let 
-ps 

U(s,x)=e  y(x).

Then
-ps 

L  U(s, x) = e  Ly(x)x

Recall [21]

-ps 
Dividing through by e , yields: 

a
y(x) = x    a  >  0 is a fixed constant 

In particular consider case when p = 0

Then the controller is paying a constant running 
cost which is not discounted, then

 _
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a
y(x) = x

By change of variable argument, let
1y (x) = f(x)..............[24]

Then [23] reduces to a first order ODE which is 
solved explicitly for f(x), and y(x) is recovered 

by integration.

Remark 
The solution set is a piecewise continuous 
solution.

Ÿ y(x) is solution of the PDE when x lies within 
the interval x* < x <  x  (resp x  < x < x*, 0 0

depending on which threshold is above the 
other)

a
Ÿ we have x   (which is the terminal cost), for   

0 < x < x*. This happens, if the controller 
decides to stop abruptly.

Ÿ y(x) + (x - x*) is solution of the PDE in the 
last interval x > x*. This describes points 
slightly above the threshold. (What happens 
a little after the solution point is usually 
observed after solving a PDE).

From [25]

_ __

_ _

_

1From [25]. y (x) = f(x)

For x

Hence

[29] represents the general solution or general 
case, subsequently particular cases for 
Brownian motion and Geometric Brownian 
motion. f(s) can be given explicitly when the 
system is a Brownian motion and Geometric 

Brownian motion are examined. y  must (x)

converge. Since we have a mixed stochastic 
optimal control problem, we desire two 
thresholds x*  and x , which determine the 0

optimal stopping time and when to apply the 
control respectively. [26] is in this form because 
the problem is a singular control problem, the 
function is not absolutely continuous over the 
interval.

 Conditions on y  will determine which (x)

threshold is above the other. If the thresholds 
coincide i.e.   x* = x   , then we have strictly an 0

optimal control problem or strictly an optimal 
stopping time problem. Two thresholds are 
involved in this model notably, threshold for 
singular control x = x   which indicates where to 0

apply the control, and threshold for stopping 
time x=x* which gives the optimal stopping 
time. The Control is flat (not applied) while in 
the D domain. It is applied at the threshold to 
ensure the system does not fall out of order e.g. A 
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financial institution does not go bankrupt by 
paying dividend, fish population does not 
become extinct by over harvesting, an investor 
investing in an oil field project does not invest at 
a loss.    

 Fig. 3 and 4 illustrate position of the thresholds

Fig. 3. Threshold (price), that determines 
stopping time, attained before threshold (price) 
that   determines when to apply control

Fig. 4. [Threshold (price), that determines when 
to apply control, attained before threshold 
(price) that determines stopping time] 

Continuity and Differentiability of   y(x)at x0 

and x* 

Continuity at  x = x*

From [26]

 (I) y(x) = y(x*)……………….. [30]

a
 (ii) y(x*) = x* ) …………….… [31]

Differentiability at  x=x*  

From [31]
1 a-1

               y (x*) = ax* ………………. [32]
Dividing [31] by [32], we have

Since the expressions  y(x*)  and y(x ) are 0

obtained from differentiability and continuity at 
x = x*  and  x =  x  respectively.   From  [33]  and 0

[36] x*  and  x   can be  obtained explicitly for 0

particular cases of Brownian motion, BM  and 
Geometric Brownian motion, GBM. The 
emerging thresholds must be unique. Since 

y(x)is given as an integral, Continuity and diffe-

rentiability of  y(x) has been established using 
Riemann integration, fundamental theorems of  
Calculus, Order Preserving property of inte-
grals, Leibnitz Integral Rule (for differentiation 
under the integral sign).Proof is lengthy and  not 
given here.

Uniqueness and position of the thresholds  
Uniqueness of x* and x , have been established, 0

proof is lengthy and is not given here

Position of the thresholds

The position of the threshold is determined by 
the following inequalities,                     

  y(x*) <�y(x )   or   y(x*) >�y(x  )0 0

This determines which threshold is above or 
below the other.

If y(x*) - y(x  ) < 0, then   y(x*) < y(x )0 0

conversely, If y(x*)-y(x )>0  then  y(x*) >y(x )0 0

Existence of the integral; Existence of solution 

From solution of the PDE, [27]
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Particular cases

Optimal strategy for Brownian motion
For the Brownian motion, s,�m are constants

x 8
Existence of [37] above implies existence of the 

solution. Then we can obtain y(x  )  and y(x* ) 0

and by implication x   and x* for this general case 0

(with appropriate boundary and initial condi-
tions). Other conditions that guarantee existence 
of solution are given below:

(i) f(x) must be continuous on the bounds of the 
integral,

(ii) solution must converge, 
 it is given that there are no jumps at the initial 

process, we expect jumps at some point in    
time X(0  ) = x.

Then it may give the optimal strategy for 
investment for the general case as follows:
(i) stop immediately if  0 < x < x*;   x = x*  or      

x =0.  (This includes stopping abruptly).
(ii) do nothing if  x > x* (ought to have stopped 

investment already).
(iii)start investing at x , if  x  <  x <  x*0 0

Since  c,  s and, m are constants, let           be k , 1

then

This explicit solution, [40] is the same result 
obtained, when s,�m are substituted as constants 

in [27].

Hence, for the Brownian motion case    
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 Optimal Strategy is specified as follows:

For a Brownian motion, x* and x  are obtained 0

explicitly from [33] and [36], since a is a fixed 

constant and  a�> 0 given.  k  is to be obtained by 2

extra initial conditions.

Optimal Strategy for Geometric Brownian 
Motion 
For the Geometric Brownian motion, let   

2
m=x,s= x

C and D are constants to be determined using 
initial conditions. For given initial conditions, 
the constants C and D can be obtained leading to 
explicit solution for y(x), x*  and  x . 0

 These initial conditions could be project-
specific information, in addition to crude oil 
price data for particular oil fields during a given 
period. We now have the optimal optimal 
strategy for investment for the GBM case.

To obtain optimal strategy for the Jump-
diffusion case, [20] will be used, jumps will be 
included in [21]. Thus the analysis and method 
of solution will include jumps in obtaining y(x), 

x*  and  x .  Work continues to obtain precise 0

optimal strategy in this case.

Conclusion
In the work a model has been presented for 
obtaining an optimal strategy for investment in 
oil field project. Oil price, which is the main 
profit-determining parameter, is given as a Jump 
-diffusion process.  Running cost is given as a 
constant cost which is not discounted in time. 
The results obtained so far and some particular 
cases have been presented.  Conditions for 
existence of solution were given. The Brownian 
motion process and Geometric Brownian 
Motion process were used as particular cases, 
for which the work obtained explicit solutions, 
and distinct optimal strategy. BM and GBM 
cases provide strategy for investment which is 
good enough. However, it is expected that the 
best strategy to invest will be attained when 
jumps are included in the result, since oil price 
process is not exactly Gaussian. Work therefore 
continues to obtain possibly explicit optimal 
strategy for the Jump-diffusion case as stated, 
and to validate the optimal strategy using 
empirical data and project information from 
fields in the Niger-Delta. Also running cost may 
be considered as a constant cost which is 
discounted in time.
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