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ABSTRACT:- This paper describes the basic theory and computing method for transient flow of
liquid in flexible pipe such as rubber tubing and arterial system. A mathematical model taking into
account tube wall axial and radial motion (in which the dynamic fluid pressure causes circumferential
and axial motion of the tube wall) is presented. The tube wall is assumed to be elastic material and
the compressibility of the liquid is neglected. Circumferential and axial strain-stress relationships
for the tube are considered. The obtained mathematical system is constituted of four non-linear
hyperbolic partial differential equations describing the wave propagation in both pipe wall and
liquid flow. The fluid-structure interaction is found to be governed by Poisson’s ratio. In this steady
finite element method based on Galerkin formulation is applied. Numerical results show a good
similarity with those of the literature obtained by the characteristics method.
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INTRODUCTION

For a long time, transient flows in elastic piping systems
have received a lot of interest to predict the pressure
fluctuations provoked by water hammer phenomenon. The
circumstances where this pressure fluctuation appears
are numerous, following voluntary disturbances or
accidental disturbances (rapid valve closure or sudden
pump failure in the water network or in the oil pipeline
industry in northern Africa for example). The most widely
of the previous investigation has considered the pipe to
be quasi-rigid, such as metallic pipe, with constant
diameter and thickness (Bergeron [2] et Streeter & Wylie
[6],).

Transients in pipes generated by rapid changes in flow
conditions, have been also investigated in the case of
flexible thin walled tubing such as rubber hoses and
arteries. In such systems the fluid is considered
incompressible relative to elastic properties of the tube
wall material. We can quote the study of Streeter & Wylie
[6] where the pipe wall axial motion is neglected in the
stress-strain model and the dynamic fluid pressure and
the radial deformation of pipe wall were separately

calculated. They presented an uncoupled mathematical
model resolved numerically by the characteristics method
which is based on the propagation celerity of the pressure
waves and permit to obtain ordinary differential equations
(Abbott [1]).

Recently the interaction between the dynamic fluid
pressure and resulting dynamic circumferential and axial
strain in the tube wall have been successfully investigated
by Stuckenbruck & Wiggert [7], Tijsseling & Lavooij [8]
and Gorman et al [4]. The authors have examined the
influence of Poisson ratio on the coupling between the
pipe wall and the fluid. In their works, it is showed that the
fluid-structure interaction (FSI) is well governed by the
Poisson coefficient of the material and the mathematical
model is also resolved numerically by the characteristics
method.

More Recently, an exhaustive source review (123
references) by Wiggert & Tijsseling [9], which summarize
the essential mechanisms that causes (FSI): Poisson
coupling which is described above, the friction coupling
related to the transient fluid shear stresses acting on the
pipe, and junction coupling which result from junction
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conditions such as closed end, miter bend, T section etc.
They present the various numerical and analytical methods
that have been developed to predict FSI, and relate recent
contributions in the field, with primary emphasis on those
published from 1990 to 2000.

In this paper we present a mathematical model to examine
the FSI of the coupled system in the case of a single
horizontal flexible thin walled tubing. This is an other
example in which we show the importance of fluid-structure
interaction phenomena (see Karra & Ben Tahar [5]). A
finite element method based on Galerkin formulation is
developed (Dhatt & Touzot [3], Zienkiewicz & Taylor [10])
and a non-linear matrix system is obtained. To solve this
later, an iterative algorithm based on the Gaus substitution
method is used.

Assumptions

Consider the case of a single horizontal flexible thin walled
tubing. The wall is free to move in the radial and axial
directions. In addition to the habitual assumptions of one-
dimensional plane flow, the following assumptions
particularly to the pipe elastic properties should be stated.

1. The pipe wall material is homogeneous, isotropic,
linearly elastic and subjected to small deformations
provided by the Hook’s law.

2. Only small deformations of tube wall occur : 0.9 < r/r0
< 1.1, where r is the tube radius and r0  is the initial
tube radius.

3. Poisson  ratio v  is  nearly  to  0.5,  it  can  be  shown
that  the volume of the wall material by a unit of length
remains constant .
i.e.: e r =  e0 r0, where e0  is the initial wall thickness and
e is the instantaneous wall thickness.

4. The  radial  inertia  of  the  pipe  wall  is neglected so
that the hoop stress and fluid pressure are related by:

pr
eθσ =

5. The fluid is incompressible relative to the elastic
properties of the wall material.

6. The ratio of wall thickness to diameter is constant in
the initial static condition.

7. Convective terms are negligible: ( ) d
dt t

∂
∂

•

= =

Mathematical model

Structure Equations

A combination of fundamental equations relating stresses
and strains on the tube wall provides the following
relationships:

0x
Uv E
xθ

∂σ σ
∂

− − = (1)

( )1
xEθ θε σ ν σ= − (2)

where xσ  is the axial stress, θσ  is the hoop stress, xε  is

the axial strain, θε  is the hoop strain, E is the Young’s
modulus of elasticity, ν is the Poisson ratio, U is the pipe
axial velocity, t is the time and x the axial position.

The strain-displacement relations can be written as (under
the assumption 3).

  x
U rand
x rθ

∂ε ε τ
∂

= = (3)

where 
0

0

1 e
r

τ = −

Taking into account of the second equation of (3), the
integration of equation (2) yields

( ) ( ){ }0 0
0

1ln x x
r
r E θ θτ σ σ ν σ σ= − − − (4)

where 0

0 0

02x
p r

e
σ =  is the initial axial stress.

Under the assumptions 3 and 4 this equation becomes

( )0

2
0 0

0 0 0 0

1 ln x x
r Eep r

p r p r r E
ντ σ σ

    = + + −        
(5)

For minor changes in the radius (assumption 2) this
equation can be approximated by

( ) ( )0

0 0
0

0 00

21 x x
r r p rp p

Ee E Eer
ν σ σ τ

   
≈ + − − − −  

   
(6)

For flexible tubes, the change of diameter as a
consequence of fluid pressure change, may be significant.
Under the assumptions 3 and 4, an analysis of stress-
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strain relationships in the tube wall will give the following
expression

2p r
p rθ θσ σ  

= + 
 

, (7)

Taking into account of the equation (5), equation (7)
becomes

0

0

1 pr
F eθσ = (8)

where

( ) ( )0

2
20 0 0

0 0

1 2 1 ln x x
r p rrF
r r E Ee

νν σ σ
τ τ

    = − − + − +        
, (9)

By replacing the hoop stress in equation (1) by its
expression given in equation (8) we obtain

0

0

0x
r Up E

F e x
ν ∂σ

∂
− − =              (10)

The axial direction momentum equation is

0x
mU

x
∂σ ρ
∂

− =              (11)

where mρ  is pipe wall density.

Fluid Equations

For the fluid, the continuity and the momentum equations are
respectively (Streeter & Wylie [6])

2 0r V
r x

∂
∂

+ = ,              (12)

1 0
2
V Vp V

x t D
λ∂ ∂

ρ ∂ ∂
+ + = ,              (13)

where V is the fluid velocity, ρ is the fluid density, D is the
pipe diameter and λ is the fluid friction factor.

By using equations (2) and (3) and taking into account of
equation (8) the continuity equation (12) becomes

0
*

0

21 2 0r U Vp
F E e x x

∂ ∂ν τ
∂ ∂

− + =             (14)

where 
*

21
EE ν= −

The four equations system (10), (11), (13) and (14) where

the unknowns p, V, U and xσ  are function of the distance
x and the time t, take into account of the FSI. This
interaction is governed by the Poisson ratio in the
equations (10) and (14).

Finite element formulation

The system of equations (10), (11), (13) and (14) can be
written as:

0R( )
x

∂
∂

= + + =YY Α Y Β f ,  [0, ]x L∈ , 0t ≥     (15)

where the boundary conditions can be defined by a
function fs which depend  of the example to study:

( )ϕ = sY f  , { }0x , L∈ , 0t ≥              (16)

and the initial conditions
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To solve the system of equations (15), we use a Galerkine
variational formulation (Dhatt & Touzot [3]; Zienkiewicz

& Taylor [10]). Let , , ,xp V Uδ δ δσ δ< >=< >ψ a
vector of four sufficiently regular test functions. After
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multiplying equation (15) by < >ψ and integrating over
the domain [0, L], one obtains

{ }
0

( ) 0
L

R dx< > =∫ ψ Y     ∀ < >ψ                     (18)

For the discretization of variational formulation (18) we
use a linear isoparametric element with two nodes and

four degrees of freedom per node ( ), , ,xP v Uσ . Linear

shape functions are used to express fluid or structure
variables as a function of nodal variables. The
discretization permits to obtain a system of n+1 time partial
derivative equations where n is the number of finite
elements.

Semi implicit Euler method (Dhatt & Touzot [3]) is used to
approximate the time derivative of fluid and structure

variables i.e. 1( ) (  )j
i i ip p p tθ δ−= − , where ip  is

the pressure at the time ( )1j tθ δ− + , (θ  is a parameter
which affect the numerical stability of solution,

0 1θ< ≤ , j = 1, 2,...) and 1j
ip −  is the pressure at the

node i and the time ( )1j tδ− . Finally we obtain after
assembly the non-linear matrix system :
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  (19)

where

- Aik is (4x4) matrix which is null if k < i-1 or k > i+1 else it
depends of the unknowns of the problem Yi-1, Yi and Yi+1 at

the times ( )1j tθ δ− +  and ( )1J tδ− .

- fi is a second member vector which depends of the

velocity in the nodes i-1, i and i+1 at the time ( )1j tδ− .

- A11, A12, An+1 n and An+1 n+1 are (4x4) matrices which depend
of the boundary conditions in the nodes 1 and n+1.

The non-linear matrix system (19) can be written as a
compact form:

( ) { } { }A Y Y f  =  ,              (20)

where { }Y  is the solution at the time ( )1j tθ δ− + .

The solution of the system (20) is obtained using iterative
algorithm based on the Gaus substitution method (Dhatt
& Touzot [3]). In this method a succession of solutions

{ } { } { }0 1
, ,...

k
Y Y Y  are constructed, { }k

Y is calculated

from { } 1k
Y

−
 by solving the following linear system:

( ) { } { }k-1 k
  = Α Y Y f  , k=1, 2,… with { } { } 10 j−

=Y Y

is the solution at the time ( )1 )j tδ− . The process is
repeated until the convergence of solution. This is

obtained when { } { } { }k k-1 k-1
ε− ≤Y Y Y ,

( )1ε << .

The stability and the speed of convergence depend of
three parameters which are the time increment tδ , the

number of finite element n and the value of θ . When the

solution is obtained at the time ( )1j tθ δ− +  , a linear
interpolation permit us to obtain the solution at the time   j

tδ .

Numerical results

In this section we present an example for validating
numerical developments. It concerns an elastic rubber
tube analysed by Stuckenbruck & Wiggert [7], where the
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characteristics are: r0 = 9 mm, e0 = 1 mm, L = 1 m, E = 2.22

MPa (106 Pa), ν = 0.5, mρ   = 1185 Kg/m3, ρ = 1000 Kg/m3,
λ = 0.02, p0 = 10.7 KPa (103 Pa), V0 = 0 m/s . The tube is
tethered at the end points (U = 0), and the wall is free to
move axially throughout the interior region. The fluid
boundary conditions are the following:

At the upstream end (x = 0) the input excitation is given
by:

( ) 0.5 sin( * ),   
    

        =  0             
s s

s p

V t t T t* T
T t* T

π= ≤
 ≤ ≤
where

int int

 is the excitation period ( 0.6s), 0.2s
* [ ( )] ,  : integer part

p p s

p p

T T T
t t E t T T E

= =
 = −
At the downstream end (x = L) an impedance condition is

imposed 0 0 0 0( ) 2 p p V V E e rρ− = −

Figure 1 shows predicted parameters at the mid point of
the tube. The dashed lines correspond to the results
obtained by the finite element method (The time step is
equal to 0.001s) and the solid lines are obtained by
Stuckenbruck & Wiggert [7] using characteristics method.
The results prove the validity of the finite element
numerical implementation and illustrate the hard coupling
between the fluid wave propagation and the pipe wave
propagation.

To follow these two waves (over the first time period) we
have plotted in Figures 2 and 3 the fluid velocity and the
axial pipe velocity as a function of the axial position. Such
as the input  excitation is periodic of a period equal to Tp =
0.6s, one sees clearly that the curves obtained at  0.61s
time are identical to that obtained at 0.01s time. The results
illustrate also that the wave speed of the pipe ( s/m50≈ )

is about five times that of the fluid wave ( s/m10≈ ).
Indeed, the speeds of the fluid wave and the pipe wave
are given respectively by Stuckenbruck & Wiggert [7]:

0

02f
F e Ec

r
τ

ρ
=  and 

*

s
m

Ec
ρ

=

The same example is also studied with other fluid
boundary conditions. At the upstream end (x = 0) the
pressure is constant and equal to 30 KPa and at the
downstream end (x = L) a sinusoid input excitation is given

by: ( ) 0.5 sin(2 )pV t t Tπ= , (Tp= 0.6s: the period).
Figure 4 shows the fluid and structure variables at the mid
point of the tube as a function of time (until five periods).

An other time the results illustrate the coupling effect
between the fluid wave and the pipe wave which is
governed by the Poisson ratio ν.

Figure 1: Predicted parameters at the mid point of the
tube:  solution of  Stuckenbruck, [7];   present

solution based on finite elements formulation
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Figure 3: Axial pipe velocity versus to the axial position
at different times
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Figure 4: Predicted parameters at the mid point of the
tube (sinusoid input excitation)

CONCLUSION

To expect from the calculations, the FSI between transient
flow and a flexible pipe line, a finite element method based
on Galerkin formulation was investigated. The computer
program of this formulation takes account of some fluid
boundary conditions such as an imposed pressure, an
imposed velocity or an imposed impedance condition. The
numerical results predicted by this formulation show a
good similarity with those obtained by the characteristics
method. The numerical results illustrate also the
importance of interaction between the fluid wave and the
pipe wave.

It is to note that the finite element analysis program
developed has the advantages to predict the overcharges
of pressure and can be used as a tool of help of decisions
at the level of manoeuvres often experienced in the
industry like the oil pipeline industry in northern Africa.
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