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ABSTRACT: Many situations ranging from industrial to social via economic and environmental
problems may be cast into a Semi-infinite mathematical program. In this paper, the cutting-plane
approach which lends itself better for standard non-linear programs is exploited with good reasons
for grappling with linear, convex and geometric Semi-infinite programs. For each   case, computational
aspects are discussed  and convergence statements established. Simple numerical examples are also
provided for the sake of illustration. The paper ends by briefly comparing the cutting-plane approach
discussed here with other existing approaches and by stressing the necessity of pushing forward  a
Decision Support System effectively capable  for helping someone faced with a problem that can be
formulated as a Semi-infinite mathematical program.
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INTRODUCTION

Optimisation theory is one of the most important field of
Applied Mathematics. First works on Optimisation theory
traced back to 1696.

Since then works on this field include results of foremost
mathematicians of the 300 last years: Bliss, Bernoulli, Bolza,
Caratheodory, Euler, Fermat, Hamilton, Hilbert, Jacobi,
Lagrange, Newton, Weierstrass to mention but a few.

At the moment, the subject has come to maturity and it
constitutes the stumbling block for what is done in
Operational Research, Decision Theory and Management
Science.
The basic Optimisation model consists of minimising or
maximising a given functional under some restrictions in
the form of mathematical (in)equalities

Extensions that have been made to this basic model include:
Incorporation of several stages in an optimisation
framework: (Dynamic programming / 1 /). Simultaneous
consideration of several conflictual objective functions
(Multiobjective programming / 2 /, / 3 /). Integration of
imprecision in an optimisation framework:

( Mathematical programming under uncertainty / 4 /, / 5 /,
/18/, /19/, /20/).

Consideration of infinitely many constraints (Semi-infinite
programming /13/, /14/, /16/, /17/, the subject matter of this
paper).

Problems of finding an optimal solution of a mathematical
program with infinitely many constraints arise when
handling many concrete problems. Let us mention, without
any claim for exhaustivity, industrial engineering problems
which many be put into a mathematical programming
framework while depending on a parameter ranging over a
continuum / 8 /, Tchebycheff approximation problems
/ 7 /, max-min problems arising in Game theory.

The « primum movens » of this paper is to add to the
spectrum of existing techniques for solving Semi-infinite
mathematical programs [7], [8], [9], an approach based on
the cutting-plane philosophy [12].

Apart from methodological aspects, convergence results
are also established. Simple numerical examples are included
for the sake of illustration. The paper is organized as
follows: the following section is devoted to the linear case.
Section 3 deals with convex semi-infinite programming while
in section 4 we give some hints for dealing with the
geometric case. The paper ends with concluding remarks
along with a comparison of the cutting-plane philosophy
with other existing approaches and a claim for implementing
Decision Support System for this problem.
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2. A CUTTING PLANE METHOD FOR SOLVING A
LINEAR SEMI-INFINITE PROGRAM

2.1. Problem formulation

The problem under scrutiny in this section is the linear
program:
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Where cÎ IR n ; S is a compact of IRk ;  and  b
i
 ( i = 1,…, p )

are elements of C2(S) and çS ê stands for the cardinal of  S.
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and
H = {x Î IRn  êA x ³ b; x ³ 0 }

Where A and b are respectively m x n and m x 1 matrices
chosen so that the condition:

G Ì H is fulfilled

2.2.  Algorithm for finding a solution of (P
L
).

 
The procedure describes by the following flowchart yields
an optimal solution of (P

L
).

The following result gives a justification of the stopping

Let now:

Fig. 1 : Flowchart for solving (P
L
)
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rule used in the above procedure.

Theorem 2.1.

Let x k be an optimal solution of (Pk ) and assume that:
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  - Optimality.

Let V ( P
L 

) and V (Pk ) denotes the optimal values of
objective functions

 ( P
L
 ) and (Pk)  respectively.

We have that:

V (P
L
) £ Cx k = V (P k)          ( 2 )

because x k is a feasible solution for (P
L
)

Furthermore, we have that the feasible set of (P
L
) is a proper

subset of the feasible set of  P k  ;   so:

V(P k) = C x k  £ V(P
L
)       ( 3 )

Putting together (1), (2) and (3) we may conclude that x k is
an optimal solution for  (P

L
).

The question that comes now to mind is what if Lk fails to
become positive or null after a finitely large number of
steps . The following result which gives an asymptotic
behaviour of the above described procedure, address this
question.

Theorem 2.2.
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k 
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above described procedure is an optimal solution of (P
L
).
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We have from (6) that
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This contradicts the fact that (xkj )
j  
is a Cauchy sequence

and x* should be a feasible solution for (P
L
). To show that

x* is also optimal we may proceed as in the proof of Theorem
2-1.

2.4. Numerical example

Consider the following simple Semi-infinite program for

the sake of illustration.
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We have that x1 = 1; and:

L 1 = min   (1+ s- 1) = 0
     sÎ [0,1]

The optimality criterion is met and then the optimal solution
of (P

E
) is x* = 1.

3. A CUTTING-PLANE METHOD FOR SOLVING A
CONVEX SEMI-INFINITE PROGRAM.

3.1. Problem formulation.

In this section we’ll ponder the mathematical program:
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Where f is a convex function and g
i
 (x,s)  i = 1,...,p are

concave functions with respect to the first argument.

Under these assumptions (P
c
) is a convex program. It is
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i
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,  ( i = 1,..., p) are twice continuously

differentiable.
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Fig. 2: flowchart of a procedure for solving ( )′′Pc
 .

3.2. Algorithm for finding a solution of ( )′′PC

The following procedure (fig.2) provides a solution for

( )′′PC

A justification of the stopping rule for the above procedure
is given by the following:
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The proof of this result is similar to that of Theorem 2.1
and is therefore omitted.

3.3. Convergence statement.

In what follows, we assume that the sequence ( yk)
k

generated by the procedure described in section 3.2 is an
infinite one.

Theorem 3.2
Any cluster point y* of the sequence (yk)

k
 is an optimal

solution of ( )Pc
″ .

Proof:

The existence of a cluster point of  ( yk)
k
 is well guaranteed

by the Bolzano-Weierstrass       Theorem.
Now let y* be a cluster point of (yk)

k
. Let us show first that

y* is a feasible solution of ( )Pc
″ .

Let ( )y kj
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Putting (8) and (9) together, we have:
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.

3.4. Numerical example
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x* = 1.

4. The Geometric case.

Consider the mathematical program:
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Using the transformation:
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 = eyj
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) may be put in the form:
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Let being a continuous one-to-one and monotonic function
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Proposition 4.1.

(P’’
G
) is a convex program

Proof: We have just to show that functions involving in
(P’’

G
) are convex.

In other terms, we have to establish the convexity of:
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and we have established (10). To show that f
2 
(y) is convex,

we can proceed in a similar way putting: c
i
sbi  = ~ci .

As ( )PG
″  is a convex program, the method developed in

section 3 applies.

From this discussion we can draw the following procedure
for solving a geometric Semi-infinite program.

4. CONCLUDING REMARKS

Since accurate representations of real-world situation may
result in mathematical  models involving infinitely many
constraints Semi-infinite optimization is an important issue.
In this paper we have discussed application of the cutting-
plane philosophy to Semi-infinite mathematical
programming.

The underlying principle of cutting plane methods is to
approximate the feasible set of the semi-infinite program
by finite set closed-half spaces and to solve a sequence of
approximating linear programs[1], [6].
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Construction of cutting-planes for the linear, the convex
and the geometric cases is carried out by finding
appropriate supporting hyperplanes to the feasible set.

Under not too restrictive assumptions, it has been shown
that either proposed computational schemes generate a
solution in a finite number of steps, or it generate an infinite
sequence accumulation points of which are optimal
solutions of the original Semi-infinite program.

The cutting-plane approach discussed in this paper deliver
an exact solution in two ways. Either the termination criterion
is met after a finite number of iterations, or if  this is not the
case, one may find a solution by finding the limit of a

convergent subsequence extracted from the sequence
generated by the procedure.

This is an advantage over existing discretization
approaches /4/, /7/, where only an approximate solution is
guaranteed.

Furthermore, the above-mentioned cutting-plane approach
allows tackling problems having some non-linearity. This
is not possible for the three-phases approach /2/ for
instance.

An interesting line for further investigation is to push
forward a user-friendly Decision Support System
encapsulating discretization   methods, three phrases
approaches and the cutting-plane scheme discussed here.

Such a Decision Support System may help in effectively
helping a Decider faced with problem that may be cast into
a Semi-infinite program.

 Other lines for further inquiries include taking into account
conflicting objective functions into a semi-infinite program
and incorporating imprecise data into a Semi-infinite
program.
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