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In the past, it has been difficult to accurately determine the location of many types of barley molecular 
markers due to the lack of commonality between international barley linkage maps. In this study, a 
consensus map of barley was constructed from five different maps (OWB, VxHs, KxM, barley 
consensus 2 and barley consensus 2003) to produce the consensus AD-2005 map with 1536 markers. 
The QTL that have been identified in previous barley studies were then incorporated into the integrated 
consensus map to provide a quick method of aligning and comparing barley linkage maps and to 
identify markers closely linked to barley traits. The markers placed on this map are consistent with 
respect to order on the chromosomes with the individual maps and other barley maps with a few minor 
differences. The consensus AD-2005 was compared with rice Cornell RFLP map to examine the 
reliability of the constructed map in comparative genomic studies. Unlike previous consensus maps, 
the purpose of this consensus map (containing QTL) is to provide a tool for scientists to accurately 
locate molecular markers to chromosome regions responsible for economically important traits. It is 
estimated that markers placed on the consensus map are located very close to their true positions as 
determined by the five maps used in this study. It is envisaged that the consensus map will benefit 
small-grain researchers by providing an efficient means of choosing markers of interest and identifying 
QTL regions for future genetic or plant breeding studies on a worldwide basis. 
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INTRODUCTION 
 
Several different types of DNA markers are currently 
available for genetic analysis and new marker types are 
being developed continuously. Markers differ from each 
other in many respects such as the initial workload and 
costs for building up the marker system, running costs 
and ease of use, level of polymorphism, dominance, 
number of loci analyzed per assay, reproducibility and 
distribution on the linkage groups of the genetic linkage 
maps. A genetic linkage map is a fundamental 
organizational tool for genomic research. The most 
important applications of genetic maps are towards: 
 
(1) A basic knowledge of genome organization and 

evolution;  

(2) The localization of monogenic and oligogenic traits; 
and  

(3) Studies of genetic diversity.  
Therefore, for any given species, individual genetic maps 
are often constructed with a specific goal in mind, thereby 
generating multiple maps for a single species that feature 
novel markers and genetic information. The information 
contained within these individual maps can be further 
enhanced when these maps are incorporated into a 
single consensus map to represent a given species.  
Consensus maps have been constructed for a number 

of plant species such as Arabidopsis thaliana (Hauge et 
al., 1993), Brassica oleracea (Kianian and Quiros, 1992), 
Helianthus  annus   (Gentzbittel  et  al.,  1995),  Hordeum  



  

236         Afr. J. Biotechnol. 
 
 
 
vulgare (Qi et al., 1996) and Zea mays (Beavis and 
Grant, 1991). Mapping with multiple populations provides 
several   advantages  over  mapping  based  on a   single 
population. In particular, a larger number of loci can be 
placed onto a single map. This is especially important 
when attempting to map specific genes of interest (e.g., 
morphological markers or candidate genes for 
economically important traits) that are unlikely to 
segregate within a single mapping population. These 
multi population mapping studies provided evidence for 
chromosomal rearrangements and gene duplication and 
have assisted in the assignment of linkage groups to 
chromosomes. The consensus maps provide the basis 
for comparative genomic studies among related species 
and sub species. 
Barley (Hordeum vulgare L.) is a model species for 

genetic and physiological studies and shows a wide 
range of adaptations to various habitats. It is an annual, 
diploid self-pollinating species with a relatively short life 
cycle. Primitive landraces and the wild progenitor of 
barley (H. spontaneum) exhibit large variations in 
physiology, morphology and genetics, which might be 
used to improve cultivated barley (Nevo, 1992; Forster et 
al., 2000).  
QTL mapping has been employed in several areas of 

biological sciences. In plant breeding; one of the major 
lines of research is the detection of useful traits in 
relatives of cultivated species (Fulton et al., 1997; Xiao et 
al., 1998; Bernacchi et al., 1998). There has been much 
interest in studying quantitative traits of agronomic 
importance, disease resistance (Young, 1996), drought 
tolerance (Teutat et al., 2001; Diab et al., 2004), and 
many other traits for biotic and abiotic stress tolerance in 
barley. QTL mapping has led to a vast body of genetic 
information in public database and provided the scientific 
community with powerful tools for comparative genomics 
(Gai et al., 2000; Mekhdov et al., 2000).  
In the present study, an integrated consensus map of 

barley was constructed based on a common set of 
markers mapped onto the respective linkage groups and 
the QTL, identified in previous barley studies, were 
transferred to the integrated consensus map. The main 
objective of this work is to facilitate comparative mapping 
studies of cereals and gathering many mapping 
information to allow scientist to compare genetic 
information from diploid species such as barley to 
species with more complex genomic structure that could 
lead to the identification of highly conserved sequences 
and regulatory mechanisms by which it is possible to 
predict function and location of genes in different maps 
that have been traditionally studied separately.  
 
 

MATERIALS AND METHODS 
 
Genetic maps  
 
Three Linkage maps and two consensus maps of barley were used 
in this study to construct the consensus AD-2005 barley map. Rice  

 
 
 
 
Cornell RFLP map was used as a test drive comparative model. 
The major feature of the five barley maps and the rice map are 
described below. 
 
 
Hordeum-OWB linkage map  
 
This map was built with a range of markers. These include 11 
morphological markers (NEPs), 79 restriction fragment length 
polymorphisms (RFLPs), 19 intron fragment length polymorphisms 
(IFLPs) and 50 simple sequence repeats (SSRs). Additional 
information on the markers in the linkage map is available at 
http://barleyworld.org.   
 
 
Hordeum-Graner1VxHs  
 
This map was constructed using 135 individuals of an interspecific 
F2/F3 progeny (VADA x H. spontaneum). The map consisted of 160 
markers with colinear arrangement covers a distance of 1,453 cM 
and identifies regions of varying map distances.                 
 
 
Hordeum KxM  
 
This map is an RFLP linkage map that was constructed using 120 
F2 plants from a cross between Ko A (a Japanese two-rowed 
malting barley) and Mokusekko 3 (a Chinese six-rowed barley 
landrace). 188 loci were mapped with an average distance of 6.5 
cm between markers for a total of 1389 cM, and included 117 
genomic DNA RFLPs, 69 cDNA RFLPs, one isozyme (Est1) and 
one morphological (vrs1) marker. This map showed three gap 
regions exceeding 25 cM.  

 
 

Barley Consensus 2  
 
This consensus map was constructed using four segregation data 
sets, Proctor x Nudinka, Igri x Franka, Steptoe x Morex, and 
Harrington x TR306. 22% of the markers were common to at least 
two of the independent data sets. The integrated map contains 882 
markers.   
 
 
Barley Consensus 2003  
 
This consensus map, combining SSR, RFLP, and AFLP markers 
has been developed by combining five Australian barley linkage 
maps, Galleon x Haruna Nijo, Chebec x Harrington, Clipper x 
Sahara, Alexis x Sloop and Amaji Nijo x W12585. This consensus 
map consists of 705 markers, with 138 being SSRs. 
 
 
Rice map  
 
This map is an updated version of the Cornell RFLP 1994 map 
reported by Causse et al. (1994) and revised by Wilson et al. 
(1999). The mapping population was derived from a backcross 
between cultivated rice (Oryza sativa) and its wild African relative 
(Oryza longistaminata). 
 
 
Construction of the consensus AD-2005 map 
 
Five mapping data sets were downloaded from the publicly 
available Grain Genes database (http://www.graingenes.org). The 
consensus map was constructed in three stages with each stage 
adding a new layer of information. In the first stage,  the  initial  map  
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Table 1. Quantitative trait loci for traits gathered from different barley studies and placed on barley consensus-
AD 2005 map.   

 

Trait Map Reference 

Relative water content under stress treatment Tad X ER Diab et al., 2003 

Relative water content under irrigated condition Tad X ER Diab et al., 2003 

Osmotic potential under irrigated condition Tad X ER Diab et al., 2003 

Osmotic potential at  full turgor  Tad X ER Diab et al., 2003 

Water soluble carbohydrates Tad X ER Diab et al., 2003 

Fusarium head blight resistance  F x S Mesfin et al., 2003 

Ma et al., 2000 

Zhu et al., 1999 

Flowering time I x T Jeremy et al., 1996 

Malting quality H x M Marquez et al., 2000 

 
 
 
was constructed based on common markers (anchor loci) present in 
the five barley maps. In the second stage, the markers on the five 
maps were matched according to sequence similarity using the 
sequence similarity program (http://www.ncbi.nlm.nih.gov/blast/bl2 
seq/bl2.html) and this  information  was  used  to  identify  additional 
links between the maps. Finally, the consensus AD-2005 map was 
constructed as described by Diab (2003).  
To construct the consensus AD-2005 map, the consensus map 2 

(Qi X et al., 1996) and consensus 2003 (Karakousis et al., 2003) 
were first integrated to produce the first framework map (AD1). The 
AD1 framework was then merged with OWB map (Wolfe et al., 
1996) to produce a second framework map (AD2), then KXM map 
(Miyazaki et al., 2000) was incorporated into the AD2 map to 
produce a third framework map (AD3). Finally, the AD3 framework 
map was integrated with the VxHs map (Graner et al., 1991) to 
produce the consensus AD-2005 map with 1536 markers 
distributed on the seven chromosomes.   
 
 
Comparative study for rice and barley maps  
 
To examine the reliability of the consensus AD-2005 in comparative 
studies, the Cornell rice RFLP 2001 map (http://www.gramene.org) 
was downloaded and compared with the constructed barley 
consensus AD-2005 map, OWB, KXM and VXHs maps based on 
common markers (anchor loci).  
 
 
Incorporation of QTL 
 
The QTL that were previously identified in different barley studies 
were incorporated into the integrated barley consensus AD-2005 
map for QTL comparison purpose. Quantitative trait loci for relative 
water content under stress condition (RWCs), relative water content 
under irrigated condition (RWCi), osmotic potential under irrigated 
condition (OPi), osmotic potential at full turgor (OP100), water 
soluble carbohydrates (WSC), Fusarium head blight resistance 
(FHB), flowering time (FT) and malting quality (MQ) were gathered 
from previous studies and placed on the constructed consensus 
AD-2005 (Table 1, Figure 1). 

 
 
RESULTS AND DISCUSSION 
 
Well developed barley genetic maps exist as a result of

 

the efforts of numerous groups worldwide. These maps 

include
 
RFLPs, amplified fragment length polymorphisms

 
 

(AFLPs), single sequence repeat or microsatellites
 

(SSRs), isozyme protein markers; and
 
morphological 

markers (Becker
 
and Heun, 1995; Graner et al., 1991; 

Heun
 
et al., 1991; Kleinhofs and Graner, 2001). These 

genetics maps were based on various markers, the most 
useful being those that are transferable from one 
mapping population to another. These markers have 
been incorporated

 
into bin maps (Karakousis et al., 2003; 

Qi et al., 1996). In the present study, five different barley 
maps were integrated to produce a consensus map with 
1536 markers distributed on the seven linkage groups 
with 240 common markers between the five maps. The 
882 markers of the consensus 2 map were merged with 
the 705 markers of the consensus 2003 to produce the 
first framework integrated barley consensus map (AD1) 
with 1255 markers. The 1255 marker of the AD1 map 
were then merged with OWB map to produce the second 
framework integrated barley consensus map (AD2) with 
1371 markers. Then the AD2 was incorporated with KxM 
map to produce the third framework map integrated 
barley consensus map (AD3) with 1461 marker. Finally, 
the AD3 map was merged with VXHs map to generate 
the barley AD-2005 consensus map with 1536 markers.  

 
 
Description of the barley consensus AD-2005 map 

 
The primary goal for the construction of this consensus 
map was to place, relative to one another, as many 
genetic markers as possible onto a single map. 
Therefore, the concern is raised more towards obtaining 
a general order and distance among these markers 
rather than the fine resolution of order and distance. The 
markers placed on this map are consistent with respect to 
order on the chromosomes with the barley consensus 2 
(Qi et al., 1996), barley consensus 2003 (Karakousis et 
al., 2003) and with other published or consensus barley 
maps (Kleinhofs and Graner, 2001; Qi et al., 1996;  
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Table 2. Comparison between the five individual maps and barley consensus AD-2005 map in respect of number of markers 
on each chromosome.   

 

 
 
 
Miyazaki et al., 2000; Graner et al., 1991; Wolfe et al., 
1996; Ramsay et al., 2000) with a few minor differences. 
This conservative property of the barley genome makes 
the integrated maps reliable and successful. Based on 
this integrated map, geneticists and breeders can choose 
their favorite markers in any region of interest of the 
barley genome. 
For comparable areas, the size of the consensus map 

constructed in this study (consensus AD-2005) is 
consistently larger than the consensus map constructed 
by Qi  et al. (1996) and the consensus map constructed 
by Karakousis et al. (2003) despite the fact that each of 
those two maps has been constructed using five different 
maps (Table 2).  Obvious explanation is that those two 
maps were integrated together with another three maps 
(OWB, VXHs and KXM) beside the step-wise procedure 
used to integrate the individual maps.  
The utility of the constructed consensus map is 

enhanced with the availability of the SSR, RFLP, and 
AFLP markers integrated from the barley consensus map 
2003 (Karakousis et al. 2003). The integrated map 
removes many large gaps present in the individual maps 
and in other consensus maps except a gap on 
chromosome 4H. The poor coverage in this region might 
be due to a lack of polymorphism for the markers 
screened in this region. 
 
 
Incorporation of QTL 
 
QTL analysis can be done in relation to mapped genetic 
markers and provide data on genome location and the 
relative effects both positive and negative of loci and 
alleles. The next step is the identification of the genes, 
alleles and physiological processes that are biologically 
important. Numerous studies identifying QTL

 
for relative 

water content (RWC), osmotic potential (OP), water 
soluble carbohydrates (WSC), Fusarium head blight 
resistance (FHB), flowering time (FT) and malting quality  

 
(MQ) have been conducted in barley (Teulat et al., 2001; 
Diab et al., 2004; Mesfin et al., 2003; Ma et al., 2000; Zhu 
et al., 1999; Jeremy et al., 1996; Marquez et al., 2000; 
Hayes et al., 1993; Tinker et al., 1996). Presently, 143 
QTL were gathered from previous barley studies and 
placed on the consensus AD-2005 map. Seventy seven 
QTL for Fusarium head blight resistance, 32 for malting 
quality, 24 for flowering time, 1 for relative water content 
under stress condition, 1 for relative water content under 
irrigated condition, 2 for osmotic potential at full turgor, 1 
for osmotic potential under irrigated condition and 5 for 
water soluble carbohydrates (Figure 1).  
For Fusarium head blight resistance trait, 7 QTL were 

located on chromosome 1H, 12 on chromosome 2H, 9 on 
3H, 8 on 4H, 13 on 5H, 12 on 6H and 16 on chromosome 
7H (Figure 1). Mesfin et al. (2003) reported the presence 
of QTL for FHB on all chromosomes except chromosome 
6H, and Zhu et al. (1999) found QTL for FHB resistance 
on all barley chromosomes except chromosome 5H, 
while Ma et al. (2000) reported QTL for FHB resistance 
located on chromosomes 2H, 3H, 5H, 6H and 7H. Taken 
together, these studies indicate that resistance is 
conditioned by many loci and that the low resolution of 
the mapping populations has resulted in a limited 
assessment of the FHB. Integrating these QTL from 
different studies on a single consensus map gives the 
opportunity for scientist to compare between QTL and 
might solve the problem of low resolution maps hence 
detecting false negative QTL during trait analysis. Two 
markers (ABG317 and ABC153) on chromosome 2H 
were found to be associated with QTL for Fusarium head 
blight resistance. Those two markers were located on the 
same chromosomal region on the consensus barley AD-
2005 (Figure 1). This indicates the reliability of placing 
QTL on consensus maps.  
For flowering time trait, 6 QTL were placed on 

chromosome 1H, 4 on 2H, 1 on 4H, 7 on 5H, 3 on 6H and 
7H each, while no QTL were found on chromosome 3H 
(Figure 1). This result agrees with the  finding  of  Jeremy  

Chromosome 

Barley 
consensus 

2 

Barley 
consensus 
2003 

Hordeum-
OWB 

Hordeum-
KxM 

Hordeum-
Graner VxHs 

Barley 
Consensus - 
AD  2005 

1H 92 87 24 27 19 189 

2H 163 160 30 28 28 306 

3H 133 54 20 28 28 150 

4H 81 59 24 24 18 136 

5H 139 137 19 28 28 270 

6H 98 81 22 25 20 175 

7H 176 127 20 28 19 310 

Total 882 705 159 188 160 1536 



  

Diab.        239 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure (1). Integrated barley Consensus AD-2005 map with QTL for some biotic and abiotic traits. 
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ABG452 MWG789B 
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MWG506 Pcr2 0.468 
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MWG837 ZenG11b 0.000 
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1H(a) 

  

 

 

ksuA1A 0.977 
P13/M47-163 P14/M61-94 
ABG373 BCD351A 
Bmac31a 

0.983 
Pgd2 BCD508a 0.984 
ABG702a 0.985 
XBA1 0.990 
PSR305 bcd808a 
ABC322B 0.991 
JBG159 0.992 
ABC257 MWG706A 
ABC261 AWBMA24 
BCD340 

1.000 

Bmac213 0.475 
MWG55 0.478 
AWBMA27a 0.482 
MWG45 0.494 
MWG12 0.529 
MWG800 CDO105B 0.534 
CDO1396 0.535 
MWG56 0.545 
JBC773D 0.591 
X5.3 0.598 
ABC151E 0.604 
MWG943 P12/M50-94b 0.623 
ABC151D 0.640 
MWG78 0.642 
PSR162a CDO419A 0.643 
ABC160 0.655 
MWG2077 0.663 
EI 0.700 
ABC706B 0.717 
HVM2 0.721 
JBG77C 0.732 
JBG77A 0.748 
P14/M49-139a AWBMA35 0.759 
JBG61 0.778 
His4A 0.818 
Bmac0144a 0.820 
ABG464 0.835 
JBG231 0.861 
Bmag0113a 0.866 
MWG649b 0.882 
MWG518 0.887 
MWG947 His3B 0.895 
Bmac154 0.904 
P13/M47-305 0.905 
Atpb 0.911 
ABC307A 0.912 
JBG132 0.914 
MWG504 0.921 
AtpbA 0.932 
ABA2 MWG635C 0.936 
MWG733 0.938 
MWG984b 0.942 
MWG632b 0.944 
Dor3 Kas1.2(0.3) 0.945 
TubA2 0.950 
ABG702 0.953 
Cab2 0.954 
MWG954 Blp 0.955 
Aga7 pTAG558 0.956 
BCD304 MWG92 0.959 
BCD310 X7GLOB 0.963 
MWG733A 0.964 
dTls 0.965 
CDO400a MWG676 0.966 
P13/M49-161 AWBMA4 0.969 
P12/M50-82 P14/M61-148 
ABG55 MWG701b 
MWG2028 

0.975 

1H(b) 

 
Osmotic potential under irrigated condition 

 
 
Fusarium head blight resistance 

 
Malting quality 

 
 
Flowering t ime 

 
 
Relative water content under stress treatment 

 
 
Osmotic potential at  fu ll turgor  

 
 
Relative water content under irrigated condition 

 
 
Water soluble carbohydrates 
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ABR338 ABG356 0.129 

Centromere-2H 0.115 
ksuD22 Bmac93 
Bmag518 EBmac684 0.116 
PSR126 0.118 
CDO675A ABC306
ABG316C ABC4680.119 
BCD221B 0.121 
JBG299 0.123 
ABG459 0.128 
DGE12 MWG658 

MWG64 ABG358 
MWG516 Pox 0.000 
P13/M47-275 0.006 
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CDO370 0.035 
ABC167B 0.040 
Hot1 MWG763 0.041 
P14/M48-94 BCD355 
MWG223 bBE54D 0.045 
ABG453 PSR131a 0.054 
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MWG65 0.084 
BCD351F 0.088 
CDO667 0.089 
AWBMA27b EBmac607 0.091 
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MBmag341a 0.094 
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CDO537 MWG557 
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0.100 
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MWG553b BCD339B 0.105 
BCD334 MWG2058 
Bmy2 CDO770 0.107 
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ABC156A 0.108 
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2H(a)
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MWG702 0.535 
ABG72 0.543 
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MWG882A 0.554 
DGF15 BCD266 0.555 
ABC152D MWG865 0.557 
AAW605 EBmac571a0.558 
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JBC253B 0.576 
P13/M59-275 CDO665B 
CDO1335a 0.578 
EXO2F PSR117a 0.607 
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MWG726 0.619 
Bmag140 0.629 
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MWG50.648 
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JBG63B MWG2081 
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0.656 
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2H(b)  
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ABG72 0.826 
P13/M50-127 HvCSG 0.837 
P14/M60-299 CDO474B 0.844 
ksuF41 0.845 
Bmag114 Bmag125 0.846 
Rrn5S1 0.850 
ABC165 ABG3170.853 
P12/M54-94 P14/M47-378 0.855 
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Water soluble carbohydrates 

 
 

 
P11/M48-317 BCD263 
Bmag341b 0.906 
MWG571D 0.910 
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MWG789c 0.913 
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MWG889(HT) 0.923 
MWG539 BCD147b0.925 
MWG2046 CDO687 
MWG669 BCD421 
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0.926 

Bmag321 0.927 
Centromere-7H 0.929 
JBG13 0.930 
P13/M59-277 P13/M59-309 0.931 
Ubi1 0.934 
MWG2041 ABC308 
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BCD340D MWG511 
MWG741 MWG10B 
MWG977 BCD205 

0.936 

AaWBI Bmac156 0.940 
CDO676 MWG878B 
MWG635b 0.942 
P14/M51-228 0.947 
Adh7 0.948 
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Cat3 BCD298B 
Tha Chi1 
MWG2062 

0.950 
P11/M48-292 0.954 
ABC321 P14/M61-275 0.956 
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JBG256 0.970 
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PSR680 0.980 
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ABG497b 0.998 
MWG380A MWG528 
ABC154B MWG633 
CDO347b 

1.000 

7H(c) 
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et al. (1996) as they identified QTL for flowering time on 
all chromosomes except the chromosome 3H. This 
indicates that the constructed consensus map is 
consistent with other barley maps used in QTL studies. In 
some genomic regions of the consensus map, markers 
associated with flowering time and Fusarium head blight 
resistance were co-located on the same place. Jeremy et 
al. (1996) reported a correlation between heading date 
and plant height but there is no reports for a correlation 
between heading date and Fusarium head blight 
resistance. This might reflect a possible correlation 
between the two traits. However, more studies and 
investigations are needed to be done in this area to verify 
this possibility. 
Malting quality traits such as percentage of plump 

kernels, test weight, grain protein percentage, 
soluble/total protein ratio, L-amylase activity, diastatic 
power and malt-extract percentage are highly correlated 
and controlled by almost the same loci (Marquez et al., 
2000). In the present study 32 QTL for malting quality 
were placed on the integrated map. Six of them were on 
chromosome 1H, 8 on 2H, 2 on 4H, 5 on 5H, 4 on 6H and 
7 on 7H (Figure 1). In the progeny of Steptoe (feed) x 
More (malt), malting quality QTL were mapped to all 
seven chromosomes (Hayes et al., 1993). In the progeny 
of Harrington (malt) x TR306 (feed), malting quality QTL 
mapped to all chromosomes except 2H (Mather et al., 
1997).  
Ten QTL related to drought tolerance were 

incorporated into the consensus AD-2005 map. One for 
osmotic potential under irrigated condition on 
chromosome 2H, 1 for relative water content under stress 
condition on chromosome 7H, and one QTL for relative 
water content  under irrigated  condition on  chromosome 
5H. Two QTL for osmotic potential at full turgor were 
placed, one on chromosome 4H and one on 3H. While 5 
QTL for water soluble carbohydrates were placed, two of 
them on chromo-some 7H and 5H each and one on 
chromosome 2H. This result agrees with Diab et al. 
(2004) and Teulat et al. (2001). QTL for water soluble 
carbohydrates and relative water content were found to 
be associated with the marker MWG626 and the marker 
Acl3 respectively on chromosome 7H. These traits are 
components of drought tolerance; therefore, the co-
localization of these QTL is most likely due to pleiotropic 
effects of the same gene(s). The correlation between the 
2 traits has been reported by Teulat et al. (2001) and 
Diab et al. (2004).    

 
  

Markers associated with more than one trait  
 
Markers on the consensus AD-2005 that was found to be 
associated with more than one trait should receive more 
attention, as it could be of a great use to correlate traits 
that were not reported to be correlated or to support a 
correlation between  traits  that  was  suspected  or  need  

 
 
 
 
more investigation. For example, the marker HVM36 on 
chromosome 2H was found to be associated with a QTL 
for Fusarium head blight resistance (Mesfin et al., 2003) 
and a QTL for osmotic potential   (Diab et al., 2004).  Also 
the marker (Bmag0125) on the same chromosome was 
found to be associated with a QTL for Fusarium head 
blight resistance (Mesfin et al., 2003) and a QTL for water 
soluble carbohydrates (Diab et al., 2004). Another case 
of one marker associated with 2 different traits is the 
locus MWG503 on the same chromosome (2H) that was 
reported to be associated with a QTL for Fusarium head 
blight resistance (Mesfin et al., 2003) and a QTL for 
malting quality (Marquez et al., 2000). There are no 
reports supporting the correlation between these traits, 
however, the association of these traits with the same 
marker suggests a sort of correlation between these 
traits.  
The marker CDO484 on chromosome 5 was found to 

be associated with QTL for relative water content and 
water soluble carbohydrates (Diab et al., 2004). The co-
location of water soluble carbohydrates and relative water 
content in this region suggests that the accumulation of 
water soluble carbohydrates may be important for plants 
to maintain their relative water content. Teulate et al. 
(2001) reported a correlation between these two traits as 
a part of the drought tolerance mechanism in barley. 
This study reports the first barley consensus map 

gathering QTL for Fusarium head blight resistance, 
malting quality, flowering date and QTL related to drought 
stress. Gathering QTL for agronomic traits and biotic and 
abiotic stress on the same map provides new tools to 
align QTL traits between gramenea species and 
determine the most important regions for saturated 
mapping. The comparative genome mapping of such 
QTL may provide new information on shared genetic 
variation for those traits among cereals, which in turn 
might be useful for identifying potential candidate genes. 
 
 
Proof of reliability of the consensus AD-2005 map 
 
Comparative genomic studies of maps between cereal 
species have shown conservation of genome structure ( 
Devos and Gale,1993 and  1997; Van Deynze et al., 
1995a,b,c). More extensive analysis of genome 
organization has revealed that the genome of rice can be 
subdivided into 19 linkage segments, which can be 
aligned with the genomes of wheat and barley (Moore et 
al., 1995). Based on previous comparative linkage 
mapping studies, the rice linkage groups 5 and 10 are 
known to be syntenic with at least parts of the linkage 
group 1(1H), while the rice chromosome 1 is syntenic 
with chromosome 3(3H). Similarly, rice non homologous 
chromosomes (4 and 7), (3 and 10) and (6 and 8) are 
syntenic with chromosomes 2H, 4H, and 7H, 
respectively. Accordingly, the Cornell rice RFLP 2001 
map  (http://www. gramene. org)   was   downloaded  and  
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Table 3. Comparison of the common markers (anchor loci) found in comparative study between rice and consensus AD-2005, 
OWB, KXM, and VXHs barley maps. 

 

 
 
 
compared with the constructed barley consensus AD-
2005, OWB, KXM and VXHs maps based on common 
markers (anchor loci). The results obtained from this 
comparative    study    are    showed    in     Table 3.   The 
total number of shared markers between rice and barley 
maps increased from two with OWB map, three with KXM 
and one with VXHs to 14 when the consensus AD-2005 
map was used. These results meet the main objective of 
constructing an integrated barley consensus map to 
increase the chance of finding anchor loci between 
durum wheat, barley and rice. 
The construction of consensus map allows scientists to 

easily compare genetic information from diploid species 
such as barley to species with more complex genomic 
structure, such as wheat, and increases the efficiency of 
molecular marker and gene isolation technologies applied 
to crop improvement. The objective of this work was to 
construct a consensus map for barley to be used in 
molecular breeding, QTL analysis and comparative 
genome mapping, which in turn will help plant breeders to 
combine QTL traits with other traits desired by farmers. 
Although more data are desperately needed, we can now 
conclude that this consensus map will serve as a useful 
tool for

 
more precise mapping of cereals, molecular 

breeding studies in barley and related species, gene 
isolation based on map-based cloning and a

 
basis for 

studies of genome organization and evolution.  
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