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Heavy metals are essential and important for plants growth, and play as key components of many vital 
compounds. However, when they increase in concentration, heavy metals show symptoms such as 
growth delay and inhibition of biochemical reactions. The current study focused on the impact of five 
heavy metals (lead, chromium, nickel, cadmium, zinc) on growth and performance of common bean 
(Phaseolus vulgaris L. cv. Nebraska) plants before and after liming (CaCO3  + MgCO3) as soil correction 
treatment for the sake of remediation for heavy metal pollution in soil. Chemical analysis of 
carbohydrates showed significant increases in the contents of reducing sugars in response to lead, 
cadmium and nickel stress, which were decreased by liming treatments. The contents of total soluble 
sugars also increased in all heavy metal-treated plants but zinc. All heavy metals significantly lowered 
the leaf contents of the photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids). The 
sodium dodecyl sulphate polyacrylamide gel electrophoreseis (SDS-PAGE) of proteins indicated 
variations in the profile of electrophoretic protein bands in heavy metal-stressed common bean plants 
before and after liming. The results indicate that the investigated heavy metals were absorbed from the 
soil solution and then accumulated in the tissues of common bean plants in variable concentrations. 
The highest accumulation were lead (Pb) and chromium (Cr) then cadmium (Cd), zinc (Zn) and nickel 
(Ni) while the magnitude of limiting the retarding rate of absorption and accumulation was: Pb > Ni > Cr 
> Zn > Cd, respectively. 
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INTRODUCTION 
   
Heavy metal stress is one of the major abiotic stresses 
that cause environmental pollution in recent decades 
(Gisbert et al., 2003; Castro et al., 2011). These metals 
are unlike other organic pollutants are not degraded and 
converted into harmless compounds via biological 
processes. Heavy metals persist for a long time in the 
environment. In addition, heavy metals can enter into the 
food chain. A common feature of environmental stress is 
their ability of production of toxic oxygen derivatives 
(Arora et al., 1998; Chiban et al., 2011). Heavy metals 

make a significant contribution to environmental pollution 
as a result of human activities such as mining, smelting, 
electroplating, energy and fuel production, power trans-
mission, intensive agriculture, sludge dumping and 
military operations (Nedelkoska and Doran, 2000). How-
ever, elevated concentrations of both essential and non-
essential heavy metals in the soil can lead to toxicity 
symptoms and growth inhibition in most plants (Hall, 
2002; Li et al., 2010). Toxicity may result from the binding 
of metals to sulphydryl groups in proteins, leading to
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inhibition of activity or disruption of structure, or from 
displacement of an essential element, resulting in 
deficiency effects (van Assche and Clíjsters, 1990; 
Capuana 2011). In addition, a heavy metal excess  may 
stimulate the formation of free radicals and reactive 
oxygen species, perhaps resulting in oxidative stress 
(Dietz et al., 1999; Li et al., 2011). Detailed studies 
indicate that heavy metals have effects on chlorophyll 
content in plants. Heavy metals are known to interfere 
with chlorophyll synthesis either through direct inhibition 
of an enzymatic step or by inducing deficiency of an 
essential nutrient (van Assche and Clíjsters, 1990; Meers 
et al., 2010). The amount of chlorophyll was reduced in 
Triticum aestivum cv. Vergina grown on Cu-enriched soil 
(Lanaras et al., 1993), and in Brassica oleracea var. 
Botrytis cv.   Heavy metals such as Cu and Zn are essen-
tial for normal plant growth and development since they 
are constituents of many enzymes and other proteins.  

However, elevated concentrations of both essential and 
non-essential heavy metals in the soil can lead to toxicity 
symptoms and growth inhibition in most plants (Hall 
2002; Dong et al., 2010). Living organisms require certain 
metals for their growth and metabolism and so, they have 
got an appropriate uptake mechanism for metals. Some 
plant species have capacity to grow in the metal 
contaminated soil and accumulate elevated amount of 
heavy metals as an ecophysiological adaptation in 
metaliferous soil. Phaseolus vulgaris has been reported 
to be a good accumulator of lead and cadmium (Garay et 
al., 2000; Cannino et al., 2009; Zhang et al., 2010).  

The mechanisms involved in heavy metal tolerance 
may range from exclusion, inclusion and accumulation of 
heavy metals depending on the plant species (Kaushik et 
al., 2005). Distinct concentrations of metals induce 
different biochemical responses in plants. In sensitive 
plants, high concentration of these metals inhibits enzymes 
involved in photosynthetic reaction (Smirnoval et al., 2006). 

Brassica juncea (Indian mustard), a high biomass 
producing plant can accumulate lead, chromium, 
cadmium, copper, nickel, zinc, boron and selenium 
(Palmer et al., 2001; Akbaş et al., 2009). Even trace 
elements have been shown to have toxic effect on 
different plant traits such as leaf, stem, root flower etc. 
(Sivakumar et al., 2001). Copper causes injury at cellular 
level by the formation of free radicals. Cellular injury by 
this type of mechanism is well documented for copper as 
well as other metals (Gupta and Kalra, 2006).  

Copper being one of the common heavy metals in 
industrial discharge of aeronautic, metal and metallurgy, 
and refinery industries shows toxic effects on plants and 
animals. Previously, the copper concentration in soil and 
water was usually lower than 5 mg/ml but it has 
increased during the last decade reaching occasionally 
50 mg/ml because of heavy industrialization. Among the 
pollution-producing metals, lead is a widespread heavy 
metal in the environment and it is regarded as non-
essential elements and have a long half-life which is ex-
tremely  persistent in the environment  (Salt et al.,  1998), 
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with high toxicity and easily taken up by plants (Wua et 
al., 2003) and then enters the food chain, resulting in a 
serious health issue for animals and humans. Therefore, 
there is an increasing interest in effects of heavy metals 
on higher plants and their responses to excessive metal 
concentrations as stressors (Grant and Loake 2000; 
Zhang et al., 2010). This study examined the physio-
logical and biochemical responses of common Bean 
(Phaseolus  vulgaris L.) plants to heavy metals stress. 
 
 
MATERIALS AND METHODS 
 
 
Seeds of P. vulgaris L. (cv. Nebraska) were obtained from the 
Ministry of Agriculture, Kingdom of Saudi Arabia (KSA). The seeds 
were surface sterilized for 20 min in 1% (v/v) sodium hypochlorite, 
and then washed several times with distilled water. The sterilized 
seeds were planted in plastic pots in sand and grit (1:1, v/v) at 27°C 
temperature. The pots were irrigated daily with 200 ml distilled 
water. To study the effect of heavy metals (lead, chromium, nickel, 
cadmium and zinc) on the growth and performance of bean plants 
before and after adding limestone (calcium carbonate + carbonate 
magnesium) the following experiment was done. Seeds were 
germinated at four weeks and then bean seeds were divided into 
four equal groups; A, B, C and D.  

Group A was the control which was irrigated with distilled water 
throughout the period of the experiment. Group B was irrigated 
daily with a solution of limestone 0.2 ppm (a mixture of calcium 
carbonate added to magnesium carbonate by 1:4). Group C was 
divided into five groups with each of them containing three pots 
irrigated with a heavy metal salt solution, (lead, chromium, nickel, 
cadmium, zinc) and concentration 200 ppm and irrigated by 200 ml 
and next day was irrigated with water and vice versa till the end of 
the experiment. Group D was as group C but was previously treated 
with limestone (0.2ppm) instead of using water. After two weeks 
from heavy metal exposure, plant samples were collected, washed 
carefully with H2O, blotted dry and separated into roots, stems and 
leaves. Leaf area was determined using a moving belt electronic 
planimeter (Delta. T. Devices, burwell, UK). Fresh weights of 
different parts were determined and then the same parts were dried 
in an air oven at 70°C to obtain dry weight. 
 
 
Measurements of photosynthetic pigments 
 
Photosynthetic pigments, viz, chlorophyll a, chlorophyll b and 
carotenoids were extracted and determined from expanded young 
leaves according to the method of Inskeep and Bloom (1998). 
Known fresh weight (about 0.1 g) of leaves were immersed in 10 ml 
N, N-dimethylformamide (DMF) and kept overnight at 4°C. After 
incubation, chlorophyll contents (Chl a and b) and total carotenoids 
were determined in the extract by UV-spectropho-tometer (LKB, 
UK). The absorbance of the solution was measured between 400 
and 700-nm. 
 
 
Digestion and assessing of elements 
 
Dry samples of shoot or root were finely ground and assayed for 
mineral-ions contents according to the method described by 
Humphries (1956). Metal concentrations (μg gG1 DW) such as Fe, 
Mn, Mg and N were estimated by atomic absorption spectrometry 
and Ca, Na and K by flame photometry. The values were 
expressed as μg gG1 dry weight of root or leaf for each treatment. 
Electrolyte  leakage  was measured according  to  the  method des- 
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cribed by Humphries (1956) (inductive coupled plasma for optical 
emission spectrometry, ICP-OES). 
 
      
Determination of carbohydrates  
 
Reducing sugars such as glucose and fructose and total soluble 
sugars as sucrose and many sugars as starch were used. 
Extracting sugars operation was performed by separation device 
centrifugation (3000 rev / min for 5 min) and then filtrate was used 
in estimating the reducing sugars and total sugars dissolved, the 
sludge remaining in the tube centrifuge transferred to a petri dish 
where it was used to estimate the starch after drying at temperature 
of 80°C. 
 
 
Determination of reducing sugars  
 
Estimated reducing sugars was measured according to the method 
of Naguib (1964). Addition of 1 ml of solution Nelson to a certain 
size (1 ml) of plant extract and encased pipe foil aluminum, and 
pipes were placed for 15 min in a water bath till boilling, then left to 
cool; 1 ml solution Erzinomolbydat was added then shaking pipe 
and left to stop the escalation of bubbles, then eased resulting color 
after adding a given volume of distilled water. Intensity absorption 
of extract at wavelength 650 nm been taken using a spectro-
photometry.  
 
 
Determination of total sugars dissolved 
 
A given volume (1.5 ml) of the enzyme invertase (0.1%) was added 
to a given volume of 1.5 ml of filtrate and left at room temperature 
for 30 min. Then three tubes were prepared and placed in each 
tube (1 ml) of the filtrate (1 ml) of Nelson. Pipes were encased by 
aluminum paper and placed in a water bath for 15 min, then cooled 
in a cold water bath. Then 1 ml Erzinomolbydat was added, and 
then left aside until bubbles stop rising. The resulting color was 
eased by adding a given volume of distilled water, and the amount 
of reducing sugars (sucrose) calculated by subtracting the amount 
of reducing sugars from reading total sugars dissolved. 
 
 
Determination of numerous sugars (starch) 
 
The quantity of many sugars as (starch)  were taken by taking a 
constant weight which is known as the remaining sludge which was 
dried to 0.01 g and then 0.2 ml of enzyme Aldeastaz (0.1%) + (0.1 
ml) of acetate solution organizer was added. 3 ml of distilled water 
was added and the mixture was left at 28°C for 24 h and 1 ml of 
toluene was added and then the amount of starch in a given volume 
was estimated by taking the same steps listed earlier for the 
estimation of reducing sugars. 
 
 
Protein analysis by SDS-PAGE 
 
Total proteins of fresh leaves were analyzed by SDS-PAGE. 
Leaves were ground on liquid nitrogen in 0.2 M Tris pH 8, 2% (w/v) 
SDS, 10% sucrose and 1% BME. Proteins were separated by SDS-
PAGE according to (Laemmli, 1970). 
 
 
Statistical analysis 
 
Differences in the plants’ physiological parameters under heavy 
metal effects were compared using ANOVA with means separation 
by Duncan’s test using SPSS 15  software at a significance level  of 

 
 
 
 
P≤0.05. Correlations between the metal concentrations and the 
physiological parameters were analyzed by a bivariate correlation 
test with Pearson correlation coefficient and a two-tailed test of 
significance using SPSS 15 software at significance levels of 
P≤0.05 and 0.001. ANOVA at 5% level of significance (p ≥ 0.5) and 
the separation of averages worth less significant difference LSD 
(Steel and Torrie, 1980). 

 
 
RESULTS  
 
Soil and water are the fate of most chemical substances 
produced by humans, where most plants uptake all their 
macro and micronutrients essential for their growth and 
development. These nutrients exist in the soil in natural 
balance and acceptable levels. Excessive levels of 
essential elements lead to polluted soils and could 
possibly cause phytotoxicity to crop plants - that is the 
objective of the current research study.  
 
 
Growth responses to heavy metals before and after 
liming 
 
The statistical data analyses of the results declared non-
significant (P ≥ 0.05) variations in shoot and root lengths, 
shoot and root fresh weights, shoot and root dry weights, 
number of leaves of common bean plants before and 
after liming (Table 1); while the results were significant for 
the leaf fresh weight and the leaf area. The number of 
flowers was significantly reduced in response to heavy 
metal treatments only before liming. This indicates the 
high sensitivity of these developmental stages to heavy 
metal stress and liming treatment as well. Cadmium (Cd) 
was most inhibitory to leaves and flowers development 
and most responded to liming treatments (Table 1).  
 
 

Chemical analysis of carbohydrates  
 
Chemical analysis of carbohydrates showed significant 
increases in the contents of reducing sugars in response 
to lead, cadmium and nickel stress, which were 
decreased by liming treatments (Figure 1). The contents 
of total soluble sugars also increased in all heavy metal-
treated plants expect for zinc (Figure 2). Moreover, the 
contents of polysaccharides increased under all heavy 
metal stress, and then decreased by liming treatment in 
all heavy metal-treated plants except for lead-treated 
plants (Figure 3).  

The contents of non-reducing sugars decreased in lead 
and cadmium-treated plants, while it increased in zinc-
treated plant (Figure 4). The contents of non-reducing 
sugars increased by liming except for zinc which equaled 
their contents in controlled plants (Figure 4). In general, 
the contents of total available sugars increased in all 
heavy metal-treated common bean plants except for lead. 
These increases were hindered by liming treatment in 
lead, chromium and zinc stressed plants.  
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Table 1. The impact of heavy metal stress measurements vegetative and reproductive growth of a Beans plant before and after adding limestone each value represents the average 3 

replicates ± standard error coefficient. 
 

Heavy metal 

Root 
length 
(cm) 

(before) 

Root 
length 
(cm) 

(after) 

Stem 
length 
(cm) 

(before) 

Stem 
length 
(cm) 

(after) 

Number 
of 

leaves 
(before) 

Number 
of 

leaves 

(after) 

Number 
of 

flowers 

(before) 

Number 
of 

flowers 

(after) 

Wet 
weight of 
root in g 

(before) 

Wet 
weight of 
root in g 

(after) 

Dry weight 

of root 

in g 

(before) 

Area of 
leaves cm

2
 

(after) 

Pb 23.67±3.84 19.00±1.52 23.33±1.20 24.33±1.85 3.00±0.57 3.33±0.33 0.67±0.67 1.67±1.20 0.217±0.07 0.310±0.02 0.127±0.04 47.41±9.98 

Cr 22.00±5.03 24.00±6.50 22.00±1.52 24.00±1.52 2.33±0.33 3.00±0.57 0.33±0.33 1.67±1.20 0.340±0.01 0.303±0.07 0.100±0.02 27.15±1.39 

Ni 19.00±5.13 16.00±2.88 21.33±3.17 25.33±5.17 3.33±0.88 3.67±0.88 0.67±0.33 3.33±1.66 0.417±0.17 0.453±0.13 0.120±0.04 33.70±1.91 

Cd 15.66±0.88 21.33±5.92 21.00±1.52 22.33±3.17 2.67±0.33 2.67±0.33 0.00±0.00 1.67±0.88 0.336±0.05 0.423±0.16 0.196±0.01 28.16±3.87 

Zn 19.33±2.84 22.00±3.05 24.67±2.91 26.00±2.08 3.67±0.66 3.67±0.66 0.67±0.33 4.67±1.45 0.630±0.13 0.340±0.03 0.227±0.01 52.10±3.66 

Control 20.33±3.71 21.00±3.21 23.67±2.02 22.33±2.33 4.00±0.57 4.00±1.15 3.66±0.88 3.33±1.76 0.483±0.16 0.293±0.03 0.180±0.06 40.41±3.37 

LSD 
(P≥0.05) 

5.22 5.11 2.91 3.98 1.86 1.57 2.11 2.82 1.64 0.161 0.136 6.51 

Significance NS NS NS NS NS NS ** NS NS NS NS * 
 

**, Highly significant; *, significant; NS, non-significant. 
 
 
 

Table 1. Contd. 
 

Heavy metal 
Dry weight of 

root in g 

(after) 

Wet weight 

of stem in g 

(before) 

Wet weight of 
stem in g 

(after) 

Dry weight of 
stem in g 

(before) 

Dry weight of 
stem in g 

(after) 

Wet weight of 
leaves in g 

(before) 

Wet weight of 
leaves in g 

(after) 

Areas of leaves 

cm
2
 

(before) 

Pb 0.180±0.01 3.851±0.02 5.58±0.96 0.380±0.17 0.627±0.16 1.81±0.54 3.02±0.63 17.74±3.73 

Cr 0.177±0.02 3.750±0.96 4.24±1.12 0.527±0.14 0.560±0.26 1.17±0.27 2.65±0.19 14.46±2.14 

Ni 0.240±0.08 4.041±0.66 10.01±5.81 0.617±0.18 0.987±0.93 0.416±0.08 3.18±0.61 5.328±1.84 

Cd 0.203±0.04 3.37±0.57 4.09±1.31 0.500±0.02 0.673±0.15 1.103±0.22 2.58±0.27 5.328±1.84 

Zn 0.193±0.06 4.03 ±0.71 8.51±1.13 0.850±0.41 0.847±0.22 1.41±0.09 5.31±0.37 13.90±0.91 

Control 0.167±0.03 5.42±2.29 5.86±2.16 0.870±0.26 0.677±0.19 1.34±0.13 4.63±0.38 12.58±0.89 

LSD (P≥0.05) 0.089 1.77 6.16 0.499 4.42 0.380 1.11 4.14 

Significance NS NS NS NS NS * * * 
 

**, Highly significant; *, significant; NS, non-significant. 
 
 
 

Determination of chlorophylls content 
 
All heavy metals (lead, chromium, nickel, 
cadmium, zinc) significantly lowered the leaf con-
tents of the photosynthetic pigments (chlorophyll 

a, chlorophyll b and carotenoids). Chlorophyll a 
showed high sensitivity to lead, nickel, zinc and 
then cadmium, but low sensitivity to chro-mium. 
Chlorophyll b was less sensitive to heavy metal 
stress, but more sensitive to nickel (Table 2). 

Carotenoid contents were severely decreased by 
lead, but fairly affected by chromium. As an inte-
resting result, compared to the controlled plants, 
the results of pigment analysis in common bean 
leaves were non-significant under liming (Table 2). 
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Figure 1. Effect of heavy metals on reducing sugars before and after)addition of limestone. 
 
 
 

 
 

Figure 2. Effect of heavy metals on total dissolved sugars before and afteraddition of limestone. 
 
 
 

The SDS-PAGE of proteins indicated both quantitative 
variations in the profile of electro- phoretic protein bands 
in heavy metal-stressed common bean plants before and 
after liming. The total number of protein bands and the 
band intensity (band %) increasedin all plants after 
liming. Moreover, liming treatments restored the sy-
nthesis of six protein polypeptides of molecular weights 
295, 97, 84, 47, 30 and 23 KDa. Chromium and nickel 
stress induced a 71 KDa protein which was not restored 
by liming; while the synthesis of a 20 KDa protein in 
nickel and cadmium treated plants was completely 
inhibited by soil liming (Figure 5). In conclusion, the 
results indicate that the investigated heavy metals were 

absorbed from the soil solution, and then accumulated in 
the tissues of common bean plants in variable con-
centrations. The highest in accumulation were lead (Pb) 
and chromium (Cr) then cadmium (Cd), zinc and nickel 
(Ni) in the order: Pb > Cr > Cd > Zn > Ni; while the 
magnitude of liming in retarding the rate of absorption 
and accumulation was in the order: Pb > Ni > Cr > Zn > 
Cd (Figure 6).  
 

 

DISCUSSION 
 

Heavy metals are essential and important for normal 
growth and development of plants being an essential
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Figure 3. Effect of heavy metals on total available sugars before and after addition of limestone.  

 
 
 
 

 
 

Figure 4. Effect of heavy metals on non-reducing sugars before and after addition of 
limestone. 

 
 
 

component of many enzymes and proteins. On the other 
hand, it has been found that increasing heavy metals 
concentrations have led to the emergence of symptoms 
of poisoning such as inhibiting plant growth (Hall, 2002). 
Plants vary in their ability to absorb and accumulate 
minerals from the soil solution. Gülser and Erdogan 
(2008) found that low soil content of heavy metals, lead 
to a significant increase in the activity of enzymes. 
Several studies demonstrated that heavy metals can 

function as stressor, causing some physiological 
constrains that decrease plant vigor and inhibit plant 
growth (Schutzendubel et al., 2001). In this study, 
phototoxic symptom such as reducing number of flowers 
leaf fresh weight and area was observed as result of 
heavy metal treatment, and leaf water content were 
among the most sensitive responses to heavy metal

 

exposure and faster than most of the otherphysiological 
reactions analyzed (Table 1). Ouzounidou et al. (1998)
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Table 2. Effect of heavy metal content (mg/g wet weight) pigments construction on photosynthesis (chlorophyll a, chlorophyll b, carotene) in beans plant  before and after adding limestone.  
 

Heavy 
metal 

Chlorophyll a 
(before) 

Chlorophyll a 
(after) 

Chlorophyll b 
(before) 

Chlorophyll b 
(after) 

Carotene 
(before) 

Carotene 
(after) 

Chlorophyll a/  
chlorophyll b 

(before) 

Chlorophyll a/  
chlorophyll b 

(after) 

Total contents 
of pigments 

(before) 

Total contents 
of pigments 

(after) 

Pb 1.493±0.39 1.499±0.14 0.509±0.12 0.499±0.06 0.418±0.13 0.435±0.08 2.827 3.004 2.366±0.64 2.433±0.28 

Cr 2.072±0.14 1.56±0.24 0.58±0.06 0.485±0.10 0.805±0.05 0.755±0.07 3.572 3.216 3.457±0.25 2.8±0.41 

Ni 1.405±0.29 1.06±0.16 0.464±0.108 0.337±0.06 0.552±0.12 0.424±0.05 3.028 3.157 2.421±0.51 1.825±0.27 

Cd 1.717±0.08 0.921±0.18 0.558±0.02 0.256±0.07 0.654±0.03 0.354±0.06 3.077 3.597 2.929±0.13 1.531±0.31 

Zn 1.23±0.04 1.272±0.05 0.526±0.03 0.404±0.02 0.588±0.02 0.499±0.02 2.752 3.148 2.562±0.09 2.175±0.09 

Control 2.497±0.24 1.454±0.22 0.796±0.107 0.612±0.12 0.914±0.07 0.705±0.09 3.136 2.375 4.207±0.41 2.771±0.43 

LSD(P≥0.05) 0.794 0.364 0.288 0.167 0.361 0.259 0.112 0.873 0.801 0.718 

Significance NS * NS * NS * * * * * 
 

Each value represents the average of 3 replicates ± standard error coefficient. 
 
 
 

suggested that the inhibitory action of heavy 
metals on root length, shoot height and leaf area 
seems principally to be due to chromosomal 
aberrations and abnormal cell divisions and may 
also be correlated with the metal-induced 
inhibition of photosynthetic process and the 
respiration in the shoot system and protein 
synthesis in the root, or due to the reduction in cell 
proliferation and growth (Maria and Tadeusz, 
2005). In this study, heavy metals were absorbed 
from soil solutions and then accumulated within 
common beans plant tissues in varying ratio and 
highest accumulation was for lead, chromium, 
zinc and nickel, respectively. The efficiency of 
limestone in reducing the rate of accumulation 
was as follows: lead, nickel, chromium, zinc and 
cadmium, respectively. As is clear from the results 
of this research, limestone resulted in an increase 
in protein bands of the protein profile as well as an 
increase in the optical density of proteins that is, 
the ability to resynthesize proteins affected by the 
negative impact of heavy metal stresses. The 
above mentioned data agreed with those of 
Kiekens (1983) who found that, the presence of 
some cations (positive ions) in the soil solution 

such as Ca
2 + 

and  Mg
2 + 

compete with cations of 
heavy metals efficiently and prevent It from 
adhering with plasma of plant tissues and 
subsequently their accumulation decrease. On the 
other hand, the addition of limestone to the soil 
works to reduce soil acidity and increase alkalinity 
and high pH of the soil solution and thus make 
heavy metals in the form that they are non-
available for absorption in the root and 
accumulation within plant tissues (McGrath et al., 
1988). The contents of total available sugars 
increased in all heavy metal-treated common 
bean plants except for lead. These increases 
were hindered by liming treatment in lead, 
chromium and zinc stressed plants. Soluble 
sugar, is an important constituent manufactured 
during photosynthesis and breakdown during 
respiration by plants. All metals have decreased 
the content with increasing concentration as 
reported in agricultural crops (Hemalatha et al., 
1997; Rascio  and  Navari-Izzo,  2011). Such 
inhibition of photosynthesis in higher plants by 
heavy metals has been reported (Bazzaz et al., 
1975). The low sugar levels may be due to 
lowered synthesis or diversion of the metabolites 

to other synthesis processes. The decrease of 
chlorophylls contents as observed in this study 
showed high sensitivity to lead, nickel, zinc then 
cadmium, but low sensitivity to chromium. 
Chlorophyll b was less sensitive to heavy metal 
stress, but more sensitive to nickel (Table 2) and 
this agrees with the results of Appenroth et al. 
(2010). Carotenoid contents were severely 
decreased by lead, but fairly affected by 
chromium. As an interesting result, compared to 
the controlled plants, the results of pigment 
analysis in common bean leaves were non-
significant under liming. Somashekaraiah (1992) 
found that the treatment of bean seeds with 
different concentrations of cadmium led to 
reduced levels of chlorophyll and iron in plants, 
and this contributed to the inhibition of its 
biosynthesis (Fabrizo et al., 2003). Proteins are 
important constituents of the cell that are easily 
damage in environmental stress condition 
(Prasad, 1996; Wu et al., 2010). Hence, any 
change in these compounds can be considered as 
an important indicator of oxidative stress in plants. 
The results of this study show variable changes in 
insoluble protein content in different metal treat-

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rascio%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Navari-Izzo%20F%22%5BAuthor%5D
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Figure 5. (Figure 5. SDS-PAGE of total protein of common bean. A , Lane 1, broad range marker; lane 2, control; lanes 2, 3, 
4, 5 and 6 are heavy metals (Pb, Cr, Ni, Cd and Zn respectively) before liming. B, Lane 1, broad range marker; lane 2, 

control; lanes 2,3,4 ,5 and 6 are heavy metals (Pb, Cr, Ni, Cd and Zn respectively) after liming. 
 
 
 

 
 

Figure 6.  Heavy metal content (mg/L) in tissues of common bean, before and after the 
addition of limestone. 

 
 

 

ments that might reflect different levels of antioxidant 
defense. The increase in total soluble protein content 
under heavy metal stress may be related to the induced 
synthesis of stress proteins such as enzymes involved in 
Krebs cycle, glutathione and phytochelatin biosynthesis 
and some heat shock proteins (Mishra et al., 2006). 
Based on the results and physiological and biochemical 

responses of beans plants to stresses of heavy metals in 
the study, it is recommended that limestone be used in 
some heavy metals polluted agricultural soils to maintain 
crop productivity and the overall health of humans and 
animals. It is worth to mention that limestone natural 
ingredients is environmentally safe, cheap, and added to 
some agricultural soils routinely to correct some of their  
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physical and chemical properties. 
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