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Soil acidity is one of the major constraints to agricultural production in large parts around the world. In 
acid soils, aluminium toxicity and consequent low phosphorous availability impair plant growth. The 
primary response to aluminium stress is visible in the roots. Exclusion and neutralization are two well 
known mechanism of aluminium tolerance in plants. Although, relative root growth in high aluminium 
containing solution is often used for screening, a reliable screening procedure needs to be developed. 
14 genes from seven different species are reported for aluminium tolerance of which genes of the 
Aluminium-activated malate transporter (ALMT) and multidrug and toxic compound extrusion (MATE) 
families are prominent. In this review, the progress of research in identifying aluminium toxicity tolerant 
genes is discussed. 
 
Key words: Aluminium toxicity, soil acidity, hydroponic screening, aluminium-activated malate transporter, 
multidrug and toxic compound extrusion. 

 
 
INTRODUCTION 
 
Soil acidity, associated infertility and mineral toxicities are 
major constraints to agricultural production in several 
parts of the world (Pariasca-Tanaka et al., 2009). Many 
tropical soils are acidic because they are millions of years 
old and have been exposed to continuous weathering. As 
rain water percolates downwards, soluble nutrients such 
as calcium, magnesium, and potassium leaches out of 
the top layers of the soil, and gradually gets replaced by 
aluminium, manganese and hydrogen, the elements most 
closely associated with soil acidity. Aluminum is one of 
the predominant elements of the earth crust and in soils 
with normal pH; it is present in insoluble form and hence 
causes no harm to plants. The solubility of Al in neutral 
and alkaline soils is too low to be toxic to plants. In acidic 

soils, it becomes soluble and (i) enters root where it inhi-
bits root growth and development, (ii) reacts with soluble 
phosphorus (available to plants) and converts it to 
insoluble aluminum phosphate which is not available to 
plants. Even micromolar concentrations of aluminum in 
the soil solution can rapidly inhibit the root growth of 
many species (Wissuwa and Ae, 2001; Wissuwa, 2005). 
As rice farmers around the world begin to turn from wet 
paddies to dry fields in an attempt to conserve water and 
mitigate climate change, they are facing a new foe: 
aluminium (Shackford, 2012). 

Aluminum can be toxic to plants in acidic conditions. Its 
harmful effects are diluted as traditional rice paddies are 
flooded, but have become an issue as farmers are trying 
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new ways of raising their crops. 
 
 

ALUMINIUM TOXICITY 
 

Aluminium is not essential for plants. Although, metallic 
aluminum is non-toxic to plants, its ionic form (Al

3+
), 

prevalent in acid soil conditions is toxic to all living cells. 
The ionic form of aluminum rapidly inhibits root elonga-
tion by targeting multiple cellular sites, including cell wall 
and plasma membrane, and various cellular processes 
such as signal transduction pathways and calcium 
hameostasis (Wissuwa et al., 2001, 2005). In response to 
aluminum stress, roots become stubby and brittle. The 
root tips and lateral roots thicken and turn brown. Such 
aluminium injured roots becomes inefficient in absorbing 
nutrients, water and the root system as a whole gets 
affected with many stubby lateral roots and no fine 
branching. Consequently, plants become susceptible to 
various stresses especially drought. As acid soils occupy 
up to 40% of the world’s

 
arable land (Pariasca-Tanaka et 

al., 2009), aluminium phytotoxicity may be
 
considered as 

one of the major limiting factors of crop productivity
 
in the 

world (Hede et al., 2001). According to Kamparath 
(1980), crop production is drastically reduced when alu-
minum saturation of the active cation exchange sites is 
greater than 60% and tends to be optimum when alumi-
num saturation is zero. When a soil is more acidic than 
pH 6.0 to 6.5, the availability of plant nitrogen, phos-
phorus, sulphur, calcium, potassium, magnesium and 
molybdenum, may be too low for satisfactory plant growth 
(Panda and Matsumoto, 2007). In general, young 
seedlings are more susceptible to Al than older plants. 

Experiments with maize seedling roots placed in 
divided chambers showed that root growth is inhibited 
only when the apical 2 to 3 mm of the root is exposed to 
Al, while application of Al to any other portion of the root 
does not affect root growth (Ryan et al., 1993). The 
stubby and brittle roots after Al exposure suggest that 
cytoskeleton may be the target for Al toxicity (Blancaflor 
et al., 1998). Horst et al. (1999) reported that microtubule 
and microfillaments in cells show altered stability and 
polymerization upon exposure to Al. Studies in rice 
(Zhang et al., 2007) and Triticum (Frantzios et al., 2005) 
showed that actin filaments and expression of a gene 
encoding for actin binding protein are altered upon expo-
sure to Al. These reports suggest  that the cytoskeleton is 
affected upon exposure to Al. Sivaguru et al. (1999) 
showed that the distal transition zone of root is most 
sensitive to Al exposure providing support to earlier 
studies that the root apex is the primary target site. 
Oxidative stress is considered as one of the main effects 
of Al toxicity (Zheng and Yang, 2005). Although, Al does 
not act as a catalyst in the production of Reactive Oxygen 
Species (ROS), its ability to bind to carboxylate, phos-
phate, etc. groups lead to oxidative stress mediated through 
cell wall pectin, plasma membrane, etc. (Yamamoto et 
al.,  2001).  The  resultant  rigid  plasma membrane leads 

Pattanayak and Pfukrei         3753 
 
 
 
to enhanced peroxidation of lipids (Yamamoto et al., 2003). 

Aluminium induced lipid peroxidation has been reported 
for barley (Guo et al., 2004), sorghum (Peixoto et al., 
1999), rice (Kuo and Kao, 2003), wheat (Hossain et al., 
2005), greengram (Panda and Matsumoto, 2007) etc. 
However, Al treatment in maize did not lead to lipid pero-
xidation (Boscolo et al., 2003) indicating that the target of 
oxidative stress due to Al exposure varied with plant 
species. Plant cells produce a number of enzymatic and 
non-enzymatic antioxidants. Enzymatic anitioxidants such 
as catalase (CAT), ascorbate peroxidase (APX), super-
oxide dismutase (SOD) and glutathion reductase (GR) 
were reported to be influenced by exposure to aluminium. 
In maize (Jones et al., 2006) and pea (Yamato et al., 
2003), increase in ROS production in response to alumi-
nium exposure has been reported. An increase in APX 
and SOD activity in Al exposed maize roots has been 
reported. In greengram, Panda et al. (2003) reported 
increase in SOD, APX and GR activities and decrease in 
non-enzymatic antioxidants like ascorbate (ASA) and 
glutathion (GSH). They concluded that ascorbate and 
glutathion are mainly responsible for detoxification of 
ROS. Increase in SOD activity in the rice roots in res-
ponse to Al exposure has also been reported (Meriga et 
al., 2010). They also observed that a pH below 4.5 
reduces SOD activity. 

Binding of Al to the pectic matrix, plasma membrane 
and other constituents of cell wall causing alteration of 
cell wall properties leads to decreased extensibility 
(Tabuchi and Matsumoto, 2001) cell wall permeability 
resulting in reduced root growth (Schmohl and Horst, 
2000). Al also permanently replaces Ca

2+
 from cell wall 

causing changes in cell wall properties. 
 
 

Tolerance mechanisms of plants to aluminium 
toxicity 
 

Plants have evolved different mechanisms to overcome 
Al stress, either by preventing Al

3+
 from entering the root 

or by being able to neutralize toxic Al
3+

 absorbed by the 
root system. The basis of which has been the focus of 
intense research (Kochian et al., 2004). So far the only 
well documented mechanism of Al resistance is the 
exclusion of Al from the root tip based on the release of 
organic acids, which chelate Al

3+
 forming stable, nontoxic 

complexes. Release of malate, citrate and/or oxalate 
from roots upon exposure to Al has been correlated with 
differential Al tolerance in a large number of monocot and 
dicot species (Maron et al., 2008). In the first mechanism, 
Al is prevented from moving through the plasma mem-
brane to the cytoplasm in the root cells. This is achieved 
by the secretion of organic acids from the radical apex to 
the rhizosphere, which, in turn, modifies the pH and 
chelates the toxic aluminium ion (Kinraide et al., 2005). 
Further, these organic anions (i) compete with phosphate 
groups for binding sites in the soil and thus block the 
sorption of P to other charged sites and (ii) form stronger 
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complexes with Al

3+
, Fe

3+
 and Ca

3+
 than phosphate does 

and thus make the phosphorus available to plants. The 
second mechanism involves chelation of Al by specific 
proteins, short-chain organic acids, phenolic compounds 
and tannins that can bind and form complexes with 
aluminium ion (Al

3+
) and subsequently compartmentalize 

it in the vacuole thus reducing Al-toxicity in the cell 
(Jones and Ryan, 2004). Nevertheless, the complexity of 
this genetic control seems to vary among species. 

In rice, no organic acid was reported, except small 
amount of citrate induced by Al exposure, and no signi-
ficant effect on the Al detoxification in both Al-tolerant and 
Al-sensitive varieties. It means that rice may have different 
Al tolerance mechanism other than release of organic 
acids (Ma et al., 2002). Al tolerance is a complex trait 
controlled by multiple genes in rice. Control of Al 
tolerance in Oryza sativa (rice) is polygenic, thus making 
genetic improvement difficult for this trait (Nguyen et al., 
2003). While there is considerable evidence associating 
organic acids in the Al tolerance mechanisms of many 
species, other species apparently uses mechanisms that 
do not rely on organic acids. For instance, Brachiaria 
decumbans, an extremely Al-tolerant species, does not 
secrete organic acids in response to Al and hence 
possess different ways of dealing with toxic levels of Al in 
the soil solution (Wenzl et al., 2001). Rice (O. sativa) has 
been reported to be the most Al-tolerant cereal crop 
under field conditions, capable of withstanding signi-
ficantly higher concentrations of Al than other major 
cereals (Fukrei, 2011). However, despite this fact, very 
little is known about the physiological mechanisms of Al 
tolerance in rice. Two independent studies have identified 
increased Al accumulation in the root apex in susceptible 
compared with Al-tolerant rice varieties, but no difference 
was observed in organic acid exudation or rhizosphere 
pH (Yang et al., 2008). Magnesium which plays an impor-
tant role in numerous physiological and biochemical 
processes can also ameliorate aluminium (Bose et al., 
2010). 

Even though over expression of magnesium transport-
ters can alleviate aluminium toxicity in plants, the mecha-
nisms governing such alleviation remain obscure. Possi-
ble magnesium-dependent mechanisms include: (i) better 
carbon partitioning from shoots to roots; (ii) increased 
synthesis and exudation of organic acid anions; (iii) 
enhanced acid phosphatase activity; (iv) maintenance of 
proton-ATPase activity and cytoplasmic pH regulation; (v) 
protection against an aluminium-induced cytosolic calcium 
increase; and (vi) protection against reactive oxygen 
species (Bose et al., 2010). 
 
 

SCREENING METHODS FOR IDENTIFYING 
ALUMINIUM TOLERANT PLANTS 
 

A reliable screening procedure for Al stress is one of the 
most important tools required to effectively develop Al-
tolerant cultivars. In the field screening, the symptoms of 
aluminium  toxicity  are  not  easily  identifiable. The foliar 

 
 
 
 
symptoms may be stunting, small, dark green leaves and 
late maturity (Fukrei et al., 2011), purpling of stems, 
leaves, and leaf veins which resemble phosphorous (P) 
deficiency symptoms. In some cases, curling or rolling of 
young leaves and collapse of growing points or petioles 
are observed and may be confused with calcium (Ca) 
deficiency. Excess Al even induces iron (Fe) deficiency 
symptoms in rice (O. sativa L.), sorghum and wheat. 
Aluminium does not affect the seed germination but helps 
in new root development and seedling establishment. 
Root growth inhibition was detected 2 to 4 days after the 
initiation of seed germination. Al tolerance screening is 
typically conducted by comparing root growth of seed-
lings in hydroponic solutions, with and without Al. Solu-
tion culture assays with, or without staining procedures 
are efficient methods for identifying tolerance to Al. 
Nevertheless, in only a few cases has Al tolerance observed 
in solution cultures been correlated with Al tolerance in 
acidic soil (Sasaki et al., 2004). 

Each screening technique has distinct advantages and 
disadvantages and techniques also vary widely in their 
ease of use for screening large numbers of entries for 
breeding programs. With the identification of molecular 
markers linked with Al tolerance genes, future screening 
for Al tolerance may be possible based on genotype or a 
combination of genotype and phenotype. In addition, 
molecular markers may be advantageous for identifying 
plants with tolerance mechanisms active at different plant 
growth stages which would be difficult or impossible to 
perform with phenotypic screens (Wu et al., 2000). Hy-
droponic culture of rice and many other crops is com-
monly carried out using the chemical composition of 
Yoshida’s solution (Shaff et al., 2010). In a hydroponic 
solution, Al may be found in one of the four forms: (a) as 
free Al

3+
, where it actively inhibits root growth; (b) preci-

pitated with other elements and essentially unavailable to 
inhibit plant growth; (c) different hydroxyl monomers of Al, 
which are not believed to be toxic to roots or (d) com-
plexed with other elements in an equilibrium between its 
active and inactive states. The degree to which Al inhibits 
root growth is primarily dependent upon the activity of 
free Al

3+
 in solution. In rice, the high Al concentrations 

required to observe significant differences in root growth 
between susceptible and resistant varieties also compli-
cates hydroponic Al tolerance screening due to the 
precipitation of Al along with other elements. 

The result is that control and treatment (+Al) solutions 
may differ with regard to essential mineral nutrients that 
react with Al, leading to differences in growth not directly 
attributable to Al. Additionally, because the active form of 
Al toxic to root growth is Al

3+
, any Al that precipitates out 

of solution has no effect on root growth (Famoso et al., 
2010). 
 
 

Al tolerant genes 
 

Cultivars with tolerant genes that are genetically adapted 
to  acidic  soils  may  offer  an environmental compatible  



 
 
 
 
solution, providing a sustainable agriculture system in the 
developing world (Fernando et al., 2006). Fourteen genes 
from seven different species are known to contribute to 
Al

3+
 tolerance and resistance, and several additional 

candidates have been identified. Some of these genes 
account for genotypic variation within species and others 
do not. The genes controlling efflux of organic anions 
such as malate and citrate from roots are members of the 
ALMT and MATE families which encode membrane pro-
teins that facilitate organic anion efflux across the plasma 
membrane. The identification of aluminium-resistance 
genes provides opportunities for enhancing crop produc-
tion on acid soils (Ryan et al., 2011). The gene named 
aluminium-activated malate transporter (ALMT) belonged 
to a previously uncharacterized gene family and was the 
first Al

3+
 resistance gene identified in any plant species. 

The higher expression of TaALMT1 in most Al
3+

 resistant 
genotypes of wheat is associated with tandemly-repeated 
elements in the promoter (Meyer et al., 2010). Promoter 
analysis demonstrated that promoters containing these 
multiple repeats drive higher expression than promoters 
without repeats (Ryan et al., 2010). 

A solid understanding of the genetics and physiology of 
resistance in sorghum (Sorghum bicolor) and barley was 
also pivotal in identifying the first members of a second 
family of resistance genes. Aluminium resistance in each 
of these species is controlled by a major genetic locus 
that segregates with the Al

3+ 
dependent efflux of citrate 

from roots. Recent studies in barley have identified ano-
ther gene, HvAACT1 (Hordeum vulgare Aluminum Acti-
vated Citrate Transporter 1), which belongs to the 
multidrug and toxic compound extrusion family (MATE) 
and is responsible for citrate exudation in response to Al 
(Furukawa et al., 2007). Additionally, in S. bicolor 
(sorghum), a MATE gene (SbMATE) was identified as an 
aluminum-activated citrate transporter. The monogenic 
inheritance of genes encoding proteins responsible for 
transporting organic acids in cereals such as Triticum 
aestivum and H. vulgare facilitates the prospects of 
improving these species for tolerance to Al in acidic soil 
(Magalhaes et al., 2007). As model species, rice and 
Arabidopsis are attractive systems for mutational analy-
sis. Rice is an important crop worldwide with a high basal 
level of resistance compared with other small-grained 
cereals (Famoso et al., 2010). The striking similarities 
between the resistance genes isolated from rice and 
Arabidopsis using a mutational approach is intriguing 
given that rice is considerably more resistant (Collins et 
al., 2008). 

The exact mechanism of Al tolerance in rice is still 
unclear. It has been proven that the Al tolerance trait in 
rice is controlled by many genes. Unfortunately, until 
today there are very limited amount of Al tolerance genes 
that have been cloned from rice. A research was carried 
out to clone a rice Al tolerance gene using rice/rye micro-
colinearity approach.  A rice/rye syntenic relationship was 
identified between an Al tolerance locus region in rye and  
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a region in rice BAC clone originated from rice chromo-
some 3. Both regions were bordered by the same flan-
king markers B6 and BCD1230. In between both mar-
kers, there were four putative candidate genes residing in 
the rice BAC clone. One of the putative genes, 
called B11 gene, showed higher expression level in Al-
tolerant rice genotype than that in Al-sensitive rice 
genotype under Al stress. This research has successfully 
cloned the Al tolerance gene candidate from Indonesian 
local rice genotype Hawara Bunar. Transgenic tobacco 
plants carrying the gene showed more tolerance to Al 
than that of non-transgenic tobacco plants.  Bioinforma-
tics analysis showed that the B11 protein was similar to 
bacterial ribosomal L32 proteins and was predicted as a 
transcription factor with bZIP domain and C2H2-zinc 
finger like motif (Miftahudin and Roslim, 2012). Several 
genetic studies have identified nearly 10 QTLs for alumi-
nium tolerance in rice, but the responsible genes have 
not been cloned so far.  ABC transporters represent a 
large family in plants with >120 members in both Arabidiopsis 
and rice (Sugiyama et al., 2006; Verrier et al., 2008). 

A recent breakthrough in uncovering the molecular 
basis of Al

3+
 resistance in rice was achieved when the 

gene underlying an Al
3+

-sensitive mutant, star1, was 
identified. It is a recessive rice mutant with hypersen-
sitivity to aluminium toxicity, which was isolated from an 
aluminium-tolerant cultivar of rice irradiated with gamma 
rays (Ma et al., 2005). This gene is unique because, 
unlike most plant ABC transporters, which contain both 
nucleotide binding domains and transmembrane domain, 
it only encodes a nucleotide binding domain. In two inde-
pendently generated transgenic lines carrying STAR1, 
the tolerance to aluminium toxicity was increased to a 
similar level as seen in wild type rice in both hydroponic 
and acidic soil culture, confirming that the mutation in 
STAR1 is responsible for the aluminum sensitivity in the 
star1 mutant. A rice homolog of ALS3 involved in 
aluminium tolerance in Arabidiopsis (Larsen et al., 2005), 
was found and then cloned and named, STAR2, from rice 
root cDNA. To investigate whether STAR2 is involved in 
aluminum tolerance in rice, knockdown transgenic lines 
of STAR2 was prepared by RNA interference (RNAi). The 
RNA accumulation of STAR2 was reduced to <10% of 
that in wild type rice and tolerance was significantly 
decreased in the RNAi transgenic lines compared with 
that of the vector control plants, which clearly indicate 
that it is also required for aluminium tolerance in rice. 

Both OsSTAR1 and OsSTAR2 are predominantly 
expressed in roots and expression of both is specifically 
induced by Al

3+
 treatment. The OsSTAR1:OsSTAR2 

complex localizes to vesicular membranes and transports 
UDP-glucose, but it is not clear how this function confers 
resistance. The OsSTAR proteins may release UDP-
glucose to the apoplasm by exocytosis and provide 
protection by modifying the cell walls. It is also plausible 
that the OsSTAR proteins confer Al

3+
 ‘tolerance’ rather 

than  ‘resistance’  by  performing  other  functions  in  the  

http://www.ejbiotechnology.info/content/vol13/issue4/full/4/index.html#58
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cytosol. Neither of the OsSTAR genes underlies QTLs for 
Al

3+
 resistance in rice, but they are possibly responsible 

for its high basal level of resistance (Huang et al., 2009). 
In rice, Xia et al. (2010) reported the role of an aluminium 
transporter (Nrat1) in the transport of absorbed Al from 
plasma membrane to vacuoles. Recently, in rice, a tono-
plast localized half-size ABC transporter has been 
reported to be required for internal localization of Al 
(Huang et al., 2012). In barley, Fujii et al. (2012) described 
the role of a modification in a single gene (HvAACT1) in 
Al tolerance. 

The gene primarily produces a protein that helps to 
release citrate from the root pericyle cells to the xylem 
facilitating transport of iron from roots to shoots. How-
ever, a 1-kb insertion upstream the coding region, found 
only in Al tolerant lines, alters its location of expression to 
root tip. This results in detoxification of Al through release 
of citrate to the rhizosphere. 
 
 

CONCLUSION 
 
In acid soils, Al readily enters roots and impairs root 
growth and development. As a result, the root system 
becomes inefficient in water and nutrient uptake, leading 
to lower crop yields. Further, soluble aluminum reacts 
with soluble phosphorus and makes insoluble complexes, 
which is not available to plants. A common agricultural 
practice for acid soils is to apply lime to raise soil pH. 
Liming acid soils does not remedy acidity in the subsoil 
layer. Many important crop and pasture species lack 
sufficient Al tolerance within their germplasm to allow 
effective breeding for this character. Genetic and geno-
mic studies leading to identification of gene/QTL for 
aluminium tolerance focused mainly on roots. Designing 
an appropriate screening technique is still a challenging 
task. Screening techniques based on aluminium accumu-
lation in roots may be misleading as it may not identify 
tolerant types that use a different mechanism. On the 
other hand screening, based only on root growth or 
biomass accumulation in Al solution, may identify highly 
heterotic genotypes with little tolerance to Al as tolerant 
type compared to a less heterotic genotype with more 
tolerance to Al. Although, Al is the major stress in acid 
soil, manganese (Mn) toxicity, P deficiency and nutrient 
deficiencies associated with acid soil received very little 
attention. 

STAR1/2, the major Al tolerance gene identified in rice 
may represent a basal Al tolerance in rice which is pro-
bably because, unlike temporary environmental stresses 
such as water and temperature stresses, Al toxicity stress 
is continuous in acid soils. It seems therefore, that plants 
have acquired basic strategies to constitutively detoxify Al 
at different cellular levels (Yamaji et al., 2009); and 
hence, may not be responsible to differentiate between 
aluminium tolerant and susceptible genotypes. Further-
more, star1, the recessive rice mutant with hypersensi-
tivity  to  aluminum  toxicity,  from  which the STAR gene  

 
 
 
 
was isolated from an aluminum-tolerant cultivar of rice 
was irradiated with γ-rays (Ma et al., 2005). Hence, fur-
ther detail study and screening of a larger germplasm 
may be required to identify these Al tolerant genes in the 
natural plant population. Genes similar to STAR1 and 
STAR2 are known to be present in other species based 
on phylogenetic analysis, such as maize, arabidopsis, 
grape, and, interestingly, also in Physcomitrella patens, a 
model organism of initial land plant. This suggests that 
STAR1/2 is a universal Al tolerance mechanism con-
served in land plants, although, it remains to be investi-
gated in plant species other than rice in future. 

Progress in genomic research may lead to identification 
of more number of tolerant genes/QTLs and accelerate 
development of more tolerant crops. Use of transgenic 
approach shows promise for highly sensitive crops like 
pulses. 
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