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Close relatives of cultivated crops provide an invaluable source of genetic variation in crop 
improvement and exploiting such variation often forms a critical part in a breeding program. The 
usability of the wild soybean Glycine soja was investigated in this study by analyzing populations 
derived from two wide crosses between a common cultivar and two different G. soja accessions using 
simple sequence repeat (SSR) markers. Consistent reductions in recombination frequencies were not 
detected in either of these two wide crosses and the results does not seem to be confined to the 
particular populations or the wild genotypes used. In variance with previous reports that domestication-
related traits are often controlled by one or two major loci, these recombination results strongly indicate 
that linkage drag should not be a major concern in transferring genes from the wild taxon into the 
cultigen, although backcross would still be required to minimize undesirable chromatins.  
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INTRODUCTION 

 
Creating diversity and selecting elite individuals are keys 
in crop improvement. To enrich genetic variation of 
cultivated crops, closely related taxa are routinely 
exploited in breeding programs. Exploiting genetic va-
riation from related taxa has been a common practice in 
all major crops, such as in rice (Xiao et al., 1998; 
Brondani et al., 2002; Aluko et al., 2004), wheat (Huang 
et al., 2003), barley (Pillen et al., 2004), and tomato 
(Tanksley and McCouch, 1997; Monforte and Tanksley, 
2000).  However,  difficulties  at   various  stages  may  be  
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encountered in exploiting genetic variation from related 
species (Zamir, 2001). Some of these can be visually 
obvious, such as cross incompatibility and sterility of 
either hybrids or their progenies. Other difficulties such as 
linkage drags due to reduced recombination between the 
chromosomes of the concerned species or genes of 
negative effect being tightly linked to the trait of interest, 
may not be visually so obvious and may need to be 
assessed by analyzing recombination frequencies (Liu et 
al., 1996).Cultivated soybean (Glycine max) is one of the 
most important crops for feed and food products and it is 
rich in seed protein and oil, accounting for 48% of the 
world market in oil crops (Zhang et al., 2004). In China, 
soybean is a major oilseed crop and is grown on about 
eight million hectares (Zhang et al., 2004). Compared 
with many other  crops, cultivated  soybean varieties  are 
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characterized by very narrow genetic variation (Gizlice et 
al., 1994; Hyten et al., 2006). To enrich genetic variation 
in soybean breeding, attempts have been made to 
introduce genes from genotypes of its annual wild relative 
Glycine soja.  

Although belonging to two different taxa, cultivated 
soybean and G. soja are classified into the primary gene 
pool (Singh, 2007). They share a similar genome 
structure containing 40 chromosomes and there is no dif-
ficulty in producing fertile hybrids and progeny by cros-
sing genotypes between these two taxa (Palmer et al., 
1987; Singh et al., 1988). Genes conferring some very 
important traits such as protein content (Sebolt et al., 
2000), SCN resistance (Wang et al., 2001; Winter et al., 
2007) and yield (Concibido et al., 2003; Wang et al., 
2004; Li et al., 2008) have been successfully incur-
porated from this wild taxon into commercial varieties. 

As linkage distances are derived from recombination 
frequencies between loci thus can be used to assess the 
degree of linkage drags (Doebley and Stec, 1991, 1993; 
Liu et al., 1994; Mano et al., 2005). Several linkage maps 
have been generated for soybean, some based on po-
pulations generated between cultivated genotypes 
(Yamanaka et al., 2001; Zhang et al., 2004; Kassem et 
al., 2006) and others from populations between cultivated 
and wild relatives (Cregan et al., 1999; Song et al., 2004; 
Liu et al., 2007). However, to our knowledge, no attempt 
has ever been made in exploiting these linkage data for 
investigating the usability of G. soja in breeding programs. 
To facilitate the further exploitation of the genetic variation 
from this wild taxon, we assessed recombination 
frequencies between cultivated soybean and G. soja ge-
notypes by analyzing a set of SSR markers covering 
each of the soybean linkage groups and reported the 
results obtained in this work. 
 
 
MATERIALS AND METHODS 
 
Two F2 populations derived from two different G. soja accessions 
(ZYD2738 and ZYD2739) and a common cultivar Jidou 12 were 
used in this study. Both of the two wild soybean accessions were 
collected in China and they are typical G. soja genotypes showing 
many characteristics contrasting to those of G. max including 
rampant growth habit, twinning and indeterminate stem, pots 
shattering, presence of bloom and tiny seeds. Jidou 12, bred at the 
Institute of Cereal and Oil crops, Hebei Academy of Agricultural and 
Forestry Sciences, Shijiazhuang, China, is an elite variety with high 
protein content. Seeds of the F2 generation were collected from a 
single F1 plant for each of these two crosses in late September 
2006. The F2 populations, consisting of 85 (designated as Y8) and 
96 (Y9) individuals, respectively were sown in plastic pots at the 
Dishang Experimental Station in Hebei, China in late June 2007. 

 
 
DNA isolation and SSR analysis 
 
Young leaves, collected from plants (about one month old) of the 
two F2 populations, were ground in liquid nitrogen, and DNA was 
extracted using the Tiangen DNAquick Plant System (Beijing). DNA 
samples were quantified and diluted to 15 ng/μl prior to PCR ampli- 
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amplification. Based on the consensus soybean genetic linkage 
map published by Song et al. (2004), 151 SSR markers distributed 
throughout the 20 genetic linkage groups were selected to test the 
three parents involved in the two populations. Primer sequences of 
the SSR markers used were obtained from the SoyBase website of 
the USDA, ARS Genome Database 
(http://soybase.agron.iastate.edu/). Polymerase chain reactions 
(PCR) were carried out in a final volume of 20 μl, containing 1 × 
PCR Buffer, 100 μM of each dNTP, 0.4 μM of each primer, 30 ng 
genomic DNA, and 1 U of Taq DNA polymerase. DNA amplification 
was carried out over 35 cycles of 94°C for 30 s, 47°C for 30 s, 72°C 
for 30 s, then followed by a final 5 min extension at 72°C. PCR 
products were fractionated by 6% SDS-polyacrylamide gel 
electrophoresis and visualized by silver staining. Polymorphic SSR 
markers were then used to analyse the F2 populations. Genotypes 
of the individuals of the F2 populations were classified as ‘A’ (allele 
from Jidou 12, ‘B’ (allele from either of the wild G. soja accessions) 
or ‘H’ (heterozygous loci containing alleles from both parents). 

 
 
Map construction and linkage distance comparison  

 
Linkage analysis was performed using the Mapmaker/Exp 3.0 
(Lincoln et al., 1993), with the selection of Kosambi for Map 
Function and 0.05 probability for linkage criterion. Segregation 
distortion was defined by Chi-square test. The map distances 
between markers from the two wide crosses were then compared 
with that of the consensus map which was compiled by combining 
data from five different populations (Song et al., 2004) using the 
‘ANOVA’ in SAS (version 9.1). As the genotyping data for the 
consensus map was not available, 10% was arbitrarily set to 
indicate the existence of difference between linkage distances for a 
given pair of markers between those obtained from either of the two 
wide populations used in this study and that in the consensus map. 

 
 
RESULTS  

 
Of the 151 SSR markers analyzed in this study, 121 
(80.1%) detected polymorphism between the two parents 
of Y8. All of the 121 polymorphic markers were used to 
detect the F2 population. Of them, 114 (94.2%) showed 
the expected 1:2:1 segregation. The remaining seven 
markers (5.8%) showed distorted segregation; one 
(Satt407 on linkage group MLG D1a) with excessive 
heterozygous genotypes, two (Satt399 on MLG C1 and 
Satt274 on MLG D1b) with fewer than expected 
heterozygous genotypes, three (Satt162 and Satt623 on 
MLG I and Satt617 on MLG K) with excessive G. soja 
alleles and the remaining one (Satt549 on MLG N) with 
excessive alleles of the cultivated genotype (Figure 1). 
One hundred and nine (109) of the 121 polymorphic 
markers formed 24 linkage groups, each containing 
between two and eight markers. The distances between 
these markers varied between 0.7 and 35.7 cM. All but 
one of the SSR markers used in the current study 
mapped in the same linkage groups between the map of 
Y8 and the consensus map. The only exception was 
Satt102 which was mapped on MLG I in Y8 but on MLG 
K in the consensus map. It is of interest to note that the 
same discrepancy was also noted in a population 
reported by Winter et al. (2007). 

http://soybase.agron.iastate.edu/
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Figure 1. Linkage distances among the common intervals between the maps derived from the two wide crosses (Y8 and Y9) used this study and the consensus linkage map reported by 
Song et al. (2004). ‘*’ or ‘**’ indicates significant (p<0.05) or highly significant (p<0.01) segregation distortion of the locus concerned. Linkage groups were designated as those used in the 
consensus map. 
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Figure 1. Contd 
 
 
 

The 109 markers cover a total distance of 1123.8 
cM which is not significantly different from the 
1093.5 cM of the consensus map (p=0.66). The 
average distance between a pair of these markers 

was 13.9 cM. Linkage among the remaining 12 
markers or between any of them with other 
markers was not detected. Eighty- two (82) 
shared marker intervals were found between the 

Y8 linkage map and the consensus map (Figure 
1). Of these, 32 gave shorter distances (reduced 
by 10% or larger), 35 gave longer distances 
(increased by 10% or larger) and the differences  
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for the remainder 15 intervals between those in the Y8 
and those in the consensus maps were less than 10%. 

For Y9, 102 (67.5%) of the 151 SSR markers were 
detected to be polymorphism between its two parents. 
Seventy-two (72) of the 102 polymorphic markers were 
used to screen this population. Of these, 57 (79.2%) 
showed the expected 1:2:1 segregation ratios. 
Segregation ratios for the other 15 markers (20.8%) were 
significantly or highly significantly distorted (Figure 1). 
Sixty-five (65) of the 72 polymorphic markers formed 19 
linkage groups, each containing between two and nine 
markers. The linkage distances between these markers 
varied between 2.4 and 33.7 cM. The 65 markers 
covered a total distance of 740.2 cM which was again not 
significantly longer than the 599.4 cM covered by the 
same markers in the consensus map (p=0.08). The 
average distance between these markers in the linkage 
map of Y9 was 16.1 cM. Compared with the linkage 
groups formed by these markers in Y9 and those in the 
consensus map, 46 common intervals were found (Figure 
1). Of these, ten gave shorter distances in the map 
constructed in this study, 29 longer, and the map 
distances for the remaining seven intervals were similar 
between these two linkage maps. 
 
 

DISCUSSION 
 

Previous studies showed that linkage distance between 
two markers can be affected by many factors including 
parental genotypes as well as environments (Liu et al., 
1994; Busso et al., 1995; Lashermes et al., 2001; 
Lenormand and Dutheil, 2005). Thus, the absence of 
significant differences described above may only apply to 
the two wild accessions used in this study. However, this 
does not seem to be the case. The total linkage distance 
obtained from a similar cross (Cregan et al., 1999) was 
also not any shorter than that derived from a cultivated by 
cultivated population (Song et al., 2004). Thus, it is not 
unreasonable to speculate that compared with those of 
between cultigens, a general reduction in recombination 
frequencies between cultivated soybean and G. soja may 
not exist. Transferring genes from most of the 
chromosomal regions of the G. soja genome into 
cultivated genotypes is thus no more difficult than 
transferring genes between two cultivated genotypes. 
The lack of recombination barriers between cultivated 
and the wild soybean taxon seems to be consistent with 
the reports that the domestication-related traits are often 
controlled by major loci with a few genotype-dependent 
minor loci (Paterson et al., 1995; Liu et al., 2007; 
Weeden, 2007). Nonetheless, many traits of agronomic 
importance such as seed size are apparently controlled 
by multiple genes located at different genome regions 
(Liu et al., 2007). Thus, to eliminate those chromatins 
conferring non-desirable characteristics, backcrossing 
would still be essential in exploiting the genetic variations 
from this wild taxon. 
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