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Genomics and proteomics microarray technologies are used for analysing molecular and cellular 
expressions of cancer. This creates a challenge for analysis and interpretation of the data generated as 
it is produced in large volumes. The current review describes a combined system for genetic, molecular 
interpretation and analysis of genomics and proteomics technologies that offers a wide range of 
interpreted results. Artificial neural network systems technology has the type of programmes to best 
deal with these large volumes of analytical data. The artificial system to be recommended here is to be 
determined from the analysis and selection of the best of different available technologies currently 
being used or reviewed for microarray data analysis. The system proposed here is a tree structure, a 
new hierarchical clustering algorithm called a dynamically growing self-organizing tree (DGSOT) 
algorithm, which overcomes drawbacks of traditional hierarchical clustering algorithms. The DGSOT 
algorithm combines horizontal and vertical growth to construct a mutlifurcating hierarchical tree from 
top to bottom to cluster the data. They are designed to combine the strengths of Neural Networks (NN), 
which have speed and robustness to noise, and hierarchical clustering tree structure which are 
minimum prior requirement for number of clusters specification and training in order to output results 
of interpretable biological context. The combined system will generate an output of biological 
interpretation of expression profiles associated with diagnosis of disease (including early detection, 
molecular classification and staging), metastasis (spread of the disease to non-adjacent organs and/or 
tissues), prognosis (predicting clinical outcome) and response to treatment; it also gives possible 
therapeutic options ranking them according to their benefits for the patient. 
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INTRODUCTION 
 
At a functional level, cancer is both a proteomic and a 
genomic disease (Hanahan and Weinberg, 2000). 
Cancer   is   a   highly   variable   disease   with    multiple  
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heterogeneous genetic and epigenetic changes. A cancer 
genetic defect is selected during cancer progression 
because the defect ultimately alters the protein network 
generating a survival advantage for the cancer cell 
(Hunter, 2000). The development and progression of 
cancer (Vogelstein and Kinzler, 1993; Weinberg, 1995; 
Levine,  1993)   results   from  progressive  alterations  of  



 
 
 
 
sequence of genetic and epigenetic changes which 
promotes the malignant transformation of the cell by 
disrupting key processes involved in normal growth 
control and tissue homeostasis. Three types of genes are 
responsible for tumorigenesis when undergoing alte-
rations. Oncogenes are involved in promoting cell growth. 
Tumour suppressor genes are negative regulators of 
growth or other functions that may affect invasive and 
metastatic potential such as cell adhesion and regulation 
of protease activity. Stability genes control the rate of 
DNA mutation and contribute to the development of 
cancer when they incur alterations which result in 
mutations in the oncogenes or the tumour suppressor 
genes (Vogelstein, 2004; Bielas et al., 2006). 

The term genomics refers to a comprehensive analysis 
of gene expression of large number of genes. This is 
achieved by assessing relative or semi-quantitative 
amounts of RNA in biological specimens. Genomic analy-
sis uncovers mutations, deletions and epigenetic alte-
rations that directly or indirectly alter gene expressions. 
Understanding proteins and their modifications may 
elucidate properties of cellular behaviour that may not be 
reflected in analysis of gene expressions is referred to as 
proteomics. Because of the multitude of potential post-
translational modifications, compartment-talisation of 
proteins and the formation and regulation of multi-protein 
complexes, proteomic technologies and studies are 
rendered be more technically challenging (Chung et al., 
2007). Genomics and proteomics technologies are a new 
and powerful tool for studying the molecular basis of 
interactions on a scale that is impossible using 
conventional analysis. These techniques make it possible 
to examine the expression of thousands of genes and 
proteins simultaneously. Most of the applications of 
genomics and proteomics technology come from the field 
of cancer research. Genomic and proteomic technologies 
facilitate the analysis of genetic and molecular alterations 
of thousands of tissue speci-mens in parallel, though not 
at the same time. examples include analysing the 
frequency of genetic and molecular alterations in large 
tumour materials to classify tumours according to their 
sites of origin (Su et al., 2001; Ramaswamy,  2001; 
Bloom et al., 2004), exploring the tumour’s progression 
(van't Veer et al., 2002; Shipp et al., 2002; Leung et al., 
2002), discovering previously unre-cognised subtypes of 
cancer (Adam et al., 2001; Carter et al., 2002; Rosty, 
2002; Bittner et al., 2000; Perou et al., 2000) identifying 
predictive or prognostic factors and validating newly 
discovered genes as diagnostic and therapeutic targets 
(Kallioniemi et al., 2001; Scherf et al., 2000).  

Analysis of these data requires the use of a system 
with algorithms that employ clustering technology. 
Clustering is a useful unsupervised method for identifying 
patterns from large data sets. Hierarchical clustering is of 
advantage when no prior knowledge of data sets is 
available and the clusters are not pre-defined. It can find 
different levels of patterns of data,  identify  trends  in  the 
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data, and generalise the information. Currently a 
dynamically growing self-organising tree (DGSOT) 
proposed by Luo et al. (2003) uses a hierarchical cluster 
algorithm. To determine the true number of clusters it has 
a new cluster validation criterion called cluster 
separation, and to improve the cluster results it employs 
a new K-level up distribution (KLD) mechanism. The 
DGSOT grows in two directions, vertically and 
horizontally. In DGSOT each leaf represents a cluster 
that includes all data associated with it. The reference 
vector of a leaf is the centroid of all data associated with 
it. Each internal node represents a cluster that includes 
all data associated with its leaf descendants, and the 
reference vector of an internal node is the centroid of all 
data associated with its leaf descendents.  In each 
vertical growth, the DGSOT adds two ‘children’ (sub 
clusters) to the leaf whose heterogeneity is greater than a 
threshold and turns it to a node. In each horizontal 
growth, the DGSOT dynamically finds the proper number 
of children of the lowest level nodes. The proper number 
of clusters is determined by cluster validation. Each 
vertical growth step is followed by a horizontal growth 
step after which a learning process is adopted. Each 
procedure is called a cycle which contains a series of 
epochs which consist of a presentation of all input data. 
Each presentation has two steps which are to find the 
best matching node and updating the reference vector. 
The input data is only compared to the leaf nodes 
determined by the KLD mechanism to be the best 
matching node which is known as the winner. The leaves 
whose heterogeneity is greater than a threshold will 
change itself to a node and create two descendent 
leaves. When the heterogeneity of all leaves less than a 
threshold TR Vertical growth is stopped.  

It is now possible to make the diagnosis of a particular 
cancer and cancer subtypes without examining histology. 
Genomic and proteomic technologies may not only 
eliminate diagnostic categorisation of the unknown 
primary cancer but may also improve the diagnostic 
accuracy of the current approaches. This technology also 
promises to lead to improvements in developing rational 
approaches to therapy as well as improvements in cancer 
diagnosis, prognosis and identification of gene and 
molecular sets associated with metastasis. One of the 
potential benefits of this technology within the next 
decade would be predicting who will develop cancer and 
how the disease will behave and respond to therapy after 
diagnosis (Staunton et al., 2001; Russo et al., 2003). In 
this study genomic and proteomics microarray 
technologies will be reviewed and the best technology 
available for analysing and interpreting the data 
generated will be recommended. 
 
 
GENOMIC TECHNOLOGIES 
 
The completion of the human genome  sequence  project 
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has led to the study of gene expressions on a genomic 
scale (Brown and Botstein, 1999). Genomic technologies 
allow for the assessment of interactions between 
expressed genes to obtain a global view of cancerous 
tissue in a single unbiased experiment rather than 
focusing on one or a handful of genes at a time (Chung et 
al., 2007). Thirty years of molecular biology have 
provided numerous examples of genes that function 
under specific conditions and whose expression is tightly 
restricted to those conditions. At the level of transcript 
abundance, using DNA microarrays, the regulation of 
gene expression as well as the tight connection between 
the function of a gene product and its expression pattern 
makes it easy to measure the transcripts for every gene 
at once. 

By changing the level of transcription of specific genes, 
promoters function as transducers, responding to inputs 
of information about the identity, environment and internal 
state of a cell. Therefore, from the profile of transcripts 
obtained by DNA microarray, we can learn what 
information is transduced by the promoter of each gene. 
In a cell there are sets of genes which when expressed 
determine what the cell is made of, what biochemical and 
regulatory systems are operative, and how the cell is built 
(Brown and Botstein, 1999). 
 
 
Genomic microarray platforms 
 
It was first observed that single stranded DNA binds 
strongly to nitrocellulose membranes in a way that 
prevents the strands from re-associating with each other 
but permits hybridization of complementary RNA 
(Gillespie, 1965). In eukaryotes it was used to measure 
the number of copies of repeated genes, like those for 
ribosomal RNAs and transfer of ribonucleic acid (tRNAs) 
and to measure changes in the number of copies during 
processes such as amplification (Ritossa et al., 1971). 
Cloning technology provided a way for finding those 
clones which included specific sequences (Grunstein, 
1975). This method was the direct antecedent of the 
blotting methods. Dot-blotting methods are more relevant 
to microarray (Kafatos, 1979). One could obtain 
information about the quantity of a particular message 
present in each RNA pool from immobilisation of RNA 
samples on the same matrix (Duggan et al., 1999). 

This field was evolved from Edwin Southern’s key 
insight that labelled nucleic acid molecules used to 
interrogate nucleic acid molecules attached to a solid 
support (Southern, 1975). Northern blots (hybridization of 
RNA-DNA) and Southern blots (hybridisation of DNA-
DNA) rely on hybridization between nucleic acids. 
Complementary gene sequences recognise each other 
and detect the presence or absence of DNA or RNA of 
interest in a sample using probes labelled in a variety of 
ways of detectors (fluorogenic, radiological or 
chemiluminescent detectors)  (Chung  et  al.,  2007).  The  

 
 
 
 
two main types of microarray systems used today are 
complementary DNA (cDNA) and oligonucleotide 
microarrays (Schulze and Downward, 2001). cDNA array 
probes which are relatively long molecules are usually 
products of polymerase chain reaction (PCR). The PCR 
transcripts are generated from clone collections, using 
either vector-specific or gene-specific primers or are 
generated from cDNA libraries. They are printed on glass 
slides or nylon membranes as spots at defined locations. 
The spots are normally about 100 to 300 µm in size with 
the same distance spacing. Arrays consisting of more 
than 30,000 cDNAs can be fitted onto the surface of a 
conventional microscope slide using this technique. This 
type of microarray is mostly used for large scale 
screening and expression studies. 

Oligonucleotide arrays consist of short 20 to 25 
polymers synthesized in situ, either by photolithography 
onto silicon wafers (high-density-oligonucleotide arrays 
from Affymetrix), [http://www.affymetrix.com] or by ink-jet 
technology was developed by Rosetta Inpharmatics, 
(http://www.rii.com) and licensed to Agilent Technologies. 
They can also be directly synthesized onto glass slides. 
With oligonucleotides, probes can be designed to identify 
a unique part of a given transcript, making the detection 
of closely related genes or splice variants possible. The 
arraying of pre-synthesized longer oligonucleotides (50 to 
100 polymers) has recently been developed to counteract 
the disadvantages of short oligonucleotides which may 
sometimes result in less specific hybridization and 
reduced sensitivity (Schulze and Downward, 2001; TJ, 
2003; Relogio et al., 2002). The advantage of synthetic 
oligonucleotides is that the sequence information alone is 
sufficient to generate the DNA to be arrayed therefore no 
time consuming handling of cDNA resources is required 
(Kane, 2000). This microarray is used for the detection of 
mutations, gene mapping and expression studies and 
allows for the differential detection of gene family 
members or alternative transcripts that are not 
distinguishable by cDNA microarrays (Lipshutz, 1999). 

Schulze and Downward (2001) provided a helpful 
schematic overview of probe array and target preparation 
for spotted cDNA microarrays and high density 
oligonucleotide microarrays. To distinguish between dot 
blots and DNA microarrays one can note that DNA 
microarrays use an impermeable rigid substrate such as 
glass which has a number of practical advantages over 
the porous membranes and gel pads used for dot blots 
(Khrapko et al., 1989). The development of methods for 
high-density spatial synthesis of oligonucleotides as well 
as the use of non-porous solids like glass sparked the 
explosion of interest in array technologies was facilitated 
by miniaturization and fluorescence-based detection 
(Lander, 1999). The first glass slide arrays were 
produced by Brown and colleagues at Stanford University 
(http://cmgm.stanford.edu/pbrown/index.html). They 
pioneered protocols for robotically spotting up to about 
10,000 cDNAs onto a  microscope  slide  and  hybridizing 



 
 
 
 
with a double labelled probe. Fodor and colleagues 
adopted photolithographic masking techniques use in 
semiconductor manufacture to produce arrays with 
400,000 distinct oligonucleotides (Brown and Botstein, 
1999; Lander, 1999). 

From Brown and colleagues the technology spread to 
few others who made important refinements to the micro-
array technology as well as disseminating it and making 
available detailed protocols. They include Jeff Trent 
National Human Genome Research Institute (NHGRI, 
http://www.nhgri.nih.gov/DIR/LCG/15K/HTML/), Vivian 
Cheung (University of Pennsylvania; 
http://w95vcl.neuro.chop.edu/vcheung) and Geoff Childs 
(Albert Einstein College of Medicine; 
http://sequence.aecom.yu.edu/bioinf/funcgenomic.html). 
The Pat Brown website also contains detailed 
specifications for building an arrayer and associated 
software. Additional protocols and hardware details can 
also be found at 
(http://chroma.mbt.washington.edu/mod_www/) (Bowtell, 
1999). This technology further advanced to 
commercialisation by companies such as Affmetrix. The 
steps for performing microarray experiments are as 
follows: 
 
1. mRNA from cells or tissue is extracted. Isolated RNA 
from samples of interest and a reference RNA are 
reverse transcribed into cDNA. 
2. These are then labelled. In the case of spotted arrays 
the process of gridding is not accurate enough to allow 
comparison between different arrays therefore each is 
labelled with one of two spectrally distinct fluorescent 
dyes such as Cy3 or Cy5 to allow mRNAs from two 
different cell populations or tissues to be labelled in 
different colours, mixed and hybridized to the same array, 
which results in competitive binding of the target to the 
arrayed sequences. 
3. Following labelling and purification, the labelled 
samples are pooled together to provide a target mixture 
containing cDNA representing a reference RNA as well 
as cDNA representing an experimental sample of 
interest. 
4. This mixture is hybridized to the cDNA elements on the 
array surface of a single microarray. The labelled cDNA 
in the pooled samples hybridizes to probes with 
complementary sequence immobilized on the array. 
5. Following hybridization, the microarray is washed to 
remove unbound and non-specific material. 
6. After hybridization and washing the slide is scanned 
using two different wavelengths, corresponding to the 
dyes used, and the intensity of the same spot in both 
channels is compared. The wavelength radiation 
emissions are detected via a photomultiplier tube or a 
charged couple device camera. 
7. The slide can then be visualised with a laser based 
device that measures the fluorescence of the two 
spectrally distinct fluorescent dyes at  each  of  the  probe 
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spot positions. Most often a 16-bit TIFF image is 
generated representing the fluorescent signal intensities.  
8. The fluorescent signal of the two hybridized samples at 
each probe position as well as determining background 
levels on the array can be compared using image 
analysis software. The intensity ratio between the two 
fluorescent dyes at each probe position is calculated 
using these signals and background values, thus 
providing an assessment of RNA abundance in the two 
samples as the ratio is indicative of relative amount of 
RNA for a particular probe in each of the two samples 
(Chung et al., 2007; Schulze and Downward, 2001). 
 
 
PROTEOMIC TECHNOLOGIES 
 
Recent advances in areas such as genome sequencing, 
robotics, bioinformatics and proteomics has led to an 
explosion of interest in the field of protein and antibody 
arrays. Compared to DNA arrays the generation of 
protein arrays is more costly and labour intensive. The 
medical rationale behind investigating changes in the 
structure or abundance of proteins is to improve our 
understanding of normal disease process as such 
changes can lead to disease. Advantages of analysing 
biological processes at protein level are that gene protein 
dynamics are non linear, and there is no reliable 
correlation between gene activity and protein abundance 
so it is difficult to predict protein dynamics, structure or 
interactions using genetics or DNA approaches 
(Anderson and Seilhamer, 1997; Cahill, 2001). 
Proteomics is the large scale study of expression, 
function and interactions of proteins (Geysen and 
Barteling, 1984). Proteomics aims to characterise the 
information flow within the cell and the organism through 
protein pathways and networks. The information flow 
here is mediated by protein-protein interactions that is, 
proteins deliver packets of information by modifying a 
protein binding partner for example, by 
phosphorylation/dephosphorylation, cleavage or 
alteration of its conformation (Liotta and Petricoin, 2000; 
Ideker et al., 2001; Schwikowski et al., 2000; Legrain et 
al., 2000; Blume-Jensen and Hunter, 2001; Pawson, 
1995; Petricoin et al., 2002). 

New biomarkers and therapeutic targets have been 
developed via different proteomic methods. These 
include 2-dimensional gel electrophoresis, 2-color and 
mass spectrometry (matrix-assisted laser 
desorption/ionization time-of-flight). These methods are 
time consuming, equipment is expensive and it requires 
experienced investigators. Tissue microarray is a more 
cost effective proteomic method which is available to 
most large pathology laboratories (Bubendorf and 
Koivisto, 1999; Popper and Kothmaier, 2008). Basically 
two general strategies have been pursued in proteomics. 
Firstly, function based microarrays, which are protein 
microarrays    that    assess    protein    interactions    and 
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biochemical activities by examining protein function in 
high throughput by printing a collection of target proteins 
on the array surface. The second type is abundance 
based microarrays. These are tissue microarrays which 
measure the abundance of specific bio-molecules using 
analyte-specific reagents (ASRs) such as antibodies 
(LaBaer and Ramachandran, 2005). Analysis of complex 
biological systems requires information that goes beyond 
protein expression level. Once again microarray 
technology has the great potential to provide us with 
powerful tools to identify and quantify proteins and to 
study their function in global perspectives (MacBeath, 
2002; Templin et al., 2002, 2003). 
 
 
Proteomic microarray platforms 
 
The two main microarray platforms used in proteomics 
are; tissue microarrays (TMAs) and protein microarrays. 
TMAs were developed to address limitations of 
conventional techniques and to provide a major step 
forward in pathology research with subsequent potential 
utility in diagnostics and prognostic pathology (Kononen 
et al., 1998; Bubendorf et al., 1999). With TMA, molecular 
alterations in thousands of tissue specimens can be 
analysed in at the same time. TMA construction utilizes 
cylindrical core specimens from up to 1000 formalin fixed 
paraffin embedded (FFPE) tissue blocks containing 
hundreds of tissue cores on a single glass slide. These 
are then arrayed at high density into a recipient TMA 
block (Kallioniemi et al., 2001; Giltnane and Rimm, 2004). 
Up to 200 sections can be made and analysed by 
immunohistochemistry, in situ hybridization or 
immunoflorescence from a single array block. Thousands 
of replicate TMA slides can be constructed by sampling 
each donor block multiple times and positioning the 
tissues at identical coordinates in all TMAs (Ullmann et 
al., 2004). In a single experiment molecular 
characteristics of up to a 1000 specimens can be 
examined at once. The analysis carried out on TMAs 
extends the information available from gene expression 
microarrays by providing information on cellular origin of 
the molecular targets. TMAs are usually constructed from 
archival formalin fixed tissue materials which is a 
significant advantage as such specimens cannot be used 
in other high through technologies like cDNA microarrays 
(Kallioniemi et al., 2001). 

Kallioniemi et al. (2001) have provided step by step 
instructions for technology for tissue microarray 
construction. In TMAs the pattern of protein expression 
can be studied in different cell compartments (nuclear, 
cytoplasmic, and membranous) and the distribution of 
proteins in tumour cells, stroma and adjacent normal 
parenchyma, including normal bronchial and alveolar 
epithelium can also be observed (Popper and Kothmaier, 
2008). Typical tissue microarray technologies include 
multitumor, progression, prognosis and cryomicroarrays. 

 
 
 
 
Multitumor microarrays are composed of samples from 
multiple histological tumour types (Schraml et al., 1999). 
In progression microarrays stages of different tumour 
progressions within a given organ such as prostate, 
breast or kidney are contained in samples (Bubendorf 
and Koivisto, 1999; Kononen et al., 1998; Moch et al., 
1999). Prognosis microarrays contain tumour samples 
from patients for whom clinical follow up data are 
available. Some studies have been published comparing 
molecular data with clinical end points (Kallioniemi et al., 
2001; Barlund et al., 2000; Richter et al., 2000; Simon et 
al., 2001). Cryomicroarrays are superior to formalin fixed 
tissues in terms of RNA and protein integrity. The array 
uses frozen tissue embedded in an optimal cutting 
temperature compound (Russo et al., 2003; Fejzo and 
Slamon, 2001). 

TMAs have several limitations: for example the 
cylindrical tissue cores do not permit a complete 
pathological evaluation. Immunohistochemistry (IHC) 
assay is limited to known candidate proteins for which 
specific and high quality antibodies are available. Another 
limitation is the ability to validate the antibody using IHC 
for example, staining cross reactive proteins rather than 
the analytes of interest. Although there are many 
automated tools available for scoring and 
standardisation, it can be subject to inter examiner 
inconsistency. Recovery of intact and good quality 
genomic and proteomic material is difficult with formalin 
fixed specimens because of the intense cross-linking 
induced between the bio-molecules by formalin fixation 
(Chung et al., 2007; Wang et al., 2001; Bauer et al., 
2000). Protein microarrays are composed of immobilised 
protein spots which contain a set of ‘bait’ molecules 
(Liotta et al., 2001; MacBeath, 2002; Zhu and Snyder, 
2003). Antibodies, cells or phage lysates, recombinant 
protein or peptide, a drug or nucleic acid may be 
displayed on the array spot. The array is queried with a 
labelled antibody or ligand (probe) or analytes of interest 
contained in an unknown biological sample (for example, 
cell lysate or serum sample) (Zhu and Snyder, 2003; Lal 
et al., 2002; Templin et al., 2002; Wilson and Nock, 2003; 
Paweletz et al., 2001; MacBeath and Schreiber, 2000; 
Humphery-Smith et al., 2002; Petach and Gold, 2002). 
Molecules are then tagged with a signal generating 
moiety which generates a pattern of positive and negative 
spots. The intensity of the signal is proportional to the 
quantity of the applied query molecules bound to the ‘bait’ 
for each spot on the array. Images can then be captured 
and analysed. 

Protein  microarrays can be used in the analysis of the 
interactions between proteins and other proteins, low 
molecular weight compounds, peptides, oligosaccharides 
or DNA (for example, tumour proteins are compared with 
those of normal adjacent tissues or to standard protein 
lysates). The microarrays allow for the identification of a 
large number of target proteins from a minute amount of 
sample  within  a  single  experiment   (MacBeath,   2002; 



 
 
 
 
Templin et al., 2002, 2003). 

Protein microarray platforms can be categorised into 
two groups. These are called forward phase arrays (FPA) 
and reverse phase arrays (RPA) depending on whether 
the analyte is captured from solution phase or bound to 
solid phase (Liotta et al., 2003; Sheehan et al., 2005). In 
forward phase arrays antibodies for a target protein 
usually referred to as capture molecules, are immobilised 
onto a substratum like such as a glass slide similar to 
DNA microarrays. One type of immobilised antibody is 
contained in each spot. The target protein is contained in 
the cellular lysate (example protein lysate from tumour or 
normal tissue). The bound protein can then be detected 
using a fluorochrome labelled secondary antibody. This 
method multiple analytes can be measured at once. In 
reverse phase arrays complex protein lysates/mixtures 
are immobilised onto glass slides. The slides are then 
incubated with specific antibodies against a protein of 
interest. A single analyte end point is measured and 
directly compared against a large number of samples on 
a single glass slide. Fluorescent, isotopic and 
chemiluminescent horseradish peroxidase/luminol 
systems can be used for detection (Liotta et al., 2003). 
This method is limited to the availability of candidate 
proteins of interest and availability of specific and high 
quality antibody against the protein of interest. Self 
assembling microarrays are the new emerging protein 
microarray platforms. They promise a much wider and 
easier use of the technology to probe protein interaction 
and function (LaBaer and Ramachandran, 2005; 
Ramachandran et al., 2004). 
 
 
ANALYSIS OF MICROARRAYS AND THEIR CLINICAL 
OUTCOMES 
 
Genomics data analysis 
 
Thousands of data points are generated in a typical 
genomic microarray and this creates serious challenges 
for storing and processing data. In order to manage the 
information on the genes represented on the array, 
construction of databases is required. After completion of 
data acquisition, the appropriate data filtering 
normalisation and background correction approach is 
most appropriate for the given data set decided on. 
Various methods are available for detecting and 
quantitating gene expression levels. These include 
sequencing of complementary deoxyribonucleic acid 
(cDNA) libraries and serial analysis of gene expressions 
(SAGE) (Adams et al., 1991; Okubo et al., 1992; 
Velculescu et al., 1995; McAdams and Shapiro, 1995). 
Ermolaeva et al. (1998) developed software that is 
capable of both analysing microarray data and linking to 
databases such as Entrez and UniGene. This software 
can be found and downloaded at 
(www.nhgri.nih.gov/DIR/LCG/15K/HTML/). A sophisticated 
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program for analysing microarray data (Gem Tools) was 
developed by Synteni. Silicon Genetics provides the 
Gene Spring package for analysing data from Affymetrix 
GeneChip and other microarray experiments 
(http://www.sigenetics.com). Other commercial readers 
and arrayers provide software for data analysis and 
mining (Duggan et al., 1999).  

These software analysis methods can be broken down 
into two categories viz. supervised and unsupervised 
analysis. An unsupervised analysis is mostly used for 
molecular classification of tumours or class discovery 
based on gene expression patterns. Other unsupervised 
analytical tools are self organising maps (SOM), K means 
clustering and principle component analysis (Tamayo et 
al., 1999; Tavazoie et al., 1999; Pomeroy et al., 2002). 
Supervised analyses are usually applied for gene 
selection and class prediction to determine sets of genes 
that distinguish one group from another (Wu, 2001). 
 
 
Application of clinical outcomes of genomics 
 
Classification of diagnosis 
 
Gene expression profiling has been evaluated to 
augment the accuracy of diagnosis, especially the 3 to 
5% of new cancer cases with unknown primary origin. 
Ramaswamy et al. (2003) showed the feasibility of 
comprehensive molecular cancer diagnosis by analysing 
218 tumour samples from 14 common tumour types and 
90 normal samples for multi-class cancer diagnosis 
based on tumour gene expression analysis. Their results 
gave them an overall accuracy of 78% as poorly 
differentiated cancers could not be accurately classified 
with their corresponding organs. Tothill et al. (2005) 
evaluated the identification of cancer origin from 
metastatic tumours of unknown primary origin based on 
the gene expression profile. The tumour type could be 
predicted with 89% accuracy using a support vector 
machine (Su et al., 2001; Ramaswamy, 2001; Giordano 
et al., 2001; Tothill et al., 2005; Briasoulis and Pavlidis, 
1997). Golub et al. (1999) introduced a concept of 
identifying previously unknown tumour subtypes and 
predicting a tumour to be within an already defined class 
based on gene expression profile using acute myeloid 
leukaemia (AML) and acute lymphoblastic leukaemia 
(ALL) as a model. Other large studies have been 
published to show that  microarray can diagnose and 
identify subcategories of hematologic malignancies 
(Hofmann et al., 2001; Yeoh et al., 2002; Armstrong et 
al., 2002; Ferrando et al., 2002; Shimada et al., 2002; 
Valk et al., 2004; Bullinger et al., 2004). 
 
 
Prediction of metastasis 
 
The understanding of metastasis is an  important  area  in 
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clinical cancer research; mechanisms of metastasis have 
been scientifically researched for years. Some insight into 
the complex processes undergone during metastasis has 
been provided by genomic technology, and it has proven 
its ability to predict metastatic behaviour from the 
analysis of primary tumours (van de Vijver et al., 2002). 
Dhanasekaran et al. (2001) used 9984 element spotted 
microarrays and were able to distinguish normal prostate, 
benign prostatic hyperplasia (BPH), localised prostate 
cancer and metastatic cancer samples. Zajchowski et al. 
(2001) in a recent study identified 24 genes differentially 
expressed between weakly and highly invasive breast 
cancer cell lines and showed that their RNA expression 
profiles were sufficient to predict the aggressiveness of 
previously uncharacterized cell lines. 

Using a sub-megabase resolution tiling array (SMRT), 
(Fadlelmola et al., 2008) demonstrated how microarray-
based comparative genomic hybridization (Array CGH) 
revealed gains and losses of 9 novel regions not 
previously reported in the literature in Hodgkin 
Lymphoma (HL) cell lines L428 and KMH2. Gene 
mapping to these regions include cell cycle-associated 
genes, signaling pathway genes, genes encoding tight 
junction proteins CLDN4 (claudin4) and Jak/Stat 
signaling pathway and tumour suppressor gene ING3 
(Fadlelmola et al., 2008). 
 
 
Classification for prediction of recurrence and 
survival 
 
Clinicians routinely observe variable clinical outcomes 
within patients with comparable histopathology, staging 
and treatment. This can be followed, as cancer is a 
heterogeneous disease. Tumour subclasses defined by 
expression profiling can predict disease-free and overall 
survival of patient (Sorlie et al., 2001). Many candidate 
markers have emerged from other studies and are being 
further investigated as potential diagnostic markers which 
could highlight risk of recurrence after medical 
interventions. There are candidate markers of prostate 
cancer such as proto-oncogene PIM1. Dhanasekaran et 
al. (2001) showed that diminished PIM1 expression on 
the immunohistochemistry of prostate tumour samples 
conferred an increased risk of recurrence after surgery. 
 
 
Treatment response prediction and patient selection 
 
The microarray approach has a potentially greater 
predictive power than currently used approaches, and it 
needs to be validated in more prospective clinical studies. 
Unfortunately current prognostic markers do not 
adequately identify the most effective therapy for 
patients. It has been shown in a small sample of breast 
tumour that pre-treatment expression profiles predict 
clinical response to chemotherapy (Sotiriou et al., 2002). 

 
 
 
 
Sorlie et al. (2001) demonstrated that tumour subclasses 
defined by expression profiling can predict disease free 
and overall survival. 
 
 
Proteomics data analysis 
 
Complete proteomic analysis involves measuring the 
abundance, modification, activity, localisation and 
interaction of all the proteins in a given sample. Different 
detection, identification and quantisation methods have 
been developed for proteomic analysis, often with 
emphasis on those proteins with altered abundance 
relative to the reference sample. These include 2-color, 
2-dimensional gel electrophoresis and mass 
spectrometry (matrix assisted laser desorption/ ionisation 
time of flight, surface enhanced laser desorption/ 
ionisation time of flight (Roepstorff, 1997; Fenn et al., 
1989; Karas and Hillenkamp, 1988; Hillenkamp et al., 
1991). 

Mass spectrometry instruments have three components 
which are; an ion source to volatize and ionise the 
analyte, a mass analyser to separate ions based on their 
mass to charge ratio (m/z) and a detector to detect ions 
after separation. Mass spectrometry analyses 
biopolymers such as peptides, proteins and 
polynucleotide as ions. Matrix assisted laser desorption 
and surface enhanced laser desorption are an alternative 
to chip based proteome analysis and are useful for 
capturing and analysis of specifically labelled proteins. 
They are commonly used mass spectrometry techniques 
in translational research. With this technique the 
investigator does not pre-select the proteins to be 
examined but searches for changes in any proteins that 
are identified. Analysis is done with mass analysers of 
time-of-flight (TOF). Protein identification can also be 
done by electrospray ionisation tandem mass 
spectrometry (ESI-MS-MS). Where the proteins of 
interest have already been identified, antibody based 
affinity methods or multiple reactions monitoring tandem 
mass spectrometry techniques can be used (MRM-MS-
MS) (Hillenkamp et al., 1991; Lahm and Langen, 2000; 
Yates, 1998; Ge, 2000). 
 
 
Applications of clinical outcomes of proteomics 
 
Classification of diagnosis 
 
Using tissue microarrays, it seems some relevant 
molecular changes and clinical end points may be 
detected on an array containing just a single specimen 
per tumour. Estrogen receptor, progesterone receptor, 
p53, HER2 and S6-kinase expression/amplification in 
breast cancer were found to have a prognostic 
significance (Nocito et al., 2001). A study done by Simon 
et al. (2001) on urinary bladder cancer showed that cyclin 



 
 
 
 
E amplification/over expression and Ki67 labelling index 
had prognostic significance in bladder cancer. Torhorst et 
al. (2001) showed that Vimentin expression in kidney 
cancer also has prognostic significance. 
 
 
Prediction of metastasis 
 
A protein profile that predicts the presence of metastasis 
in non-small cell lung cancer was identified and had an 
accuracy of about 75 to 85 analysis for this was done 
using MALDI-TOF-MS. Again using MALDI-TOF MS 
brain tumour tissue sections were analysed. It was found 
that classification based on mass spectra was more 
reliable than traditional histological examination 
(Schwartz et al., 2004). 

 
 
COMBINED ANALYSIS FOR GENOMIC AND 
PROTEOMIC MICRO-ARRAYS 
 

A number of tools and processes have been used or 
suggested for analysis of genomic and proteomic 
microarray data. One of the most useful and popular 
methods for analysing and identifying microarray patterns 
is the clustering technology. There are two classes of 
cluster algorithms, viz hierarchal and non hierarchal. 
Hierarchal clustering has been extensively used for the 
analysis of microarray expressions (Eisen et al., 1998; 
Wen et al., 1998; Sneath, 1973). The hierarchal 
clustering algorithm analysis produces a representation 
of data with a binary tree, with most patterns clustered in 
a hierarchy of nested subsets. This analysis method has 
already been applied to the study of gene expression 
patterns, for example Eisen et al. (1998) used the 
analysis to cluster two spotted DNA microarray data sets, 
Wen et al. (1998) used the analysis to cluster the central 
nervous system of gene expression data from rats, as 
well as Iyer et al. (1999). 

The hierarchal clustering method has been observed to 
present some draw backs when dealing with data that 
contains a non-negligible amount of noise (Luo, 2003). It 
has been claimed that the hierarchal clustering method 
suffers from lack of robustness and the solutions may not 
be dependent on the data order as well as be unique 
(Tamayo et al., 1999). Another problem with this method 
is the real difficulty when thousands of items are 
analysed as they have slow runtimes which are in the 
best case quadratic (Hartigan, 1975). With hierarchal 
clustering analysis another disadvantage is that some 
clusters of patterns end up being based on local 
decisions rather than on a global picture because of the 
impossibility of re-evaluating the results in light of the 
complete clustering data (Tamayo et al., 1999). 

With non hierarchal clustering methods many 
algorithms have been developed and applied. The use of 
neural  networks  for  analysis  of  microarray   data   was  
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proposed as a convenient alternative to hierarchal 
clustering methods (Tamayo et al., 1999; Toronen et al.,  
1999; Herrero et al., 2001). Other different clustering 
methods have also been recently proposed (Heyer et al., 
1999). Ben-Dor et al. (1999) used a graph theoretic 
algorithm to extract the high probability gene structures 
from gene expression data. Tamayo et al. (1999) used a 
self organising map to analyse the expression patterns of 
6000 human genes, Tavazoie et al. (1999) used K-means 
to cluster 3000 yeast gene microarray data, De Smet et 
al. (2002) used a heuristic two step adaptive quality 
based algorithm and Yeung et al. (2001) used a 
clustering algorithm based on probability models.  

Kohonen (1990) came up with the idea of self 
organising maps which use unsupervised learning. This 
learning method has the advantage that no previous 
knowledge about the system under study is required. 
This algorithm was used in previous sequence analyses 
by Ferran and Ferrara (1991, 1992); Ferran and 
Pflugfelder (1993) and Ferran et al. (1994) to classify 
protein sequences into groups based on their dipeptide 
compositions. These self organising neural networks 
generate a mapping from high-dimensional input signal 
spaces to lower dimensional output topological 
structures. The output presents an estimate of the 
probability density function of the input data. This model 
by Kohonen (1990) was found to have some severe 
limitations. Fritzke (1994) then proposed the 
unsupervised growing cell structures algorithm. Here the 
number of elements in the output map increases in those 
regions where the input space is denser and decreases 
in those regions where it is very low or null. 

Dopazo and Carazo (1997) proposed a self organising 
tree algorithm (SOTA). This algorithm is based on both 
self organising maps (Kohonen, 1990) and growing cell 
structure algorithm (Fritzke, 1994). With SOTA the output 
space has been arranged following a binary tree topology 
which allows appropriate description of relationships 
amongst the sequences being studied, the resultant 
algorithm adapts the number of output nodes arranged in 
a binary tree to the intrinsic characteristics of the input 
data set. The output nodes grow until a complete 
classification of every sequence in the input data set is 
reached, the growth of the output nodes can also be 
stopped at a desired taxonomic level. SOTA uses neural 
network mechanisms and it is robust to noise data. It is 
important to note that this neural network classifies 
sequences with high accuracy whether they are protein 
or nucleotides, because of the way the neurons of the 
network interact amongst themselves. 

This type of network is also advantageous because, 
since sequences are coded residue by residue, all the 
information contained in the homologous position of the 
alignment is used by the algorithm. Also an advantage of 
SOTA is that the process of growing can be stopped at 
any level because the tree structure grows as a function 
of the hierarchal relationships among the samples.  
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There are two main important limitations associated with 
SOTA namely, it does not properly represent a hierarchal 
relationship and that once the data is assigned 
improperly to a given cluster it cannot be re-evaluated 
and placed in another cluster. To overcome the 
limitations associated with SOTA, Luo et al. (2004) 
proposed an algorithm called the dynamically self 
organising tree algorithm (DGSOT) which is a self 
organising neural network designed to discover the 
proper hierarchal structure of the underlying data. The 
DGSOT algorithm combines with a K-level up mechanism 
(KLD) to improve clustering accuracy, which produces 
demonstrable, qualitative improvement over traditional 
solutions to the hierarchal clustering problem. The main 
purpose of having a K-level up distribution is that early 
hierarchal clustering stages with data that has been 
improperly clustered can later have a chance to be re-
evaluated during the later hierarchal growing stages thus 
giving a more accurate final cluster result (Luo et al., 
2004). Herrero et al. (2001) compared DGSOT with 
SOTA using 3000 normalised yeast gene cell cycle 
microarray expression profiles. The results showed that 
the clustering result of DGSOT is more statistically 
significant than that of SOTA. In addition the proper 
hierarchal structure of DGSOT makes the clustering 
result more reasonable for large clusters. 

DGSOT has a number of advantages. By setting 
different vertical growth stop thresholds its algorithm can 
be terminated at any hierarchal stage. DGSOT can easily 
display its cluster result as a dendrogram for 
visualisation. Biological functionality enrichment in the 
clustering result of DGSOT is considerably higher than 
the clustering of SOTA. 

For large data sets the DGSOT algorithm can display 
high level main patterns of the data set only if 
visualisation of the whole hierarchal structure is difficult. 
Luo et al. (2004) believe DSGOT to be a robust and 
accurate framework for the study of microarray 
expression data. Khan and Luo (2005) used an existing 
112 genes expression data of a rat central nervous 
system (CNS) to analyse with DGSOT. They used raw 9-
dimensional expression data. Data was normalised to the 
maximal expression level among the 9 time points for 
each gene.  

The results showed a very good hierarchical structure. 
Herrero and Dopazo (2002) used 6120 genes to show 
how they can be separated into a few class patterns via 
analysis with SOTA. SOTA was able to find the different 
average patterns of gene expression despite the 
enormous differences in the number of members in the 
clusters. When applying the average linkage with SOM, 
different classes of activation patterns, were not resolved 
in similar detail to SOTA. Now because DGSOT has 
been found to be more significantly accurate than SOTA, 
this would imply that the study done by Herrero and 
Dopazo (2002) if analysed with DGSOT will yield more 
accurate results than with SOTA. 

 
 
 
 
CONCLUSION 
 

From reviewing analysis methods used for analysing 
microarray data, it was found that currently the DGSOT is 
the most efficient method. It has a combination of 
horizontal and vertical growth, optimizing the number of 
sub clusters which helps the algorithm to find the right 
hierarchical structure of the underlying data set. 
Experimentally, the DGSOT algorithm has been used to 
cluster benchmark data sets, and has demonstrated 
impressive results. It was also found that DGSOT is the 
most suitable algorithm which can be used in an attempt 
to analyse both genomic and proteomic microarrays. 
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