academic Journals

Vol. 14(29), pp. 2282-2299, 22 July, 2015 DOI: 10.5897/AJB2014.14001 Article Number: E7E03D954258 ISSN 1684-5315 Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB

African Journal of Biotechnology

Full Length Research Paper

Diversity analysis of the immunoglobulin M heavy chain gene in Nile tilapia, *Oreochromis niloticus* (Linnaeus)

Chiraporn Phuyindee^{1,4}, Sasimanas Unajak² and Prapansak Srisapoome^{3,4}*

¹Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok, Thailand.
 ²Department of Biochemistry, Faculty of Sciences, Kasetsart University, Bangkok, Thailand.
 ³Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
 ⁴Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand.

Received 25 June, 2014; Accepted 13 July, 2015

A full-length cDNA encoding the immunoglobulin (IgM) heavy chain gene of Nile tilapia was successfully cloned using the 5' and 3' RACE techniques. The complete cDNA of the Nile tilapia IgM heavy chain gene is 1,921 bp in length and has an open reading frame (ORF) of 1,740 bp, which corresponds to 580 amino acid residues. The deduced amino acid sequence of the Nile tilapia IgM heavy chain includes a typical secretory IgM heavy chain designated "On-sIgM" and a variable region that is connected to 4 constant regions to form the $L_H-V_H-C_u1-C_u2-C_u3-C_u4$ pattern. Comparisons of the nucleotide and amino acid sequences of On-slgM with IgM heavy chains of other organisms showed the highest similarity scores of 62.6 and 55.4%, respectively, to the orange-spotted grouper (Epinephelus coioides). Structural analysis of 126 cDNAs encoding variable domains of the IgM heavy chain revealed that at least 9 V_H families, 6 D_H segments and 4 J_H families were utilized using several mechanisms to generate the repertoire of antigen-binding domains. Variation analysis of the variable domains indicated that the amino acid sequences of the framework regions (FRs) were less variable than those of the complementarity determining regions (CDRs), among which the most variable was CDR3. Tissue expression profile analysis using quantitative real-time RT-PCR of healthy Nile tilapia showed that the IgM heavy chain gene was ubiquitously expressed in all 13 tested tissues, but the highest expression level was observed in the head kidney, followed by the spleen, intestine and peripheral blood leukocytes (PBLs). Furthermore, Southern blot analysis of the constant region of the IgM heavy chain gene of 3 different fishes indicated that Nile tilapia genomes may contain 2 copies of the IgM gene.

Key words: Nile tilapia, IgM heavy chain, variable region, diversity, secreted form, southern blot.

INTRODUCTION

Nile tilapia (*Oreochromis niloticus*) is a freshwater fish that is cultured worldwide and is an important economic aquatic animal. The global production of tilapia was 3.6 million tons in 2011, and yearly increases are thought to

continue. In 2010, tilapia production was focused in 2 leader countries (China and Egypt), with productions of 1,331,890 and 557,049 tons, respectively. In 2014, 174,872 tons were produced in Thailand as result of

increased aquaculture throughout the country, ranging from earthen ponds to intensive cage-culture systems, making Thailand the 5th largest world tilapia producer (FAO, 2014). This activity has also been promoted by related industries and supply chains, such as hatcheries, feed manufacturers and distributors, to support the huge domestic consumption. However, this intensive culture system has a high risk of disease outbreaks. The bulk of fish deaths occurs due to protozoan, fungal and bacterial infections, typically due to Aeromonas hydrophila, Streptococcus agalactiae and Flavobacterium columnare, and result in lost tilapia yields in culture systems (Mohamed and Refat, 2011; Pridgeon et al., 2011; Rodkhum et al., 2011). To circumvent these problems, fish immunity must improve to increase the efficiency of disease prophylactic and therapeutic methods. The immune systems of vertebrates govern homeostasis, prevention and surveillance and are generally divided into 2 parts: innate and adaptive immune systems. The adaptive or acquired immune system, which was discovered in cartilaginous fish, is distinguished from the innate immune system by antibody (immunoglobulin) production by plasma B cells and the functions of cytotoxic T cells associated with the degranulation process. Antibody production and degranulation are potent and effective methods used to specifically eliminate pathogenic infection. Immunoglobulins are important molecules in jawed vertebrates, ranging from gnathostomes to tetrapods, but are not found in invertebrates (Flainik, 2002; Flainik and Du Pasquier, 2004). The fundamental functions of immunoglobulins include toxic neutralization, the promotion of phagocytosis by opsonization and activation of the complement system (Walport, 2001; Holland and Lambris, 2002). An immunoglobulin molecule is composed of 2 heavy chains and 2 light chains that are joined by inter- and intradisulfide bonds.

In bony fish, 3 major isotypes of immunoglobulins exist: IgM, IgD and IgT/IgZ (Hikima et al., 2011; Salinas et al., 2011). Immunoglobulin isotypes are determined by the constant region (C_H), which also dictates the effector function of the molecule in different types of immune responses. The variable region contains the antigenbinding site (Roitt et al., 2001) and is located at the N-terminus of the heavy and light chains. Heavy chains are composed of a variable segment (V_H), a diversity segment (D_H), which is not found in the light chain, and a joining region (J_H). The variable regions of the heavy and light chains consist of 4 framework regions (FR1-4) and 3 complementarity determining regions (CDR1-3), or hypervariable regions. The CDRs are highly variable in Nucleotide sequence because of considerable contact with antigens (Pilstrom and Bengten, 1996).

The mechanisms used to generate the diverse immunoglobulins in higher vertebrates can be summarized into at least 7 events that consist of combinatorial diversity, junctional imprecision, junctional diversity, gene conversion, secondary $V_{H/L}$ gene recombination, somatic hypermutation and heavy/light chain pairing. During B cell development, the diversity of antigen-binding elements begins with rearrangement mediated by recombination-activating gene (*RAG*), which initiates the assembly of the antigenic binding domain of immunoglobulins, Artemis (DNA repair proteins) and terminal deoxynucleotidyl transferase (TdT), which are utilized for P and N nucleotide addition, respectively (Lieber, 1992; Kuo and Schlissel, 2009).

In Osteichthyes, secreted IgM (sIgM) is one of the major proteins in the serum and is generated during immune responses against pathogenic infection. IgM is classified as the primordial immunoglobulin of the adaptive immune response and is found in monomeric and tetrameric forms in circulating blood (Acton et al., 1971; Wilson and Warr, 1992). IgM can exist in 2 forms, slgM and membrane-bound (mlgM), which are generated via alternative RNA splicing of the primary transcript of the µ gene (Ross et al., 1998). slgM consists of the variable region and 4 constant domains in the heavy chain, whereas mIgM contains variable region, 3 constant domains and 2 additional transmembrane domains (T_M1 and $T_M 2$) and acts as a B cell receptor for initial antigen binding (Dylke et al., 2007). To date, the cloning and characterization of the IgM gene has intensively been reported in holostean, cartilaginous and teleost fish (Rauta et al., 2012). However, information about the mechanisms important for generating diversity for antigen binding is reported in some teleost fish but still lacking in Nile tilapia.

The aim of this study was to increase the understanding of the teleost immune system, specifically IgM, which is the most vital humoral molecule for adaptive immune responses.

This study performed molecular characterization of the full-length cDNA of the IgM heavy chain gene of Nile tilapia and the diverse expression of its variable domain were intensively investigated. In addition, tissue distribution analysis was performed using quantitative real-time RT-PCR, and genomic structural analysis of the gene was performed using Southern blot analysis. Information from the current study may provide a better understanding of the adaptive immune system of Nile tilapia.

*Corresponding author. E-mail: ffispssp@ku.ac.th. Tel: +662 579 2924; Fax: +662 561 3984.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution License 4.0</u> International License

Gene name	Oligonucleotide primer	Sequence 5' \rightarrow 3'	Amplicon size	Experiment
IgM heavy chain	- IgMuF1	AGGAGACAGGACTGGAATGCACAA	-	3' RACE-PCR
IgM heavy chain	- IgMuR1	TTGTGCATTCCAGTCCTGTCTCCT	-	5' RACE-PCR, Variable domain analysis
IgM heavy chain	- IgMuF2	GGATGATACCTATACTGCCTCCTG	174	Real-time PCR
IgM heavy chain	- IgMuR22	AATCTAGTCTGATCATTCAGGTCA	174	Real-time PCR
ß-actin	- ß-actinF2	ACAGGATGCAGAAGGAGATCACAG	155	Real-time PCR
ß-actin	- ß-actinR2	GTACTCCTGCTTGCTGATCCACAT	155	Real-time PCR
-	- UPM-long	CTAATACGACTCACTATAGGGCAAGCATGG TATCAACGCAGAGT	-	RACE-PCR
-	- UPM-short	AAGCAGTGGTATCAACGCAGAGT	-	RACE-PCR
Constant region of IgM heavy chain	- SB F	GGATGATACCTATACTGCCTCCTG	533	Southern blot
Constant region of IgM heavy chain	- SB R	GGTGAACAACACAGAAGCGTGT	533	Southern blot

Table 1. Oligonucleotide primers used for PCR analysis.

MATERIALS AND METHODS

Experimental animals

Healthy adult Nile tilapia weighing 500 to 600 g were obtained from the Department of Aquaculture, Faculty of Fisheries, Kasetsart University. The fish were maintained in aerated water tanks and fed with commercial feed twice a day for a week.

Cloning of the full-length cDNA of the IgM heavy chain gene of Nile tilapia

Total RNA from the head kidney and spleen of an adult Nile tilapia was extracted using TRIzol reagent (Gibco BRL, USA) according to the manufacturer's instructions. The mRNAs were consequently prepared using a QuickPrep Micro mRNA Purification Kit (Amersham Biosciences, USA). Five hundred micrograms of mRNA from each organ were pooled, 1 µg of mixed mRNA was used per reaction, and 5' and 3' first-strand cDNA were synthesized using the BD Smart RACE cDNA Amplification Kit (Clontech, USA). The cDNAs were then used as templates for 5' and 3' RACE PCRs, which were conducted using the specific primers IgMuF1 and IgMuR1, respectively (Table 1). These primers were designed from the EST clone HK0156 encoding the partially constant region of the Nile tilapia IgM (GenBank accession no. FF279636). The PCR conditions included pre-denaturation for 5 min at 95°C; 25 cycles of 95°C for 30 s, 55°C for 30 s and 72°C for 90 s; and a final elongation step at 72°C for 5 min. The 5' and 3' RACE PCR products were purified using the HiYield™ Gel/PCR Fragments Extraction Kit (RBC Bioscience, Taiwan), ligated into the pGEM T-Easy cloning vector (Promega, USA) and transformed into Escherichia coli strain JM 109, which was grown on Luria Bertani (LB) agar containing ampicillin (0.01 g/mL), IPTG (100 mM) and Xgal (50 mg/mL). Each plate of transformants was incubated at 37°C for 18 h. Positive clones, that is, white colonies, were selected, and plasmids were extracted using the Plasmid DNA Extraction Manual Kit (Bio Excellence, Thailand). Nucleotide sequencing of the selected clones in the 5' and 3' directions was performed by Macrogen, Inc. (Korea) using the M13F and M13R primers with the Thermo Sequence Fluorescent Labeled Primer Cycle Sequencing Kit (Amersham Pharmacia Biotech).

Characterization of the full-length cDNA of the IgM heavy chain gene of Nile tilapia

After sequencing, the nucleotide sequences were screened for vector contamination, and vector sequences were removed using VecScreen (http://www.ncbi.nlm.nih.gov/VecScreen/ VecScreen.html). The nucleotide sequences from the 3' and 5' fragments were multiply aligned to find overlapping regions and compared with nucleotide and amino acid sequences of other vertebrate IgMs in the GenBank database using the BLASTN and X programs (http://blast.ncbi.nlm.nih.gov/ Blast.cgi). The coding sequences, conserved residues and signature motifs that were important for immunoglobulin functions and structure were determined using the IMGT (International ImMunoGeneTics Information (http://www.ebi.ac.uk/imgt/) System) database and other publications. The full-length cDNA of the IgM heavy chain in Nile tilapia was examined to predict its signal peptide sequence using the SignalP 4.0 Server (http://www.cbs.dtu.dk/services/ SignalP/). The similarity and identity of the nucleotides and amino acids of the IgM heavy chain of Nile tilapia and other vertebrates were calculated the MatGat 2.02 using program (http://bitincka.com/ledion/matgat).

Phylogenetic analysis

The deduced amino acid sequences of the constant domain of the IgM heavy chain, consisting of the C μ 2-C μ 4 domains, in Nile tilapia and other vertebrates (gnathostomes to mammals) were multiply aligned using CLUSTALW. C μ 1 was excluded because it is known as the high conserved region resulted from the evolutionary duplicated to generate other C regions. The IgD heavy chains of Mandarin fish, *Siniperca chuatsi* (ACO88906), and grouper fish, *Epinephelus coioides* (AEN71108), were used as outgroups for the phylogenetic tree. Then, the evolution of the IgM heavy chain gene was determined using the UPMGA method by performing 1,000 bootstrap resampling replicates with the MEGA program, version 5.05 (http://www.megasoftware.net).

Construction of a cDNA library of the variable domain of the IgM heavy chain gene

The cDNA library was constructed using 5' RACE PCR with the

) Briefly the previously prepared tilapias and was

specific primer IgMuR1 (Table 1). Briefly, the previously prepared, ready-to-use, first-strand cDNA template for 5' RACE PCR was amplified, cloned and sequenced using the same protocols described above.

Diversity analysis of the variable domain

After sequencing, the entire nucleotide sequences of randomly selected clones were analyzed for homology with other sequences available in the GenBank database using the BLASTN and BLASTX programs, as previously described. A representative sequence from each redundant group was arbitrarily chosen for further family classification. The resulting 126 cDNA sequences were analyzed to find the leader sequence, FR and CDR according to the IMGT standardization numbering. Each of the V_H families, D_H segments and J_H families was classified using the CAP3 program (http://bioweb.pasteur.fr/seqana/ interface/cap3. html). The V_H family was grouped based on the percentages of nucleotide sequence identity in the same V_H family greater than 80% (Brodeur and Riblet, 1984). Then, the similarity and identity of the V_H , D_H and J_H amino acids were calculated using MatGat 2.02, and multiple alignments were performed using the CLUSTALW program. To examine the degree of sequence variability in the variable region of Nile tilapia IgM, the deduced amino acid sequences were multiplealigned and calculated as the position variability using the Kabat and Wu method (Kabat and Wu, 1971) and Shannon analysis (Stewart et al., 1997).

Tissue distribution of IgM heavy chain gene by quantitative real-time PCR

Total RNA from the brain, gills, gonad, heart, head kidney, intestine, liver, muscle, skin, spleen, stomach, peripheral blood leukocytes and trunk kidney of a healthy Nile tilapia was extracted using TRIzol reagent (Gibco BRL, USA). The contaminating genomic DNA was digested with RNAse-free DNAse I (Fermentas, USA), and firststrand cDNA synthesis was performed using 1 µg of total RNA from each tissue with the RevertAid First Strand cDNA Synthesis Kit (Fermentas, USA). First-strand cDNA from the 13 tissues was quantitatively examined using the IgMuF2 and IgMuR22 primers (Table 1). The expression levels were normalized to the expression level of beta-actin mRNA using the β -actinF2 and β -actinR2 primers (Table 1). The quantitative real-time RT PCR was conducted using an Mx ProTM 3005P QPCR (Stratagene, USA), and the mRNA expression of the IgM heavy chain and beta-actin genes was detected using Brilliant II SYBR Green qPCR Master Mix (Stratagene, USA). The cycling conditions consisted of 95°C for 10 min, followed by 40 cycles of 95°C for 30 s, 55°C for 1 min and 72°C for 1 min. For each sample, 3 replicates were performed for the IgM heavy chain and β-actin mRNAs. Standard curves were constructed to examine the efficiency and specificity of both specific primer sets. PCR efficiencies for IgM heavy chain and β-actin genes were 2.015 and 2.023, respectively. The relative expression ratio of the IgM heavy chain gene in Nile tilapia was calculated according to the $2^{-\Delta\Delta C}_{T}$ formula (Livak and Schmittgen, 2001). Statistical analysis was performed using the SPSS program, version 13.0. Differences in the expression levels of the Nile tilapia IgM heavy chain gene in the 13 tissues were analyzed using oneway analysis of variance (ANOVA), and the means were compared using Duncan's new multiple range test. The significance level was established at P<0.05.

Southern blot analysis

Genomic DNA was isolated from the whole blood of 3 different Nile

tilapias and was subjected to phenol-chloroform treatment, as described by Taggart et al. (1992). Ten micrograms of DNA from each fish were completely digested with the Eco RI and Pst I restriction enzymes, and electrophoresis in a 1% agarose gel was performed to separate the DNA fragments. The DNA fragments were then transferred to a nitrocellulose membrane using the capillary blotting method with 20X SSC, and the membrane was dried and baked at 80°C for 2 h in a hot-air oven. Probes specific for the Cµ2-Cµ3 constant regions were prepared by PCR using the designed primers SBF and SBR (Table 1). PCR probes were labeled with Digoxigenin-11-dUTP using the DIG-High Prime DNA Labeling and Detection Starter Kit I (Roche, Germany) according to the instruction manual. The membranes were incubated in hybridization solution (DIG Easy Hyb) with denatured, DIG-labeled DNA probe at 68°C overnight. After hybridization, the membranes were stringently washed twice in ample 2X SSC, 0.1% SDS at 25°C for 5 min and in 0.5X SSC, 0.1% SDS at 68°C for 15 min under constant agitation. Then, immunological detection of the membrane was carried out following the procedure recommended by the manufacturer. Finally, color detection with NBT/BCIP was performed to investigate the intensity of the bands by photography.

RESULTS

Cloning and characterization of a full-length cDNA encoding the IgM heavy chain gene in Nile tilapia

A complete full-length cDNA of the IgM heavy chain gene in Nile tilapia was successfully cloned using 3' and 5' RACE PCR. The full-length cDNA was 1,921 nucleotides in length and composed of a 45-nucleotide 5' untranslated region (UTR) that was followed by the open reading frame (ORF) beginning with ATG, the first translated codon. The length of the ORF was 1,740 bp and encoded 580 amino acids, and the leader peptide was predicted to consist of 26 amino acids. Translation terminated at nucleotide position 1,786, which encoded TAG, the stop codon. The length of the 3' UTR was 90 nucleotides and included the polyadenylation signal (AATAAA) and poly A tail (Figure 1). The deduced amino acid sequence of the Nile tilapia IgM heavy chain gene included a typical heavy chain sequence for secretory IgM, which was termed "On-sIgM". Its organization began with 1 variable region and 4 constant regions that formed a $L_H-V_H-C_{\mu}1$ - $C_u 2 - C_u 3 - C_u 4$ pattern, which is different from the teleost fish IgM membrane-bound form that is generally rearranged as L_H-V_H-C_µ1-C_µ2-C_µ3-T_M1-T_M2 (Saha et al., 2005; Tian et al., 2009). The potential N-linked glycosylation sites were found as NSS in the Cµ2, NKT in the Cµ3 and 2 NTTs in the Cµ4 domain (Figure 1). Comparisons of On-slgM (GenBank accession number KC677037) with known IgM heavy chain cDNAs of other higher vertebrates showed that the nucleotide identity scores were between 38.0 to 47.3% and the amino acid identity and similarity scores ranged from 24.2 to 28.8% and 45.7 to 51.5%, respectively (Table 2). On the other hand, comparisons of On-sIgM with known IgM heavy chain cDNAs of other cartilaginous and teleost fishes indicated that the nucleotide identity scores were

1	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$						
	M N H P A L T A V I L V L S V Y W V G T G G Q	23					
	\rightarrow CDR1 \rightarrow FR2						
115	ACATTGACAGAGTCTGAATCAGTGGTTAAACAGCCTGGACAATTCCACAGACTGACCTGACCTGACTAGCGGTTCAGTGGTGATATCTATGCTAACTGGATCAGACAGGCTGCA	~ ~					
	T L T E S E S V V K Q P G Q F H R L T C T Y S G F S G D I Y A N W I R Q A A	61					
	\rightarrow CDR2 \rightarrow FR3						
229	GGAAAAGGACTGGAATGGATCGCTTATATCAGTCATAGTAGTAGTACTACTCTCAGTCAG						
	<u>G K G L E W</u> I A Y I S H S S S K Y Y S Q S V R G R F T I S R D N S R K Q V Y	99					
	\rightarrow CDR3 \rightarrow FR4 \rightarrow C	1					
343	CTGCAGATGAACAGCTTGACGACTGAGGATTCAGCTGTTTATTATTGTGTTCGATATAGTGATTACTTTGACTATGGGGAAAAGGGACAACTGTGACTGTCACAACAGCCACT						
	L Q M N S L T T E D S A V Y Y C V R Y S D Y F D Y W G K G T T V T V T T A T	137					
457	TCAACTGCACCCACTGTGTTTCCTCTGGTACCATGGGGTGGTTCTGAGACTGGAGATATGGTCACTCTTG <u>GCT</u> GCCTTGCCACCGGATTTAACCCTCCTGCGGTGACTTTCTCGTGG						
	STAPTVFPLVPCGSETGDMVTLGCLATGFNPPAVTFS 🕅	175					
571	ACCAAAGGCGGCGCTGCCTTGACAGAGCTTCATCCAGTACCCTGCAGTACAGAAAGGCAATGTTTATACTGGAGTCAGGTCAGGTCAGGGAGACAGGAGACAGGACTGGAATGCACAA						
	Τ Κ G G A A L T D F I Q Y P A V Q K G N V Y T G V S Q V R V R R Q D W N A Q	213					
	\rightarrow C.2						
685	CAGAATTTACAATGTGCTGTGACTCACGCTGCTGGGAATGCACAGACTATTGTCACCACCACCACCACCACCACCACCACCACCAGAAATCCGACTCTTAAAGCAGACTCTTAAAGCAGAATCCGACCACCACCACCACCACCACCACCACCACCACCACCA						
	Q N L Q C A V T H A A G N A Q T I V T P P P P P P P F K Q N P T L K A F S	251					
799	TCCTCTTCTGATGAGGATGATACCTATACTGCCTCCTCCTCCTTGCCAAAGAGTTTGCACCAAAGACACATAACTTAAAATGGCAGAAAAACGGAGTAGACGTCGCCAGCACAAAA						
	S S S D E D D T Y T A S C F A K E F A P K T H N L K W Q K N G V D V A S T I	289					
913	GATCTGACCGAATCGAAAAAATGCGGCTGGAAAAAACACTGTACAATGCAGCAAGTTTTCTCACAGTAAATTCCAGTGACCTGAATGATCAGACTAGATTTACATGTGTGTTTACT						
	d l t e s k n a a g k t l y n a a s f l t v n s s d l n d o t r f t 🖸 v f t	327					
	\rightarrow C 3						
1027	GGAGGAGAAGATGGATCTTTGGATAAAAAGTGTCATTTACAAAAAAGAACCAATGTCCTGGTTGTGTTACAATCTAATGTGAAAAGTAGTGACCCCACAACTGAGGACAAG						
	G G E D G S L N K T V I Y K K N O C P G C V T S N V K V V I S G P T T E D M	365					
1141	CTTGTCCGTAAAAAAGGAACTATAACATGTGCAGGCACAGGTACAAAAAGATGAACCCCAAATAACCTGGGAGGATGAGAAACTAGGGGACATAGCAAGTAACCCGGTACAAAA						
	T. V. R. K. G. T. T. C. A. V. T. V. K. D. F. T. W. F. D. F. K. G. D. T. A. S. N. P. V. T. K.	403					
1255	GTCGAAGACAATGGGAATACATACGTGTCTGACGTAGACACGAATGGACCAAGGGGGGGAACACGCTTCTGTGTTCACCACGAAGATTGGATTGACCTTTG						
	VEDNGNTYVSKIDITYDEWTRGVTRFCVVHHEDI.TEPI	441					
1369	₭₶₰₻ ₢₡₡₢₮₥₱₥₱₥₢₥₢₥₢₡₡₢₡₡₡₣₡₡₵₡₡₵₡₡₢₡₡₱₦₼₥₱₥₯₥₯₥₺₡₡₺₡₡₡₱₽₥₢₥₽₥₯₡₢₥₼₥₡₡₺₢₡₡₡₣₥₲₡₺₢₥₡						
1000		470					
1402		4/9					
1403		517					
1 5 0 7		517					
1397							
1 11 1	i gy i rvs i ny may gk b b k v i s L v v i n e s v v <u>n i i</u> k k i v k s i	222					
1711	111 GGGTALAGAALATTGALAAAAALCGCATTGACCTCAALTGAALATCAACGACTCCAAGTGCTCGCTCCAGTGTTTTCTCATGTCTCTGTCTG						
1005	GIRTFDRNKIDLNMNINQDSKCSLQ*						
1852	atgtctgttgcttgtgatatgacattgtgtttgtgtgtgt						

Figure 1. Nucleotide and deduced amino acid sequences of *On*-slgM. The predicted amino acid sequence is marked under the nucleotide sequence. The conserved cysteine and tryptophan residues are boxed. The conserved blocks GKGLEW at FR2, YYCVR at FR3 and FDYWGKGTTVTVTT at FR4 and the immunoglobulin signature motif, LQCAVTH, are highlighted in gray. Four potential glycosylation sites are underlined. A typical polyadenylation signal, AATAAA, is italicized and underlined. The TAG stop codon is indicated with an asterisk.

between 38.0 to 67.0% and the amino acid identity and similarity scores ranged from 26.4 to 55.4% and 46.1 to 75.0%, respectively. Noticeably, the greatest amino acid similarity to *On*-slgM (75.0%) was with the closely related orange-spotted grouper, *E. coioides* (Table 2).

Evolutionary relationship between the Nile tilapia IgM heavy chain gene and other vertebrates

The relationship between the Nile tilapia IgM heavy chain gene and other vertebrates was examined by phylogenetic analysis using the deduced amino acid of the IgM heavy chain constant region, $C\mu 2$ - $C\mu 4$. In the evolutionary tree, all of the IgM heavy chain genes were

clearly separated from the IgD heavy chain genes of the Mandarin and grouper fishes, which were used as the outgroups of the tree. The tree could be split into 2 major clusters that included superclasses Tetrapoda and Pisces. The first group (superclass Tetrapoda) was composed of human, dolphin, cow, mouse, rat, platypus, salamander, duck, chicken, turtle and newt. Interestingly, classes Chondrichthyes (cartilaginous fish) and Sarcopterygii (lobe-finned fish; lungfish) were also grouped into this branch. Only class Osteichthyes (bony fish) was grouped into the second group. On-slgM was classified into the group of Osteicthyes in superclass Pisces and was closely related to the orange-spotted grouper (order Perciformes), which was also similar based on homology analysis (Figure 2).

N	A	Ident			
Name	Accession number	Nucleotide	Amino acid	Similarity (%)	
Higher vertebrates					
Human	CAA47708	40.2	28.8	47.0	
Dolphin	AAG40853	40.2	26.9	45.7	
Cow	AAN60017	47.3	26.4	46.2	
Mouse	CAC20701	41.2	25.8	46.2	
Platypus	AA037747	38.0	28.2	46.9	
Salamander	CAE02685	41.4	27.2	47.6	
Duck	AAA68605	39.3	24.2	51.5	
Chicken	CAA25762	38.8	25.9	47.9	
Cartilaginous fish					
Antarctic skate	ACU11614	47.7	28.2	46.1	
Nurse shark	AAT76789	38.1	28.9	49.0	
Teleost fish					
African lungfish	AAO52809	38.0	26.4	47.2	
Long nose gar	AAC59688	41.9	33.9	52.1	
Bowfin	AAC59687	52.1	34.4	54.0	
European eel	ABM87939	52.0	34.7	57.5	
Zebrafish	AAT67447	43.5	34.2	55.1	
Grass Carp	ABD76396	43.6	34.1	54.2	
Haddock	CAH04753	46.1	34.8	55.5	
Rainbow trout	AAB27359	50.6	41.2	64.9	
Atlantic salmon	AAB24064	50.8	40.3	64.0	
Japanese pufferfish	BAD26619	52.2	45.1	63.6	
Snakehead	ACF49353	60.3	48.5	67.2	
Atlantic halibut	AAF69488	56.0	49.2	65.4	
Japanese flouder	BAB60868	56.6	49.2	66.1	
Orange-spotted grouper	AAX78211	62.6	55.4	75.0	
Mandarin fish	AAQ14845	60.2	52.2	67.4	
Tristan klipfish	ACH87158	67.0	51.6	69.6	
Black rockcod	AAL99934	58.2	49.1	65.9	
Antarctic fish	ABW77756	56.5	48.6	68.2	
Ploughfish	ABY54906	57.9	48.8	66.1	
Antarctic fish	ABW77754	56.8	48.6	65.5	
Blackfin icefish	AAL99930	64.4	49.9	67.2	
Antarctic fish	ABW81218	57.6	48.7	66.5	

Table 2. Comparisons of Nile tilapia IgM heavy chain sequences with those of other vertebrates.

Structural and diversity analyses of the variable domain of the IgM heavy chain gene in Nile tilapia

The putative V_H, D_H and J_H segments of the nonredundant 126 cDNA clones (GenBank accession number KC708098- KC708223) could be classified into 9 families, 6 segments and 4 families, respectively, based on the percent nucleotide identity. In the V_H domain classification, the range of nucleotide identity for each V_H family was between 51.5 to 66.5%. The nucleotide and amino acid identity between the clones within each family ranged from 80.1 to 99.7% and 80.2 to 99.1%, respectively. Families V_H II and V_H IV were more frequently employed than other families because they showed utilized frequencies of 30.2 and 26.9%, respectively. The V_H I, III, V, VI and VII families exhibited utilized frequencies of 10.3, 18.2, 7.9, 3.2 and 1.6%, respectively; however, the V_H VIII and V_H IX families possessed only

Figure 2. Phylogenetic tree showing the relationships between the Nile tilapia IgM heavy chain amino sequences and those of other known vertebrates (C μ 2-C μ 4). The numbers at the relevant branches refer to bootstrap values of 1,000. Values indicate the percentage along the branch. Common names and accession numbers for the sequences are indicated in parentheses behind their scientific names. The IgD heavy chain (C δ_x - δ_n) of the Mandarin fish *Siniperca chuatsi* (Basilewsky, 1855) (ACO88906) and grouper fish *Epinephelus coioides* (Hamilton, 1822) (AEN71108) were used as outgroups.

1 clone (0.8%) that was used for V_H gene rearrangement of the IgM heavy chain (Figure 3). Arbitrary classification of the D_H segments placed them into 6 groups, with the core nucleotide sequences in each group as follows: GCGGCG, TGGGA, GGCTAC, GGTGCT, GACGAA and TACAA. Additionally, P and N nucleotide additions were investigated for the entire group. In particular, palindromic sequence additions were discovered in the following

Т

		VHI	DH	Л	
> Lesder peptile	-> FF1 ->	CDF1 FF2 FF3	CDE3	- TEA	
KC 70 8 09 8 1 : MF SVALLLLLAAE- CVK 0	EQLTOPASMLVOPGOPLTITCOVSYSLSTY	YY TAM IR OP A GAVLEON SODYATAD SLANKYS VELDS SON TVTLT GOM OPEDTA VYYCARS	SUGYGYFD	YWCKGTQVTVTS	13
XC 70 8 09 9 1 : SF SVALLILLAAE- CVK	EQLNQPASMLVQPGQRLTVTCQVS\SLST\	YY TVO IR OP A GKVLEOM S OD TA (XKD SLENKF S VEL 6 S SSNTVTLT 6 ONLOPEDTA VYYC A BRM	GG-DYFD	WOKETTVTVTT	Ľ٤
XC708100 1:8L3VALLLLAAS-CVX0	EQLTQPASMLLQPGQRLTITCQVSYSLSTY	fytjan ir opa skvlennsldtdýkdslknkfsvelds ssntvtlk gorl opedtaly ygarri	GG-GYYAFD	YWORGTMUTUTS	L2:
XC708101 1:0F3VALLLLAAE-CVX0	EQLTQPASMLVQPGQPLTITCQVS\SLST\	YYTAM IR OP A GXVLEOM 3 OD TA YXD 3L KNXF 3 VELD 3 3 3 NTVTLT GRIV OPE GTA VYYC A BR 3	6306CGYFD	YWCKETQVTVT3	13
XC708102 1:0F3VALLLLAAE-CVK	EQLTQPASMLVQPGQPLTITCQVSYSLSTY	YYTAM IR OP A GKVLEMM S OD TA (XKD SLKNKF S VELDS SSNTVTLT G ONV OPEDTA VYYC A BRS	g 300g yg yfd	YWCKGTRVTVTS	L31
XC708103 1:8F3VALLPLLAAE-CVK	EQLTQPASMLVQPGQPLTITCQVSYSLSTY	YY TAM IR OP A GKVLEOM S OD TA (XKD SLKNKF SVELDS S S NTVTLT G O XV O PEDTA VYYCA 🕸 S	g 300g yg yfd	WOKETOVTVTS	13
XC708104 1:0VALSIVLGKSMCDSV	NSSQQPARWSVQPGQPLTITCQVSVSLSTV	??TÅM IR OP A GKVLEOMS OD TA (XED SLKNKFS VELDS SS NTVTLT GO XV OPEDTA VYYCA BR G	6306769FD	YWCKGTQVTVTS	12:
XC708105 1:0F3VALLLLLAAE-CVX0	EQLTQPASMLVQPGQPLTITCQVS\SLST\	YY 1/AW IR OPA GXVLEMM 3 OD TA/X D 3L KNKF 3 VEL D3 3 3 NTVTLT GO INV OPEDTA VYYCA 1/2 B	5306Y6YFD	YWCKGTQVTVTS	13
XC708106 1:0F3VALLLLAAG3CVK	AQLTQPPSVIVQP6QRLTITCQVS4SF6F5	?-TAMIR OPA 5X 5LEWI 6MR YT 3- 5 TY YXD 3L KSEFS IDLD3 33 NTVTLN 50 MM OPEDTA VYYC A BYM	FA-RDAAFD	YWCKGTMVTVTT	13
KC708107 1: HF SVALLILLAGS RVNS	ETLT QPASMIVRPGEHLT ITC QV SVSLS SY	YPTJANIR OPA GXGLENI GRA JI GOTTY YKI SLKNKFSISFESSSKTVTLKGT IVO PEDTA VYYCA KEY	GGND-FD	WOKETTVTVTT	L3:
KC708108 1:0F SVALLILLAGS FVNS	ETLT QPASMIVRPGERLT ITC QV SVSLS SY	?PT[AWIR QPA 5X 5LEWI GRA [: D 6WTTY [X D 3L KRKF3 I 3 FE3 3 3 XTVTL X 5T XV Q PEDTA VYYC A 🛊 5 🤤	GN-GYGYFD	WUCKETQVTVTS	13
XC708109 1:0FFVALLLLATS-CVE0	EQLNQPASETVQPGQRLTITCQVS\SVSGY	/WTHEW IR OP A SKRLEENI GHAAR SYTTYYKD SLKSKFS IS TDS SSKTVTLT SO RV OPDDTA VYYCARES	5D6AFD	YWCKGTTVTVSS	13
KC708110 1:0F3VALLLLAAGYCVK0	EQLT QPEFVTV QP & QRLT I TC QV 3 \3 L3 3 \	PRISO IR OP A GK GLEONI GS VRD GY S TY YKD SLKNKFT INLDT SS KTVTLNG OM O AEDT A VYYC A IMA	TYDYFD	YRCKGTTVTVTT	13
k		a di anananan ana		* * * ***	

									VH.	п				DH	ЈН	
		- Lender ;	eptide	-	FF1		CDFJ	FE?		CDR.2	→ FE3			► CDE3	- FEA	
XC 7081	11 1	: MMDCRTALP	FLT-LCLA	.gvng (tlti	S-EPAVK (P	GO2 HRLTCTT 3 (FTL S SYØI	GWRQAPGN	GLEWIAT-D	-CC33YXYX	- 3Q3VQ6RFTV3RDN3	BŐŐFAFÓHMZFKI	'ED SAVYY CARE	QTAYFI	YOCKCTTVTVTT	135
XC 7081	12 1	: MMELXDRTA	VLT-LCLA	.GVMG (TLTE	S-EPAVK (P	GOSHRLTCTTPO	FTL S SYOM	Gowrqaagx	GLEWIAT-D	-GGSS SKYY	- 303VQDRFTVSRDNS	RQQLYLQMNSLKT	EDSAVYYCTR	GYG GAFI	YOCKGTTVTVSS	136
XC 7081	13 1	: MMDCRTALL	FLT-LCLA	.GVDG (TLTI	S-EPAVK (P	GOSHRLTCTTS	ETTL S SYOM	UNTROAPSN	GLEWIAT-D	- G G S S S X Y Y	- SQSVQGRFTVSRDNS	REQLYLQMDSLXT	'ED SAVYY CARE	QN-YFI	YOCKGTTVTVTT	134
XC 7081	14 1	: MMDCRTGLL	FLT-LCLA	.GVDG (TLTI	S-EPVVXRP	GOSHRLTCTTS	ETTL S SYØI	HWIRQAPCE	GLEWIAA-D	-66333178	- SQSVQGRFTVSRDNS	ROOLVLOHNSLKT	'ED SAVYY CARD	VYN-AFI	YOCK CTMVTVTS	135
XC 70 81	15 1	: MMDCRTGLL	LLT-LCOA	SVD G (TLTE	3-ESVIKRP	GESHRLTCTAS	ETT S SYOM	AWROAPGN	GLEWIAS-N	YDSSNIYY	- 303FR6RFTI SRDN3	KQQLYLQHNSLKT	ED 36 VYY CARD	- GVATNGAFI	YOCKCTNVTVTS	138
XC 7081	16 1	MMDCRTGLL	FLT-LCLA	SYDGOTLTE	S-EPVVRRP	GOSHRLTCTTS	TTLS SYMI	HWIROAPGN	GLEDIAA-D	GGSSSIY	- SOSVOGRETVSRDNS	ROOLYLOMNSLKT	EDSAVYYCARD	VYN-AFI	YNGKGTMVTVTS	135
XC 7081	17 1	MMDCRTGLL	FLT-LCLA	COME OTLTE	S-EPAVKOP	GOSHRLTCTTS	TTL S SYOM	GONROAAGN	GLEWIAT-D	-GGSSSXYY	- SQSVQDRFTVSRDNS	ROOLYLOMNSLKT	EDSAVYYCTRE	GYGGAFI	YOCKGTTVAVSS	136
XC 70 8 1	18 1	MMDCRIGLI	LLT-LCYA	SUPSOTLT	S-DPAVKOP	GESHRLTCTAS	FIFSSYON	AMTROAPEN	GLEWISTVR	NDCCNSYV	- AOSVOGRETI SEDDS	ROOVYLOHNSLXT	EDSAVYYCARG	-YSGAAAFI	VICKGTTVTVTT	128
XC 70 81	19 1	MMDCRIGLL	FLT-LCYA	SVEGOTLE	S-DPAVKOP	GESHRLTCTAS	FIFSSYOM	AGATROAPEN	GLEWISTVR	NDGGNSYY	- AOS VOGRETI SEDDS	ROOVYLOMNSLKT	EDSAVYYCARG	GUTDYFI	YOCK STTVTVTT	137
XC 7081	20 1	MMDCMTGLL	LLT-LC0A	STRE OT LTE	S-EPVIKEP	GESHTLTCTAS	ETT STOAM	AM7ROAPGN	GLEDIAFLT	OPTESTKSY	- SOSVOGRETI SRNND	KOONTERNSLAT	EDSAVWYCEB-	S GYPT	VICK STTUTUTT	125
KF 20 8 1	1 1	MADOPTALL	FLT-LCLA	SUD COTT T	S-TPASK OF	COSHELTE TT SI	PTT S SVIM	MITROADEN	GLENIAT-D	66.99 9800	- SUSPOCETUSEDNS	PEOLYLOWNSLAT	TUSAUSVEADE	00-VPT	VIICK CTTOTOAT	124
XC 7081	22 1	MMDCRTALL	FLT-LCLA	SINGOTITI	S-EPAIN OF	GOSHILTCTTS	ETLS SYMI	CONTROL PON	GLEMIAT-D	GESTTKY	- SOSVOGRETVSRDNS	REOLVLOWNSLKT	EDSAUVYCARE	0N-9FT	VIGKOTTUTUTT	124
XF 70 8 1	P 2 1	MADODTALL	FIT-TELA	CODIC OTLAT	1. TO A STA OF	COSHDITETS	ETT S SVAT	LINDOATEN	CI BUIAT-D	L.C	- 20200CDFTU2DDN2	DE OT VI OMNET VI	TOSAUCUPADE	ON VET	VILL CTIMINT	124
KF 20 2 1	14 1		T TT_TPT 8	CIDIC OTT TE	3-202300 QF	COSHDITETS	ETT SSUM	HULL DUT DUT DU		TTRETTO	- 3030000000000000000000000000000000000	DE OT OT OWNED VI	PD 33 0 00 P3 DB	TIMESCHEAPT	KINCK CTTOTORS	124
XC 20 2 1		LANDEDTELL	117-1018 117-1008	CIDC OTITI	S - TRUMPOD	CPSMTI TOTTS	TTDW	UNDOVDEN	101100100-D	009693000	- SOTUCEDETI SDIM	KU (1911 1961 1912 1917	1010100011000	-IMATINA & FT	PACK CTTOTOTT	1.4
VC 20 0 1	1 C J	LANDEDHETT	221-11 CA FI T-16F3	CUDE OTT TI	13 - LF COMPF	CPENDI TOTTE	T epe corn	A WALFORD DE A	CI PUILUIS	Lenerotoo	- SUSUDDETT SEDIC	DP OT UT OMBET DE	101100011000	-WOLMANT I	VILL CTTOTOT	1.,
VC 70 0 1		LUND COMPLE		CSDIC OTT TT	29 - 100 3 500 000	CPUMPT TO TTO	Tereeurn	NIT DO A DE V	CT TATA OTO	0 10 10 10 10 10 10 10 10 10 10 10 10 10	- SHEEDDETT SEDMO	NEQUI EQUIDADE I DE OTUT OBBUT DA	TO 25 USUPA DE	UPPAA PT	CALL CTTOTOT	1
NC 7001	L	- MAD CRAFELL	TLI-LUIS		a-LPSVAUP	GEAREICITA	a ar a ar we	SWI KUSPUN	CLEWISIIS		- aria vrijer 11 arijno.	KE QET EQUINALES I	LDSAVIICAR	-13 488-11	I WORGI IVIVII	1.
NC 70 01	20 1	- MMDCRTGLL	TLT-LULS	COMOULTI	3 - LPAVA UP	GRAFELTUTTA	TILS SYUM	GURKURRER ANDRADER	GLEWIAT-D	-00333KYK	- 202 AODEL LASED NO.	RUULTLUMMSPAI	TD 28 AAAA CLIMB	WYGWSTI	TOPPENTIAL	130
NC YU & L	1 K3	MADCRIGLL	LLT-Mrwa	ISADO GAVAI	(3-LPVIKEP	GESTRE TYTAS	11 3 6Y 00	NUCHEAPON	RTD0101.22	-PD03207K	- 202 AGORL LI 2KDRM	RÓÓLAFÓGNUTVI	TDINALLOWE	KMINITI	TURKOINTVIS	130
XC 70 81	30 1	:- MMDCRTGLL	LIT-LCLA	SVNG UTLTH	3 - EPAVK QP	GQSHRLTCTTS (LUL 2 2A01	HWIRQAPEN	(GLEWIAA-D	TT33TKY	- 303 AGELLA SEDES	REQLYLQMD3LK1	EDSAVYYCAR	3D-YFI	YOUKCTIVIVIT	134
KC 7081	31 1	:- MMDCRTGLL	FLT-LULA	60D6 ULTE	3-EPVVKRP	GUS HELTCTTS (1.1122XM1	HWIRUSPUN	GLDWIAA-D	-662221XX	- 202 AÓORL LA 2KDW2	RÚÁTATÁGINZTKI	EDIAVITICARD	VYN-811	YOUK CINVIVIS	135
KC 7081	32 1	:- MMDCRTGLL	FLT-LCLA	CODC OTLTI	3-EPVVKRP	GOSHRLTCTTS	LLTT 2 2701	HWIRQAPGN	(GLED)IAA-D	-662221AA	- 3Q3VQ6RFTV3RDN3	RŐŐTATÓHNZTKI	EDSAVYYCARD	VYN-AFI	YWGKGTHVTVTS	135
XC 70 81	33 1	:- MMDCRTGLL	FLT-LCLA	EVNE (TVT)	2 - TPAVK QP	GESMRLTCTTS	T 21.2 23.00	AWIRQTPEN	GLEDIATIS	-22622105	- 262 AGEBLUI 2EDN2	REGTATÓNN2TKI	EDSAVYYCARE	-DGNAA-FI	YNGKCTTVTVTT	137
XC 70 81	34 1	- MMDCVTGLA	AFN-SCLA	EVNE OTTT	3 - EPAVK QP	¢Q3HRLTCTT3(ELL 2 2A0W	GWRQAAGX	GLEWIAT-D	-00222XXX	- 202 AODELLA 28D N2	BŐŐFÄFŐHNZFKI	EDSAVYYCTER	GYGGAFI	YOCK CTTVTVS -	135
XC 7081	35 1	- MMDCRTGLL	FLT-LCLA	CODC (TLTE	3-EPVVXRP	GO2 HELTCTT 2 (FTL S SYWI	HWIRQAPGN	(GLEWIAA-D	-66333IYY	- 3Q3VQGRFTVSRDN3	BŐŐFÄFŐHMZFKI	EDSAVYYCARD	VYN-AFI	YWCK CTWTVT S	135
XC 7081	36 1	: MMDCRTGLL	LLT-IFCA	CIDC (TLTI	S-EPVVKRP	GESHTLTCTTS	FTFRMY SM	VOWRQAPGN	(GLED) IAS IS	KB 3 C2 XXX X	- SQTVQGRFTI SRDND	KŐŐAGFÖHZZFLLI	'AD SA VYY CARB	WODNAAFI	YOCKCTTVTVTT	139
XC 7081	37 1	- MMDCRTGLL	FLT-LCLA	.cvnc (tlti	S - EP S SK QP	GO2 HRLTC TT 3 (ETLS SYOM	Govrqaagx	GLENIAT-D	-66222888	- SQSVQDRFTVSRDNS	BŐŐFÄFŐANZFKI	'ED SAVYY CTRB	GYGGAFI	YOCK CTTVTVS S	136
XC 70 8 1	38 1	- MMDCRIGLL	LLT-LCYA	.GVT G (TLTI	S - DPAVK OP	GESHRLTCTAS	FIFS SYGM	Awrqapsy	GLEWISTVR	-NDCCN374	- AQSVQGRFTI SRDDS	BŐŐAÄFŐHNZFKI	ED SAVYY CARG		YUCKCTTVTVTT	138
XC 7081	39 1	: MMDCRTGLL	LLT-IFCA	.CIDC (TLTE	S-EPVVKRP	GESHTLTCTTS	FTFRM 3M	VOWRQAPCE	GLEDIASIS	PS CS NKYL	L SD S PR SVYHL QET TT	KŐŐAAFVŐNZZTL	'AD SA VYY CARP	WODNAAFI	YNGKGTTVTVTT	140
XC 7081	40 l	: MMDCRTGLL	LLT-LCOA	.cvdc(tttt	S-CSVIKRP	GESHTLTCTAS	FTFS SYOM	AWRQAPEN	(GLED) IAS - N	-Yessniyk	- SQSFRGRFTI SRDNS	KŐŐFÄFŐHNZFKI	'ED SAVYY CARD	-GENYG-AFI	YOCK CTAVTVTS	137
XC 7081	41 l	: MMDCRTGLL	LLT- IFCA	.G IDG (TLTI	S-EPVVKRP	GESHTLTCTTS	FTFRMY SM	VOWRQAPCE	GLEDIASIS	AD 2 C2 MKAK	- SQTVQGRFTI SRDND	KÖÖAÄFÖHZZFLLI	'AD SA VYY CARD	WODNAAFI	YECKCTTVTVTT	139
XC 70 8 1	42 l	: MMDCRTGLL	F-T-LCLA	.GVNG (TLTH	3-EPAVX (P	GOSHRLTCTTS	FTL S SYGM	Govrqaagn	GLENIAT-D	-6633 3XYX	- SQSVQDRFTVSRDNS	RÓŐFÄFŐHNZFKI	'ED SAVYY CTRB	GYGGAFI	YECKGTTVTVSS	135
XC 7081	43 l	: MMDCRTGLL	FLT-LCLA	.GVNG (TLTE	S-EPAVK (P	GOSHRLTCTTS	TTL S SYOM	GOVRQAAGN	GLEWIAT-D	-GGSS SKYK	- SQSVQDRFTVSRDNS	RQQLYLQMNSLKT	EDSAVYYCTR	GYGGAFI	YNGKGTTVTVSS	136
XC 7081	44 1	: MMDGRTGLL	FFNSLAGO	NVM G (D S D F	NLNQQLNKP	GOSHRLTCTTS	ETLS SYOM	GOVRQAAGN	GLEWIAT-D	-GGSS SKYK	- SQSVQDRFTVSRDNS	RQQLYLQMNSLTT	EDSAVYY CVR-	YSDYFI	VOCKCTTVTVTT	136
XC 70 81	45 l	: MDCRTALL	FLN-PLLC	RCNGOTLTI	S-EPAVK OP	GOSHRLTCTTS	FTLS SYØI	GONROAPGN	GLEWIAT-D	-6633 3XYY	- SQSVQGRFTVSRDNS	REQLYLOMNSLXT	ED SAVYY CARE	QN-YFI	YUCKCTTVTVTT	133
XC 70 81	46 l	: - MDFRAGLL	LLT-LFVA	SYDS (TIT)	3-EPVAKEP	GESHRLTCTGSM	I EF S SYOM	AWROGPEN	GLEWVAS IR	YDSAYLYY	- FQ3VQ5RFTI SRDN3	KE QLYLQMD3LK7	EDTAVYYCARE	DYNNAFI	YNGKGTHVTVTS	136
XC 7081	47 l	- MDISARLL	IIL-LF00	SODE OTLTE	S-EPVIKRP	GESHRLTCTAS	TTT'S SYDI	HOVRODPGN	WLEWVAEVS	T GS SKYK	- SQSVQGRFTI SRDNS	RQQVYLQMNSLXT	EDSAVYYCARE	- GNS GY GYFI	YNGKCTOVTVIS	137
XC 70 81	48 1	MDXHRQACRE	TLI-RY-A	GIDGOSLTE	S-EPVVKRP	GESHTLTC TT S	TTRMS	WROAPGN	GLEWIASIS	PSGSNKYV	- SOTVOGRETI SRDND	KOOWYLOHISITT	ADSAVYYCARE	-WOINAAFI	YOCK STTVTVTT	139
																T
		1												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	12

Figure 3. Classification of the variable region of the Nile tilapia IgM heavy chain. The FR and CDR domains were identified using the IMGT database. Dashes indicate gaps that were introduced for maximal alignment, and the amino acid identity is indicated by asterisks. Dots indicate residues conserved in most sequences. The accession number of each sequence is shown before the first point of the sequence.

forms: GCGC, CGCG, GCGGCGCCGC, GCTAGC, CGTACG, CCGG, CAGCTG, AGCT, ACGT, TTTAAA, GGATCC and AATT. The highest utilized frequency was observed for the D_H VI segment (28.6%), which coincided with the highest redundancy clones (21.4%), while the D_H IV segments showed the lowest utilized frequency of 3.2% (Figure 4).

The boundary of the J_H segment was determined as the first codons encoding the FDYWG motif; as a result, the J_H segment could be classified into 4 major groups. The J_H III segment in the FDYWGKGTTVTVTT form was the most frequently (43.7%) used in rearrangements, while the least frequently used segment was J_H I (7.9%) (Figure 5). Moreover, the diversity and variance of the CDR3

				VHIII			рн	IH	
	Leader pentide	FP1	CDI		CDR2	² F R3 -	CDR3	FR4	
KC708149	1:MNHPALTAVILVLSVYWVGTGG	OTLTESESVVKOPGOSHRLTCTY	SGISGDIYAA	WVRQAAGKGLEWIALI	SDSSSDIY	SOSVOGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCAR	TTTDY F	DYWGKGTSVTVTT	138
KC708150	1:MNHPALTAVILVLSVYWVGTGG	TLTESESVVKOPGOSHRLTCT	SGISGDIYAA	WIROAAGKGLEWIAYI	SPSST-IY	Y SOSFRGRFTISRDNSRKOVYLOMSSLTTEDSAVYYCAR	ETYNAF	DYWGKGTMVTVTT	137
KC708151	1:MNHPALTAVILVLSVYWVGTGG	TLTE SESVVKOPGOFHRLTCT	SGISGDIYAN	WIROAAGKGLEWIAYI	SHSSS-KY	Y SOSVRGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCVR	-YSDYF	DYWGKGTTVTVTT	135
KC708152	1:MNHPALMAVILVLSVYWVGTEG	TLTESESVVKOPGOSHRLTCT	SGISGDIDAL	WIROAPGKGLEWIAYI	NPGGSYIS	Y SOSVRGRFT I SRDNSRKOVYLEMS SLTTED SGVYYCARI	-DGDYF	DYWGKGTTVTVTT	137
KC708153	1:MNHPALMAVILVLSVYWVGTGG	TLTESESVVKOPGOSHRLTCT	SGISGDIDAL	WIRQAAGKGLEWIAYI	NPGGSYIS	SOSVRGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCAR	-DGDYF	DYWGKGTTVTVTT	137
KC708154	1:MNHPALTAVILVLSVYWVGTGG	TLTESESVVKOPGOSHKLTCT	SGISGDIYVA	WIRQAAGKGLEWIAYI	SPSSS-IY	SOSVRGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCAR	HAAGAF	DYWGKGTTVTVSS	137
KC708155	1:MNHPALTAVILVLSVYWVGTGG	TLTESESVVKOPGOSHRLTCT	SGISGDIYAA	WIRQAAGKGLEWIAYI	SPSSS-IY	SOSVRGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCAR	PYAGYHSF	DYWGKGTMVTISS	139
KC708156	1:MNHPALTAVILVLSVYWVGTGG	TLTE SES VVKOPGOFHRLTCT	SGISGDIYTN	WIRQAAGKGLEWIAYI	SHSSS-KY	SOSVRGRFTISRDNSRKOVYLOMNSLTTEDSAVYYCVR	-YSDYF	DYWGKGTTVTVTT	135
KC708157	1:MNHPKFVVVFLIIPIYWAGTES	TLTESESVIKRPGDSHRLTCT	SGFGGDIHVG	WIRQAAGKGLEWIAFI	WSDNSGSF	CESVRGRFTISRDNSRKQVYLOMNSLTTDDSAVYYCAR	EGYGYF	DYWGKGTQVTVTS	137
KC708158	1:MNHPALTAVILVLSVYWVGTGG	TLTE SES VVKQPGQFHRLTCT	SGFSGDIYAN	WIRQAAGKGLEWIAYI	SHSSS-KY	SQSVRGRFTISRDNSRKQVYLQMNSLTTEDSAVYYCVR	-YSDYF	DYWGKGTTVTVTT	135
KC708159	1:MNHPALTAVILVLSVYWVGTGG	TLTE SES VVKQPGQFHRLTCT	SGFSGDIYAN	WIRQAAGKGLEWIAYI	SHSSS-KY	SQSVRGRFTISRDNSRKQVYLQMNSLTTEDSAVYYCVR	-YSDYF	DYWGKGQ-LTVTT	134
KC708160	1:MNCPGFTFVFLIVSVYWAGTEG	TLTE SEAVI KRPGDSHRLTCT	SGFGWDIHAV	WIRQAAGKGLEWIAWI	RSDSSNIH	Y SQSFRGRVTISRDNSRQQLYLQMNSLTTEDSAVYYCAR	S-HDAF	DYWGKGTMVTVTT	137
KC708161	1:MNCPEITFVFLIVSVYWAGTEG	TLTQSESVIKRPGDSHRLTCT	SGFGWDIHAA	WIRQAAGKRPEWVGWI	HSNGNEIS	Y SQSFRGRFTIYRENSRQQLYLQMNSLTTEGSAVYYCAQ	QRYF	DYWGKGTTVTVTT	136
KC708162	1:MNCLRLPLFFL-VSVYWAGTEG	TLTESES VVKRPGDSHRLTCT	SGFGWDIHAA	WIRQAAGKRPEWVGWI	HSNGNEIH	Y SQS FRGR FT I SR DNS R QQ L YL QMN S L T T E D S AV Y YC A Q	RGYF	DYWGKGTTVTVTT	135
KC708163	1:MTGPVHLVVFLIQFFFLAGTES	TLTQSESVVKRPGDSHRLTCT	SGFSSDIYAI	WIRQAAGKGLEWIAYI	YPGSDNIY	Y SQSFRGRFT I SRDNSRKQVYLQMN SLTTED SAVY YCARI	J-DGVEDYF	DYWGKGTTVTVTT	139
KC708164	1:MIRSVYLVVYVILFSFLTGTEG	TLTESESVVKRPGDSHRLTCT	SGFSGDYSNA	WIRQAAGKGLEWIALI	NCGSST-W	Y S QS F RG R FT I S R R QQ Q K A G V S A D E Q L D D E D S A V Y Y C A R	- SG S WG Y F	DYWGEGTTVTVTT	138
KC708165	1:MIRSVYLVILHILFCFLAGSES	TLTQSEPVVKRPGESHGLTCT:	SGFSSDFATA	WIRQAAGKGLEWIAYI	SSGSGTIY	Y SESFRGRFTTTRDNSRKQVYLQMNSLTTEDTAVYYCARI	-GAHSF	DYWGKGTMVTVSS	137
KC708166	1:MIRSVYLVILHILFCFLAGSES	TLTQSE PVVKRPGESHRLTCT	SGFSSDFATA	WIRQAAGKGLEWIAYI	SSGSGTIY	Y SESFRGR FT TTR DNSR KQ V YL QMN SLM PED SAV Y YCARI	GGAAF	DYWGKGTTVTVTT	137
KC708167	1:MIRSVYLVILHILFCFLAGSES	TLTQSE PVVKRPGESHRLTCT	SGFSSDFATA	WIRQAAGKGLEWIAYI	SSGSGSIY	YSESFRGRFTTTRDNSRKQVYLQMNSLMPEDSAVYYCAR	- GW D G F	DYWGKGTTVTVTT	136
KC708168	1:MIRSVYLVILHILFCFLAGSES	TLTQSE PVVKRPGESHRLTCT	SGFSSDFATA	WIRQAAGKGLEWIAYI	SSGSGSIY	Y SESFRGRFTTTRDNSRKQVYLQMNSLMPEDSAVYYCARI	- PLNYGYF	DYWGKGTQVTVTS	139
KC708169	1:MIRSVYLVVYVILFSFLTGTEG	TLTE SES VVKRPGDSHRLTCT	SGFSGDYSNA	WIRQAAGKGLEWIALI	NSGSST-W	Y SQSFRGRFT I SRDNSRKQVYLQMSSLTTED SAVYYCAR	- SG S WG Y F	DYWGKGTTVTVTT	138
KC708170	1:MIRPNCLVVSLILFSILAGTEG	TLTE SERVIKRPGDSHRLTCT	SGISSDIDAA	WIRQAAGKGLEWIAYC	SSGSGTIS	Y SQSVRGRFT I TRDNSRKQVYLQMSSLTTED SAVYYCAR	- PAR YF	DYWGKGTTVTVTT	137
KC708171	1:MMRTVYLVVFLILFCFLTGTDG	TLSGSEPVVKKAWRLPQTDLY	LRVQQDIHAA	WIRQAAGKGLEWIAII	WRDSSGSV	SQSVRGRFTISRDNSRKQVYLQMNSLTTEDSAVYYCAS	GGTGAF	DYNGKGTTVTVSS	137
	*	.*****.*	*	.*.***.****		.****.****		*****.**	
				VH IV			DH	JH	
	Leader pentide	FD1	CDP1	FD 2	→ CD	R2 > FD2	CDP	FR4	
KC708172	1: MFSVAPILLLAAGSCVYGVI	DLIOPDSMIVOPGOSLTITCOVS	GYSVTRYAT	VWVROREGNPLEWINI	IWSDGTTT	NNDALKNKFSLSRDTSAOTVTITGONLOPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708173	1: MFSVALILLLAAGSCVYGVI	DLIOPDSMIVOPGOSLTITCOVS	GYSVTRYAT	VWVROREGNPLEWINI	IWSDGTTI	NN DALKNKFSLSRDTSAOTVTITGONLOPEDTAVYYCAR	YNNWAFDO	WGKGTMVTVTS	133
KC708174	1: MFSVALILLLAAGSCVYGVI	DLIOPDSMIVOPGOSLTITCOVS	GYSVTRYAT	- VWVROREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAOTVTITGONLOPKDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708175	1: -MFSVALILLLAAGSCVYGVI	DLIOPDSMIVOPGOSLTITCOVS	SYSVTRYAT	VWVROREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAOTVTITGONLOPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708176	1: MFSVALILLLAAGSCVYGVI	DLIOPDSMIVOPGOSLTITCOVS	GYSVTRYAT	VWVROREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAOTVTITGONLOPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708177	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NNDALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708178	1:MFSVALILLLAAASCVYGVI	DLIQPDSLIVQPGQSLTITCRVS	GYSLTSSSYAT	ISWIRQRDGKQMDWIFT	NWYDGSTS	KNDALKNKFSMSRDTSAQTVTITGQNLQ PEDTAVYYCAF	GSYGAFDY	WGKGTTVTVSS	135
KC708179	1:MFSVALILLLAAASCVYGII	DLIQPDSLIVQPGQSLTITCRVS	GYSLTSSSYA:	SWIRQRDGKQMDWIFT	NWYDGTT	KNDALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAF	MKSGTFDY	WGKGTTVTVTT	135
KC708180	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	AWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTS AQTVTIT GQNLQ PEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708181	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGSTI	NNDALKNKFSVSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708182	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTIT GQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708183	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINT	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTIT GQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708184	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTIT GQNLQPEDTAVYYCAH	YNNWAFDY	WGKGTMVTVTS	133
KC708185	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTIT GQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708186	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NNDALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708187	1:MFSVALILLLAAGSCVHGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTITGQNLQPEGTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708188	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVARYAT	VWVRQREGNPLEWINI	IWSDGTTT	NNDALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	Y NNWAFD Y	WGKGTMVTVTS	133
KC708189	1:MFSVALILLLAAGSCVYGVI	DLIQPDSTIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGNPLEWINI	IWSDGTTT	QQ DALKNKFSLSRDTSAQTVTITGQNLQ PEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708190	1:MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAT	VWVRQREGDPLEWINI	IWSDGTTT	NNDALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708191	1: -MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAI	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYYAR	YNNWAFDY	WGKGTMVTVTS	133
KC708192	1: -MFSVALILLLAAGSCVYGVI	DLIQPDSTIVQPGQSLTITCQVS	GYSVTRYAI	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708193	1: -MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAI	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708194	1: -MFSVALILLLAARSCVYGVI	DLIQPDSMIVQPGQSLTITCQVS	GYSVTRYAI	VWVRQREGNPLEWINI	IWSDGTTT	NN DALRNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708195	1: -MFSVALILLLAAGSCVYGVI	DLIQPDSMIVQPGQPLTITCQVS	GYSVTRYAI	VWVRQREGNPLEWINI	IWSDGTTT	NN DALKNKFSLSRDTSAQTVTITGQNLQPEDTAVYYCAR	YNNWAFDY	WGKGTMVTVTS	133
KC708196	1:MFTLILLLAAGSCVYSII	DLIQPDSRVLQPGQPLTIVCQVS(GYPLTDSSYG1	CWVRQRQRQQMDWINC	MWYNGNTA	NN DALKNKFSVSRDTSARTVTITGQNLQPEDTAVYYCAF	-F-SDYFDY	WGKGTTVTVTT	132
KC708197	1:MFTLILLLAAGSCVYSII	JLIQPUSRVLQPGQPLTTVCQVS	JYPLTDSSYG	CWVRQRQRQQMDWINC	NWYNGNTA	INN DALKNKFSVSKDTSARTVTITGQNLQPEDTAVYYCAF	F-SDYFDY	WGKGTTVTVTT	132
KC/08198	1:MFTLIPLLAAGSCVYSII	TOPPORVIQ PGQ PLT I VCQ VS	JIFLTDSSYG	CWVRQRQRQQMDWINC	MWYNGNTA	INN DALKNKES VSRDTSARTVTITGQNLQPEDTAVYYCAR	-r-SDYFDY	WGKGTTVTVTT	132
KC/08199	1:MFTLILLLAAGSCVYSII	T T OP D SRV LQ P GQ P LT I VCQ VS	JISLTDSSYG	CWVRQRQRQQMDWINC	NWYNGNTA	INN DALKNKFSVSRDTSARTVTITGQNLRPEDTAVYYCAF	SVAAGAFD	WGRETTVTVSS	134
KC/08200	1:METLILLLAAGSCVYSII		JISLIDSSYG	CWVRQRQRQQMDWINC	MWYNGNTA	INN DALKNKESVSRDTSARAVTITGQNLQPEDTAVYYCAP	F HGNAFDY	WGKGTMVTVTS	133
KC708201	1. I_METIIILLAAGSCVYSII		JISFUUSSIG.	CWVRQRQRQQMDWINC	NWINGNTA	INN DAL NN N FOVOD DECADEUR DEUR DEDEC NA CONTROL DE DECADEUR DE DECADEUR DE DECADEUR DE DECADEUR DE DECADEUR DE DE DECADEUR DE	F-SDIFDY	WGRGTTVTVTT WCKCTTVTVTT	122
KC70202	1 TALTITI PACOUVET		2 TE TIDO 91 0.	CWYRQRQRQQMDWINC	OWCCCCE	KNUDYT KNKES A SE DES Y GEAME E COMPOREDWGAA AGEA MANDYT KNKES A SE DES Y CHAME E COMPOREDWGAA AGEA	-VRNMCEDY	WGKGTTVIVIT	132
KC708203	1. MEHSDYCOWLIDHVOTVT	26/101 - 68/10 BCO BT # 1/20/16/	STOVIDINGIA.	CMABUBUBUBUBUBUT NC	NWVNCNTZ	NNUT I KNKEGAGD LLG FLAAMAL LCUI U DEDWAAAAA	-FSD-VFDV	WCKCTTVTVII	133
KC708204	1. MNHVLSGSDLLLAAGSCV/CV	TUTOPDSMTVOPGOSTTTTCOVS	SYSVTRVAT	WWVROREGNPLEWINC	TWSDGSTT	NNDALKNKESVSEDTSACTVTTTGONIOPEDTAVI ICAR	VNNWAFDY	WCKCTMUTUTS	135
1.0700203	*	*******	** *.	*.*.*****	**	*** **** * **** * ********************	**	*** * ***	100

Figure 3. Contd.

region of 126 cDNA clones encoding the Nile tilapia IgM heavy chain gene were examined. The results showed that its nucleotide length ranged from 24 to 42 bp (8 to 14 amino acid residues), and 10 amino acid residues of CDR3 were the most frequently used to create the diverse repertoire of the variable domain. The average length and length variability of the CDR3 region were 10.97 and 1.99, respectively (Figure 6).

Additionally, diversity analysis of the variable domain of the Nile tilapia IgM heavy chain was relatively characterized using the Kabat and Wu method and Shannon analysis, which are general mathematical tools used to estimate variability. The result of these methods coincidently indicated that the amino acid sequences of the FRs were distinctively less variable than those of the CDRs; in particular, CDR3 showed the highest variability at position 106, followed by CDR2 and CDR1 (Figure 7).

Tissue distribution of the Nile tilapia IgM heavy chain gene

Quantitative real-time RT PCR analyses of the expression profile of the Nile tilapia IgM heavy chain gene indicated that the mRNA transcripts were expressed in 13 tissues. The highest expression level was observed in the head kidney (12.4-fold greater compared to the brain), which significantly differed from

Figure 3. Contd.

that of other tissues, and was followed by the spleen, intestine and peripheral blood leukocytes (PBLs). Low expression was observed in the muscle and heart (Figure 8).

Southern blot analysis

Structural analysis of the constant region of the Nile tilapia IgM heavy chain gene was performed after digesting the genomes from 3 different fishes with the *Eco* RI and *Pst* I restriction enzymes. The hybridization of a specific probe ($C_{\mu}2-C_{\mu}3$ exon) illustrated that the bands appeared in the same pattern and with the same size and intensity in each fish genome. The sizes of these bands were approximately 20 and 7 kb for the *Eco* RI digestion and 22 and 10 kb for the *Pst* I digestion (Figure 9).

DISCUSSION

Molecular cloning and characterization of a cDNA encoding the IgM heavy chain gene in Nile tilapia revealed that 3' RACE PCR only amplified 1 distinctive band and this band was identical to only the secreted form of the IgM heavy chain. In this experiment, the

specific primer that was used for the 3' RACE PCR was designed based on the Cu1 region. Theoretically, the mIgM, IgD and IgZ/T transcripts, which normally contain the Cµ1 domain (Hikima et al., 2011), must be simultaneously amplified with slgM, but we could not identify all of them in this experiment. It is possible that those mRNA levels were low in the spleen and head kidney, that most mRNAs were primary IgM-IgD transcripts or that the lengths of these mRNAs were too long to amplify. Additionally, these mRNAs may have short half-lives. Based on our these results, attempts to find other forms of IgM and other heavy chain isotypes failed with the currently used techniques, indicating that sIgM was the most abundant group of immunoglobulin heavy chain transcripts. Thus, further study is needed for a more complete understanding of the immunoglobulin heavy chains in this fish. The organization of On-sIgM found in this current study was rearranged to form a leader sequence and a variable region, which was followed by a constant region (Cµ1-Cµ4). This type of rearrangement is present in the secreted and soluble IgM forms found in the circulating blood. In contrast, the teleost IgM membrane-bound form, which possesses a transmembrane (TM) domain, contains a constant region that is rearranged as Cµ1-Cµ3-TM. To compare the

	VH			_1	ЈН	_
	Tyr Cys Y C			Phe F	Asp D	Tyr Y
			DH I			
KC708218 KC708166	TAC TGT GC	C AAA	GAAGCGGCGATGCT GAAGCGGCGCTGCT	TTTT	GAC	TAC
KC708126	TAT TGT GC	C CGA	GAGTATACCCCCCCCCCCC	 	GAT	TAC
KC708118	TAT TGT GC	CT CGG	GGGTATAGCGGCGCCGCTGCT	TTT	GAT	TAC
KC708215	TAT TGT G	IG CGT	AGCGCCGCCAGCTGGCGCTAGC	TTT	GAC	TAC
KC708138	TAT TGT GO	CT CGG	GGGTATAGCCGCCCCCCC	TTT	GAT	TAC
KC708142	TAT TGT AG	CT CGA	CACGGATACGGCGGTGCT	TTT	GAC	TAT
KC708110	TAC TGT GO	CC AGA	AT GGCGGG AA <u>CGTACG</u> ACTAC	TTT	GAC	TAC
KC708165	TAT TGT GC	CT CGA	GAA GGG<u>GCGC</u>ATTCT	TTT	GAC	TAC
KC/08107	TAC TGT GC	CC AGA	GAGTA IGCCGCG AACGAC	1.1.1	GAC	TAC
KC708106	TAC TGT G	C AGA	DH II GTGA TGGGA GCGCGGACGCTGCT	ጥጥጥ	GAC	TAC
KC708148	TAT TGT GC	CT CGA	CGCTGG TGGGA TAACGCTGCT	 TTT	GAT	TAC
KC708133	TAT TGT GO	CC CGA	GAGGA TGGGA ACGCTGCT	TTT	GAT	TAC
KC708221	TAC TGT GO	CC AGA	TACGA TGGGA GCGCT	TTT	GAC	TAC
KC708167	TAT TGT GO	CT CGA	GGC TGGGA CGGT	TTT	GAC	TAC
KC708163	TAT TGT GC	CC AGA	AACGA TGGGG TGGAGGACTAC	TTT	GAC	TAC
KC708203	TAC TGT G	'G AGA	TA <u>CCGG</u> AAC TGGGG C	TTT	GAC	TAC
KC708108	TAC TGT 60	C AGA		ጥጥጥ	GAC	TAC
KC708155	TAT TGT GC	CT CGA	GACCCCTACGCCGGCTACCATTCT		GAC	TAC
KC708120	TAT TGT GC	ST CGA	AGC GGCTAC	 TTT	GAC	TAC
KC708162	TAT TGT G	CC CAA	GAGCGCGGCTAC	TTT	GAC	TAC
KC708100	TAC TGT GO	CC AGA	AGGAG agggggtGGCTAC TACGCT	TTT	GAC	TAC
KC708169	TAC TGT GO	CT CGG	AATAGTGG <u>CAGCTG</u> G GGCTAC	TTT	GAC	TAC
KC708115	TAT TGT GO	CT CGA	GACGGAGI GGCTAC GAACTGGGC	TTC	GAC	TAC
KC708220	TAC TGT GO	CC AGA	CAGAGCAGTGGCTACGACGCT	TTT	GAC	TAC
KC708216	TAC TGC GC	CC AAA	TCGGATAACAGT GGCTAC GGTGCT	TTT	GAC	TAT
KC708147 KC708219	TAT TGT GC	C AGA	CACGETCCCACCTCCCCCTAC		GAC	TAC
KC708157	TAT TGT GO	CT CGA	GAGGGCTATGCCTAC		GAC	TAC
KC708168	TAT TGT GC	CT CGA	GAACCTTTAAACTATGGCTAC	TTT	GAC	TAC
KC708104	TAC TGT G	CC AGA	aggggtGGTAGCTGGGGCTATGGGTAC	TTT	GAC	TAC
KC708102	TAC TGT GO	CC AGA	aggagtGGTAGGTGGGGGCTATGGGTAC	TTT	GAC	TAC
KC708111	TAT TGT GC	CT CGA	GAGCAAACCGCCTAC	TTT	GAC	TAC
KC708170	TAC TGT GO	CT CGA	GTT <u>CCGG</u> CG CGCTAC	TTT	GAC	TAC
KC708161	TAT TGT GO	CC CAA	GAGCACCGCTAC	TTT	GAC	TAC
KC708119	TAT TGT GC	CT CGG	GGTGGTGGAACC GACTAC	TTT	GAC	TAC
KC708152	TAT TGT GO	CT CGA	GAGGACGGAGACTAC	TTT	GAC	TAC
KC708196	TAC TGT GC	C AGA			GAC	TAC
KC708099	TAC IGI GO	C AGA	GTCA CTA CTA CCCACTAC	 	GAC	TAC
KC708130	TAT TGT GC	CT CGA	CACAGOGACTAC		GAC	TAC
KC708159	TAT TGT G	TT CGA	TATAGIGATTAC	TTT	GAC	TAC
			DH IV			
KC708199	TAC TGT GO	CA CGT	TCAGTGGCAGCT GGTGCT	TTT	GAC	TAT
KC708124	TAT TGT GC	CT CGA	CACACTGTTAACAGTGGCCAC GGTGCT	TTT	GAC	TAT
KC708109	TAT TGT GO	CT CGA	GAGTATAGCGAC GGTGCT	TTT	GAC	TAT
KC708171	TAC TGT GC	C AGT			GAC	TAT
KC708154	TAT TGT GC	CGA	GACCAUGCAGUGGIGCI	TTTT	GAC	TAT
KC708160	TAT TGT G	CC AGA	GAGAGCCACCATCCT	TTT	GAC	TAC
			DH V			
KC708150	TAT TGT GO	CT CGA	GACGAACGTACAACGCT	TTT	GAC	TAC
KC708121	TAT TGT GC	CT CGA	GAGCAAAATTAC	TTT	GAC	TAC
KC708140	TAT TGT GC	CGA	GACGGGGAA <u>AATT</u> ACgggggct	TTT	GAC	TAC
KC708222	TAC TGT GO	CACGG	GAGCGGGAA <u>CGCG</u> CT	TTT	GAC	TAC
NC/UG1/9 KC709120	TAC TGT GC	LA CGT		1.1.1 1	GAC	TAC
NC/00129	TAT IGI GO	, , , , , , , , , , , , , , , , , , ,	GAGUGGAACCACGUI	т т.т.	GAC	IAC
KC708205	TAC TGT GO	CA CGT	DH VI TATAACAAC TGGGCT	TTT	GAC	TAC
KC708223	TAC TGC GC	CT AGA	CATAACAACGGGTCT	TTT	GAC	TAC
KC708132	TAT TGT GO	CT CGA	GATG TATACAAC GCT	TTT	GAC	TAC
KC708135	TAT TGT GO	CT CGA	GACGTATACAACGCT	ΤTΤ	GAC	TAC
KC708146	TAT TGT GO	CT CGA	GAGG ATTACAAC AACGCT	TTT	GAC	TAC

Figure 4. Classification of the VH/DH/JH junctions. Core DH nucleotides are shaded in gray. Palindromic sequences are underlined, and inverted (D-D joining) sequences are shown in small letters. The accession number of each sequence is shown before the first point of the sequence.

amino acid sequences of On-slgM to those of other vertebrates, we selected the Cµ1-Cµ4 regions for multiple

alignments, while the Cµ2-Cµ4 regions were used for phylogenetic analyses because the Cµ1 gene was

JH segments

JHI	KC708098 KC708102 KC708147 KC708103	TTTGACTACTGGGGGGAAAGGAACACAAGTCACAGTAACTTCT GGT
ЈНП	KC708205 KC708173 KC708115 KC708131 KC708223 KC708114 KC708135 KC708150 KC708150 KC708155 KC708218 KC708106 KC708165	TTTGACTACTGGGGGAAAGGTACAATGGTTACAGTCACATCA G
ЈНШ	KC708111 KC708159 KC708163 KC708164 KC708120 KC708120 KC708121 KC708123 KC708162 KC708110 KC708149	TTTGACTACTGGGGAAAAGGGACAACTG <u>TG</u> ACTGTCACAACA GCC
JHIV	KC708112 KC708118 KC708117 KC708199	TTTGACTATTGGGGAAAGGGGGACAACAGTCACTGTTTCATCA TCAACGCAA GGG

evolutionally duplicated to form other C genes (Bengten et al., 2002).

The results of the evolutionary relationship analysis showed that the IgM heavy chain of cartilaginous fish was grouped in the higher vertebrate cluster because these primitive fish do generate humoral immune responses (Coscia et al., 2012). Interestingly, the cartilaginous fish IgM heavy chain gene of the lung fish (subclass Dipnoi) was also clustered in the higher vertebrate branch because the lung fish is closely related to crossopterygians (coelacanths), which are ancestors of amphibians and higher vertebrates. Likewise, Ota et al.

Figure 5. Nucleotide sequences of the four putative J_H segments. Nucleotide identities of the J_H III segment are indicated as dashes. Nucleotide deletion is indicated as highlight letter and nucleotide addition is underlined (for clone KC708159 compared with clone KC708111). The accession number of each sequence is shown before the first point of the sequence.

Figure 6. The length distributions of the CDR3 regions. The CDR3 regions were calculated from the 126 amino acid sequences of the variable domain of the IgM heavy chain. The average number and variance of the amino acid number are indicated by \bar{x} and s^2 , respectively.

Figure 7. Variability plots of the 126-amino-acid sequences of the variable domains of the IgM heavy chain of Nile tilapia. The calculation was performed using the variability formulas of the (a) Kabat and Wu method (Kabat and Wu, 1971) and (b) Shannon analysis (Stewart *et al.* 1997).

Figure 8. Quantitative real-time PCR analysis of the IgM heavy chain in 13 tissues of Nile tilapia. Significant differences are indicated with different letters on each bar (P < 0.05). BR; brain, GI; gills, GO; gonad, HA; heart, HK; head kidney, IN; intestine, LI; liver, MU; muscle, PBLs; peripheral blood leukocytes, SK; skin, SP; spleen, ST; stomach, TK; trunk kidney.

Figure 9. Southern blot hybridization of the Cµ2-Cµ3 constant region of the IgM heavy chain gene in Nile tilapia. Genomic DNA of 3 different fishes was isolated from whole blood and digested with the Eco RI (E) and Pst I (P) restriction enzymes. The band sizes were estimated by comparison with the lambda Hind III ladder shown on the left.

(2002) found that the IgM heavy chain genes of lung fishes (lobe-finned fishes) were closely related to those of tetrapods rather than neopterygians, which are primitive bony fish including bowfins and sturgeons.

When constructing the variable domain cDNA library of On-sIgM, the primer was designed in the Cµ2 region to eliminate contamination with the variable domains of IgD transcripts. The classification of putative V_H , D_H and J_H segments indicated that the V_H II family (30.2%) was an important group for the IgM heavy chain gene repertoire. The V_H II family demonstrated different initiation codons, AUGAUG, compared with other families, and it was suggested that these codons may encourage simpler and faster translation initiation, in accordance with the report of Kozak (1998) and Coscia and Oreste (2003). Recently, many studies on the diversity of the variable domain of the immunoglobulin heavy chain have analyzed the mRNA and genomic levels in higher and lower vertebrates. Interestingly, these compiled data have demonstrated that the numbers of V_H family members in higher vertebrates tend to be low, although some organisms, such as mouse and frog, demonstrate large numbers of V_H family members. However, the V_H family numbers in teleost fish were somewhat higher than those of higher vertebrates, possibly because the diversity generation mechanisms of the variable domain of the IgM heavy chain in higher vertebrates is more variable than that of teleost fish. Hence, large numbers of V_H family members were necessary to generate diversity of the variable domain in teleost fish, especially in Nile tilapia.

Recently, many studies on the diversity of the variable domain of the Ig heavy chain gene have demonstrated the mRNA and genomic levels in higher and lower vertebrates (Table 3). Most of the V_H families in teleost fish have been mainly studied at the transcriptional level. Nile tilapia demonstrated 9 V_H families, which was moderate amount compared to those of vertebrate V_H families (Table 3). These numbers were close to human, that is, 7 V_H families (Matsuda et al., 1998) and an Atlantic charr, that is, 8 V_H families (Andersson and Matsunaga, 1998). Atlantic salmon revealed the greatest number of V_{H} families, that is, 18 families (Yasuike et al., 2010) followed by zebrafish, channel catfish and rainbow trout, that is, 14, 13 and 13 families, respectively (Danilova et al., 2005; Yang et al., 2003; Brown et al., 2006). Furthermore, when 9 V_H families of Nile tilapia were analyzed a distinctive distribution of P and N nucleotide addition, inversion (D-D joining) and nucleotide deletion was observed in the generation of putative D_H segment diversity, similar to the report of Hsu et al. (1989) and Coscia and Oreste (2003). Additionally, the J_H segments were rarely diverse, with the nucleotide sequences differing by only 1 to 9 residues, and these differences may be the effect of allelic variants (Stenvik et al., 2000). Moreover, nucleotide addition and deletion of the J_H III segment by 2 essential enzymes, TdT and RAG, were also observed in clone number KC708159 (Figure 6).

CDR3 region analysis demonstrated that the diversity of the CDR3 regions had a rather low exhibition level. Commonly, the length distribution and variance values of the CDR3 regions in higher vertebrates are higher than those of lower vertebrates, especially cold-blooded vertebrates. Short CDR3 regions in cold-blooded vertebrates may restrict diversity generation of the antigenbinding site of antibody molecules (Roman et al., 1995). Additionally, highly specific affinity binding with an antigen was discovered for CDR3 regions with high variability (Casali and Schettino, 1996; Kabat and Wu, 1991). Diversity analysis of the variable domain of *On*-slgM indicated that the amino acid sequences of the FRs were less variable than those of the CDRs, with the greatest variability observed for CDR3.

Comparison of variable domain residues using Shannon's method and Kabat and Wu analysis showed that the calculated amino acid variability (according to the Kabat and Wu method) was more sharply shown in the variable pattern. Based on the current data, the diversity generation mechanisms of the variable domain repertoire of On-sIgM were likely obtained from combinatorial diversity, junctional imprecision and junctional diversity. At least 9 V_H families, 6 D_H segments and 4 J_H families of On-sIgM were used to generate diversity through random linkage resulting from RAG enzyme activity (Tonegawa, 1983). Moreover, Artemis and TdT may be used to promote junctional diversity through the deletion and addition of P and N nucleotides at the $V_H/D_H/J_H$ junction site (CDR3 region). However, it may be expected that other mechanisms, such as somatic hypermutation, secondary V_{H/L} gene recombination and heavy/light chain pairing, occur to increase the antigen binding capability, antibody diversity and antigen recognition in Nile tilapia immune responses.

In this experiment, quantitative real-time RT-PCR was employed to study the expression profile of On-sIgM in various tissues of Nile tilapia. The highest expression level was found in the head kidney, followed by the spleen, intestine and PBLs, as these organs act as major lymphoid organs. Generally, the head kidney, spleen and intestine are acknowledged as hematopoietic tissues that play crucial roles in blood cell generation (Abbas et al., 2007). Moreover, blood-borne antigens are stored at the germinal center within the spleen, where multiple defense mechanisms emerge to recognize and neutralize antigens using specific antibodies (Grontvedt and Espelid, 2003; Saha et al., 2005). Therefore, these organs may provide larger population numbers of pro-B cells, pre-B cells, immature B cells and mature B cells than other organs. However, we found On-sIgM transcripts in other nonlymphoid organs, which suggested that large numbers of mature B cells may normally circulate and infiltrate into these organs (Mao et al., 2012).

Surprisingly, Southern blot analysis of the constant region of the IgM heavy chain gene in 3 different fishes indicated that the Nile tilapia diploid genome might

Vertebrate species	V _H gene families	Study levels		References
		Transcriptional	Genomic	
Nile tilapia	9	/		This study
Pufferfish	2		/	Peixoto and Brenner, 2000
Zebrafish	14	/		Danilova et al., 2005
Emeral rockcod	2	/		Coscia and Oreste, 2003
Channel catfish	13	/	/	Yang et al., 2003
Atlantic cod	4	/		Stenvik et al., 2000
Atlantic salmon	18	/		Yasuike et al., 2010
Rainbow trout	13	/		Brown et al., 2006
Atlantic charr	8	/		Andersson and Matsunaga, 1998
Goldfish	3		/	Wilson et al., 1991
Sturgeon	3		1	Lundqvist et al., 1998
Nurse shark	5	/		Rumfelt et al., 2004
Frog	11	/		Haire et al., 1990
Chicken	1		/	Ota and Nei, 1995
Rabbit	1		/	Mage et al., 1984
Pig	1		/	Sun et al., 1994
Mouse	15		/	Mainville et al., 1996
Human	7		/	Matsuda et al., 1998
Nile tilapia	9	/		This study
Pufferfish	2		/	Peixoto and Brenner, 2000
Zebrafish	14	/		Danilova et al., 2005
Emeral rockcod	2	/		Coscia and Oreste, 2003
Channel catfish	13	/	/	Yang et al., 2003
Atlantic cod	4	/		Stenvik et al., 2000
Atlantic salmon	18	/		Yasuike et al., 2010
Rainbow trout	13	/		Brown et al., 2006
Atlantic charr	8	/		Andersson and Matsunaga, 1998
Goldfish	3		/	Wilson et al., 1991
Sturgeon	3		1	Lundqvist et al., 1998
Nurse shark	5	/		Rumfelt et al., 2004
Frog	11	/		Haire et al., 1990
Chicken	1		/	Ota and Nei, 1995
Rabbit	1		/	Mage et al., 1984
Pig	1		/	Sun et al., 1994
Mouse	15		/	Mainville et al., 1996
Human	7		/	Matsuda et al., 1998

Table 3. The number of V_H gene families in teleost fish and other vertebrates.

contain 2 copies of this gene. This finding was confirmed by cloning, sequencing and a search for *Eco* RI or *Pst* I restriction sites within the intron linking the Cµ2 and Cµ3 exons, which were not found between these exons. Moreover, the nucleotide length between the Cµ2 and Cµ3 exons was determined to be approximately 104 bp (GenBank accession no. KJ558374). Generally, the length of the intron between the Cµ2 and Cµ3 exons of the IgM gene in teleost fish is not larger than 4 kb (Bengten et al., 2002; Srisapoome et al., 2004). Hence, these results indicate that Nile tilapia might possess a pseudo C μ gene, similar to the channel catfish *lctalurus punctatus*, or a true second C μ gene cluster to increase the diversity of the immunoglobulin heavy chain gene.

Conclusion

The results of recent studies imply crucial functional roles for IgM, for which diversification at variable domains is generated through a number of variations that increase antigen recognition through the actions of the TdT and RAG enzymes. Our work suggests that fish such as the Nile tilapia may possess additional $C\mu$ loci in their genomes to create more diverse Ig heavy chains, which may be important for the generation of specific immune responses against pathogens.

Conflict of interests

The author(s) did not declare any conflict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University under the Higher Education Research Promotion and the National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand.

REFERENCES

- Abbas AK, Lichtman AH, Pillai S (2007). Cellular and molecular immunology. W. B. Saunder company, Philadelphia.
- Acton RT, Weinheimer PF, Hall SJ, Niedermeier W, Shelton E, Bennett JC (1971). Tetrameric immune macroglobulins in three orders of bony fishes. Proc. Natl. Acad. Sci. U.S.A. 68(1):107-111.
- Andersson E, Matsunaga T (1998). Evolutionary stability of the immunoglobulin heavy chain variable region gene families in teleost. Immunogenetics, 47(3):272-277.
- Bengten E, Quiniou SMA, Stuge TB, Katagiri T, Miller NW, Clem LW, Warr GW, Wilson M (2002). The IgH locus of the channel catfish, *Ictalurus punctatus*, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD. J. Immunol. 169(5):2488-2497.
- Brodeur PH, Riblet R (1984). The immunoglobulin heavy-chain variable region (Igh-V) locus in mouse. I. One hundred IgH-V genes comprise seven families of homologous genes. Eur. J. Immunol. 14(10):922-930.
- Brown GD, Kaattari IM, Kaattari SL (2006). Two new Ig V_{H} gene families in *Oncorhynchus mykiss*. Immunogenetics 58(11):933-936.
- Casali P, Schettino EM (1996). Structure and function of natural antibodies. Curr. Top. Microbiol. Immunol. 210: 167-179.
- Coscia MR, Oreste U (2003). Limited diversity of the immunoglobulin heavy chain variable domain of the emerald rockcod *Trematomus bernacchii*. Fish Shellfish Immunol. 14(1):71-92.
- Coscia MR, Cocca E, Giacomelli S, Cuccaro F, Oreste U (2012). Immunoglobulin from Antarctic fish species of Rajidae family. Mar. Genomics. 5:35-41.
- Danilova N, Bussmann J, Jekosch K, Steiner LA (2005). The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol. 6(3): 295-302.

Dylke J, Lopes J, Lawson MD, Machtaler S, Matsuuchi L (2007). Role of the extracellular and transmembrane domain of Ig α /ß in assembly of the B cell antigen receptor (BCR). Immunol. Lett. 112(1): 47-57.

- FAO (2014) Fisheries Statistic. Food and Agricultural Organization of the United Nation, Rome, Italy.
- Flajnik MF (2002). Comparative analyses of immunoglobulin genes: surprises and portents. Nat. Rev. Immunol. 2(9): 688-698.
- Flajnik MF, Du Pasquier LD (2004). Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25(12):640-644.

- Grontvedt RN, Espeild S (2003). Immunoglobulin producing cells in the spotted wolfish, *Anarhichas minor* (Olafsson): localization in adults and during juvenile development. Dev. Comp. Immunol. 27(6-7): 1-10.
- Haire RN, Amemiya CT, Suzuki D, Litman GW (1990). Eleven distinct
 V_H gene families and additional patterns of sequence variation
 suggest a high degree of immunoglobulin gene complexity in a lower
 vertebrate, *Xenopus laevis*. J. Exp. Med. 171(5): 1721-1737.
- Hikima J, Jung TS, Aoki T (2011). Immunoglobulin genes and their transcriptional control in teleosts. Dev. Comp. Immunol. 35(9): 924-936.
- Holland MCH, Lambris JD (2002). The complement system in teleosts. Fish Shellfish Immunol. 12: 399-420.
- Hsu E, Schwager J, Alt FW (1989). Evolution of immunoglobulin genes: V_H families in the amphibian *Xenopus*. Proc. Natl. Acad. Sci. U.S.A. 86(20): 8010-8014.
- Kabat EA, Wu TT (1971). Attempts to locate complementarydetermining residues in the variable positions of light and heavy chains. Ann. N. Y. Acad. Sci. 190: 382-393.
- Kabat EA, Wu TT (1991). Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of V_H and V_L genes, minigenes, and complementarity-determining regions to binding of antibody combining sites. J. Immunol. 147(5): 1709-1719.
- Kuo TC, Schlissel MS (2009). Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr. Opin. Immunol. 21(2): 173-178.
- Kozak M (1998). Primer extension analysis of eukaryotic ribosomemRNA complexes. Nucleic Acids Res. 26(21): 4853-4859.
- Lieber MR (1992). The mechanism of V(D)J recombination: A balance of diversity, specificity and stability. Cell 70(6): 873-876.
- Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔC}_T method. Methods 25(4): 402-408.
- Lundqvist ML, Strömberg S, Pilström L (1998). Ig heavy chain of the sturgeon *Acipenser baeri*: cDNA sequence and diversity. Immunogenetics 48(6): 372-82.
- Mage RG, Bernstein KE, McCartney-Francis N, Alexander CB, Young-Cooper GO, Padlan EA, Cohen GH (1984). The structural and genetic basis for expression of normal and latent V_Ha allotypes of the rabbit. Mol. Immunol. 21(11): 1067-1081.
- Mainville CA, Sheehan KM, Klaman LD, Giorgetti CA, Press JL Brodeur PH (1996). Deletional mapping of fifteen mouse V_H gene families reveals a common organization for three Igh haplotypes. J. Immunol. 156(3): 1038-1046.
- Mao MG, Lei JL, Alex PM, Hong WS, Wang KJ (2012). Characterization of RAG1 and IgM (mu chain) marking development of the immune system in red-spotted grouper (*Epinephelus akaara*). Fish Shellfish Immunol. 33(4): 725-735.
- Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H, Miyata T, Honjo T (1998). The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J. Exp. Med. 188(11): 2151-2162.
- Mohamed HM, Refat NAGA (2011). Pathological evaluation of probiotic, Bacillus subtilis, against Flavobacterium columnare in Tilapia nilotica (Oreochromis niloticus). J. Am. Sci. 7: 244-256.
- Ota T, Nei M (1995). Evolution of immunoglobulin V_H pseudogenes in chickens. Mol. Biol. Evol. 12(1):94-102.
- Ota T, Rast JP, Litman GW, Amemiya CT (2002). Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proc. Natl. Acad. Sci. U.S.A 100(5): 2501-2506.
- Peixoto BR, Brenner S (2000). Characterization of approximately 50 kb of the immunoglobulin VH locus of the Japanese pufferfish, Fugu rubripes. Immunogenetics, 51(6):443-451.
- Pilstrom L, Bengten E (1996). Immunoglobulin in fish genes, expression and structure. Fish Shellfish Immunol. 6: 243-262.
- Pridgeon JW, Aksoy M, Klesius PH, Li Y, Mu X, Srivastava K, Reddy G (2011). Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections. Vet. Immunol. Immunopathol. 144(1-2): 111-119.

- Rauta PR, Nayak B, Das S (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett. 148(1): 23-33.
- Rodkhum C, Kayansamruaj P, Pirarat N (2011). Effect of water temperature on susceptibility to *Streptococcus agalactiae* serotype la infection in Nile tilapia (*Oreochromis niloticus*). Thai J. Vet. Med. 41:309-314.
- Roitt I, Brostoff J, Male D (2001). Immunology, 6th edition, Gower Medical Publishing: London.
- Roman T, De Guerra A, Chrlemagne J (1995). Evolution of specific antigen recognition: size reduction and restricted length distribution of the CDRH3 regions in the rainbow trout. Eur. J. Immunol. 25(1):269-273.
- Ross DA, Wilson MR, Miller NW, Clem LW, Warr GW (1998). Evolutionary variation of immunoglobulin µ heavy chain RNA processing pathways: origins, effects, and implications. Immunol. Rev. 166:143-151.
- Rumfelt LL, Lohr RL, Dooley H, Flajnik MF (2004). Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark. BMC Immunol. 5:8.
- Saha NR, Suetake H, Suzuki Y (2005). Analysis and characterization of the expression of the secretory and membrane forms of IgM heavy chains in the pufferfish, *Takifugu rubripes*. Mol. Immunol. 42(1):113-124.
- Salinas I, Zhang YA, Sunyer JO (2011). Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 35(12): 1346-1365.
- Srisapoome P, Ohira T, Hirono I, Aoki T (2004). Genes of the constant regions of functional immunoglobulin heavy chain of Japanese flounder, *Paralichthys olivaceus*. Immunogenetics 56(4):292-300.
- Stenvik J, Lundback AS, Jorgensen TO, Pilstrom L (2000). Variable region diversity of the Atlantic cod (*Gadus morhua* L.) immunoglobulin heavy chain. Immunogenetics 51(8-9):670-680.
- Stewart JJ, Lee CY, Ibrahim S, Watts P, Shlomchik M, Weigert M, Litwin S (1997). A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol. Immunol. 34(15):1067-1082.
- Sun J, Kacskovics I, Brown WR, Butler JE (1994). Expressed swine VH genes belong to a small VH gene family homologous to human VHIII. J. Immunol. 153(12):5618-5627.

- Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992). A simplified protocol for routine total DNA isolation from salmonid fishes. J. Fish Biol. 40:963-965.
- Tian C, Chen X, Ao J (2009). The up-regulation of large yellow croaker secretory IgM heavy chain at early phase of immune response. Fish Physiol. Biochem. 36(3):483-490.
- Tonegawa S (1983). Somatic generation of antibody diversity. Nature 302:575-581.
- Walport MJ (2001). Complement, first of two parts. N. Engl. J. Med. 344:1058-1066.
- Wilson MR, Middleton D, Warr GW (1991). Immunoglobulin VH genes of the goldfish, Carassius auratus: a re-examination. Mol. Immunol. 28(4-5):449-457.
- Wilson MR, Warr GW (1992). Fish immunoglobulins and the genes that encode them. Annu. Rev. Fish. Dis. 2:201-221.
- Yang F, Ventura-Holman T, Waldbieser GC, Lobb C J (2003). Structure, genomic organization, and phylogenetic implications of six new VH families in the channel catfish. Mol. Immunol. 40(5): 247-260.
- Yasuike M, de Boer J, von Schalburg KR, Cooper GA, McKinnel L, Messmer A, So S, Davidson WS, Koop BF (2010). Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 11:486.