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The properties of xylanase purified from Fusarium heterosporum that was grown in barley-brewing 
residue under solid-state fermentation and the effects of thiol compounds on the reactivation of the 
metal ion-inhibited xylanase were investigated. Xylanase was purified to homogeneity by ion exchange 
chromatography, and its molecular mass was estimated to be 19.5 kDa by sodium dodecyl sulphate 
polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for the xylanase was 5.0, and it was 
stable in acidic pH (4.5 to 5.5), where it retained more than 87% of its activity after 24 h. The optimum 
temperature was 50°C, and it had a half-life of 53 min at 45°C. The apparent Km and Vmax values for the 
xylanase were 5.63 mg/ml and 800 µmol/mg/min, respectively. Ba

2+
, Ca

2+
, Mg

2+
 and the thiol compounds 

β-mercaptoethanol and dithiothreitol (DTT) enhanced xylanase activity, while Hg
2+

, Pb
2+

 and Zn
2+

 
strongly inhibited enzyme activity. Furthermore, this xylanase had an alternative mode of regulation in 
the presence of thiol compounds because the enzyme was able to recover its catalytic activity after 
inhibition by heavy metal ions. 
 
Key words: Hemicellulase, fungus, solid-state fermentation, barley brewing residue, thiol compounds. 

 
 
INTRODUCTION 
 
Xylan is the major component of hemicellulose, which is 
abundant in the cell walls of monocot plants and 
hardwoods. This heteropolymer is composed of xylose 
units that are connected by a β -1, 4 linkages in the 
backbone and can be found in the side chains of 
glucuronic acid, α-arabinose, acetyl, feruloyl and p-
coumaroyl residues (Dutta et al., 2007). Due to the 
structural complexity of xylan, its complete hydrolysis 

requires the synergistic action of several enzymes, 
including the endo-1, 4-β-D-xylanases (EC 3.2.1.8), 
which are important for cleavage of the glycosidic β-1, 4 
bonds of the backbone of xylan to produce short-chain 
xylooligosaccharides of various lengths; β-xylosidase, α- 
arabinofuranosidase, α-methylglucuronidase and acetyl 
xylan esterase (Collins et al., 2005; Lafond et al., 2011). 
These xylanases are classified as Glycosyl Hydrolases 

 
*Corresponding author. E-mail: marinakk@gmail.com. Tel: +55 45 3220-3292. 
 
Abbreviations: DTT, Dithiothreitol; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis. 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AJOL - African Journals Online

https://core.ac.uk/display/478329076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dgp.cnpq.br/buscaoperacional/detalhepesq.jsp?pesq=7967975885148688
http://dgp.cnpq.br/buscaoperacional/detalhepesq.jsp?pesq=7967975885148688


 

1048        Afr. J. Biotechnol. 
 
 
 
(GH) based on their amino acid sequences 
(http://www.cazy.org) and belong to families 5, 7, 8, 10, 
11 and 43 (Cai et al., 2011). Xylanase is an industrially 
important enzyme with many applications, such as the 
bioconversion of lignocellulosic material or agro-wastes 
to sugar, bio-bleaching in the paper industry, the 
improvement of texture and loaf volume of bread (Dobrev 
et al., 2007), the clarification of juice and wine, the 
improvement of the nutritional value of animal feed stock, 
and the extraction of plant oil, coffee and starch (Ahmed 
et al., 2012). 

Filamentous fungi secrete higher levels of xylanase 
than bacteria and yeasts (Polizeli et al., 2005), and 
xylanases are produced by several fungi including 
Aspergillus, Trichoderma, Penicillium, Aureobasidium, 
Fusarium, Chaetomium, Phanerochaete, Rhizomucor, 
Humicola and Talaromyces (Kheng and Omar, 2005). 
Likewise, a large number of fungal xylanases have been 
studied and purified from organisms such as those of the 
Trichoderma sp. (Xiong et al., 2004; Zhou et al., 2011), 
Aspergillus carneus M34 (Fang et al., 2008) and some 
species of Fusarium (for example, F. verticillioides and F. 
proliferatum) (Saha, 2001, 2002). Fusarium fungi show a 
cosmopolitan distribution in soil and are associated with 
plants, as described by Nees in 1832 (Feldman et al., 
2008). Some Fusarium species are considered plant 
pathogens [for example, Fusarium solani (Bogale et al., 
2009) and Fusarium graminearum (Kikot et al., 2009)]; 
however, a few studies have reported the use of 
Fusarium species in the production of hemicellulases 
under solid-state fermentation. 

Recently, a novel isolate of Fusarium heterosporum 
was obtained from local soil and showed the potential to 
produce xylanase using barley-brewing residue under 
solid-state fermentation. To our knowledge, no report in 
the literature concerning xylanase production by F. 
heterosporum exists. However, lipase production by this 
fungus has been widely studied. Some fungal xylanases 
have been reported to enhance their activity in the 
presence of thiol compounds such as dithiothreitol (DTT) 
and β-mercaptoethanol; however, these enzymes are 
strongly inhibited by certain heavy metal ions. Thus, in 
this study, the influence of thiol compounds on xylanase 
from F. heterosporum that had been inhibited by heavy-
metal ions and the recovery of the catalytic activity of 
metal-ion-inhibited xylanase is reported. 
 
 
MATERIALS AND METHODS 

 
Fungal strain and culture conditions 
 
The fungus F. heterosporum was newly isolated from local soil from 
Cascavel, Paraná state, Brazil and identified at the Instituto de 
Botânica (Institute of Botany), São Paulo, Brazil. The fungus strain 
was cultivated in potato-dextrose-agar (PDA) at 28°C for 7 days, 
and after growth, its spores were harvested in sterile, distilled water. 

Solid-state fermentation (SSF) was carried out by seeding 10
5
 

spores ml
−1

 of F. heterosporum on 5 g of various carbon sources 
(agro-industrial residue) and moistened with distilled water (1:1 w/v). 

 
 
 
 
The cultures were incubated at 28°C for six days, and after 
incubation and growth, 50 ml of cold, sterile, distilled water was 
added and agitated in an orbital shaker (150 rpm) at 20°C for 60 
min. The solid materials and fungal biomass were subsequently 
vacuum-filtered on filter paper, the filtrate was centrifuged at 5,000 
x g for 10 min, and the clear supernatant was used to determine the 
enzymatic activity. 
 
 

Enzymatic assay and protein quantification 
 

The xylanase activity was assayed by analyzing the reducing 
sugars that were released after incubation in a properly diluted 
enzyme solution containing 1% (w/v) birchwood xylan in 50 mM 
acetate buffer (pH 5.0) at 50°C for 10 min. The amounts of reducing 
sugars were determined using the dinitrosalicylic acid (DNS) 
method by Miller (1959). One unit of xylanase was defined as the 
amount of enzyme that was capable of releasing 1 µmol of D-xylose 
and served as the standard under the assay conditions. The 
amount of protein was estimated by the Bradford method (1976) 
using bovine serum albumin as a standard, and an absorbance of 
280 nm was used for monitoring the protein in the column eluates. 
 

 

Purification of xylanase from F. heterosporum 
 

The crude extract of F. heterosporum was cultured using barley-
brewing residue under solid-state fermentation (fungal strain and 
culture conditions) after incubation for six days. Subsequently, the 
culture was filtered and centrifuged at 5000 g for 10 min at 4°C. The 
supernatant was then dialyzed using 25 mM sodium acetate 
buffer (pH 5.5), loaded onto a diethylaminoethyl cellulose (DEAE-

Cellulose) chromatographic column (2.0 × 20 cm) and eluted using 
a linear gradient of NaCl (0 to 0.5 M) in the same buffer. 5 ml 
fractions were collected at a flow rate of 1.0 ml/min, and those with 
xylanase activity were pooled, dialyzed overnight using 25 
mM sodium acetate buffer (pH 5.5) at 4°C, applied onto a 
carboxymethyl-cellulose (CM-cellulose) chromatographic column 
(2.0 × 20 cm), and eluted using a linear gradient of NaCl (0 to 0.5 
M) in the same buffer. 3 ml fractions were collected at a flow rate of 

0.5 ml/min, and those with the highest activity were pooled, 
lyophilized and used for biochemical characterization of the purified 
xylanase. 
 
 

Effect of pH and temperature on enzyme activity and stability 
 

The optimum pH for xylanase was determined to be 50°C using the 
McIlvaine buffer (1921) at pH values ranging from 2.2 to 8.0. The 

optimum temperature was determined by assaying for xylanase 
activity at temperatures ranging from 40 to 65°C. The thermal 
stability of xylanase was determined by pre-incubating the enzyme 
samples at 45, 50 and 55°C; aliquots were withdrawn at various 
time points, and the residual activity was measured under standard 
conditions. 
 
 

Electrophoresis 
 

Samples of purified enzyme were subjected to 10% sodium dodecyl 
sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accor-
ding to Laemmli (1970). The gels were silver-stained according to 
Blum et al. (1970), and the utilized molecular mass markers were 
as follows: phosphorylase B (97 kDa), albumin (66 kDa), ovalbumin 
(45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (21.1 kDa) 
and α-lactalbumin (14.1 kDa). 
 
 

Kinetic parameters 
 

The kinetic parameters of the purified enzyme were determined
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Table 1. Effect of carbon source on xylanase production 
by F. heterosporum. 
 

Carbon source Xylanase activity
a 
(U/ml) 

Sugar cane bagasse 0.12 ± 0.01 

Barley-brewing residue 6.94 ± 0.21 

Peanut husks 0.66 ± 0.02 

Passion fruit husks 0.66 ± 0.05 

Wheat bran 3.58 ± 0.27 

Corn straw 0.82 ± 0.03 
 
a
Mean and standard deviation of three replications. 

 
 
 
Table 2. Summary of the purification of xylanase from F. heterosporum. 
 

Purification 
step 

Total protein 
(mg) 

Total activity 
(units) 

Specific activity (U/mg 
prot.) 

Yield (% 
recovery) 

Purification 
(fold) 

Crude extract 45.11 2,526.55 56. 09 100 1 

DEAE-Cellulose 18.91 1,781.20 94. 21 72.8 1.7 

CM Cellulose 1.09 139.29 127.78 21.1 2.3 
 

Total U: U ml
−1

 × volume of extract; total protein: mg ml
−1

 × volume of extract. 

 
 
 
using birchwood xylan as the substrate for the xylanase assay, and 
the concentrations of xylan ranged from 1 to 20 mg/ml. The Km and 
Vmax values were determined using the Lineweaver-Burk plot 
(1934). 

 
 
Effects of metal ions and other compounds on xylanase 
activity 

 
Salts [BaCl2, CaCl2, CoCl2, HgCl2, KCl, MgCl2, NaCl, PbCl2, ZnCl2 
and (NH4)2SO4] and other compounds [β-mercaptoethanol, 
dithiothreitol (DTT), cystine, L-cysteine, ethylenediaminetetraacetic 
acid (EDTA), iodoacetamide and sodium dodecyl sulfate (SDS)] 
were also tested. The metal ions and compounds (1 or 5 mM) were 
pre-incubated with the enzyme for 15 min. After incubation, an 
aliquot was withdrawn and chilled on ice, and the hydrolytic activity 

was determined by the standard assay with xylan as the substrate. 

 
 
Influence of thiol compounds on the recovery of heavy metal 
ion-inhibited xylanase activity 

 
Xylanase was pre-incubated for 10 min with heavy metal ions (Hg

2+
, 

Pb
2+

 and Zn
2+

)
 

at 0.5 mM to promote enzymatic inhibition. 

Subsequently, the recovery of xylanase activity was assayed by 
incubating the enzyme with thiol compounds (DTT and β-
mercaptoethanol; 0.5 mM) for 20 min and then measuring the 
enzyme activity under standard conditions. The protective effect of 
the thiol compounds on metal-inhibited xylanase was assayed by 
pre-incubating the enzyme with DTT and β-mercaptoethanol (0.5 
mM) 15 min before the addition of heavy metal ions (Hg

2+
, Pb

2+ 
and 

Zn
2+

). Then, the enzymatic activity was assayed under standard 
conditions as described in ‘enzymatic assay and protein 
quantification’. The activity recovery of xylanase was observed 
against a control; that is, the absence of the heavy metal ions). 

RESULTS AND DISCUSSION 
 
Effect of an alternative carbon source on the 
production of xylanase 
 
The ability of the new strain of soil F. heterosporum to 
produce xylanase under SSF was studied using a variety 
of carbon sources such as sugar cane bagasse, barley-
brewing residue, peanut husks, passion fruit husks, 
wheat bran and corn straw. F. heterosporum was capable 
of growing and producing xylanase (6.94 U/ml) in a 
culture containing barley-brewing residue, which is an 
inexpensive substrate that is disposed of in large scale 
from the brewing industry in Brazil. This result indicates 
that a substrate such as barley-brewing residue, which is 
rich in cellulosic and non cellulosic polysaccharides, can 
be efficiently used to induce xylanase production by F. 
heterosporum (Table 1). Similarly, Silva et al. (2005) 
have obtained high yields of xylanase using different 
wastes such as corncob, green grass, dried grass, corn 
straw and wheat bran as raw materials for SSF using the 
thermophilic fungus Thermoascus aurantiacus. 
 
 

Purification of xylanase 
 
The xylanase from F. heterosporum was purified to 
apparent homogeneity by ion exchange chromatography, 
and a summary of the purification procedure is presented 
in Table 2. Xylanase was purified 2.3-fold with a recovery 
of 21.1% by two chromatographic, ion-exchange puri-
fication steps: a DEAE-cellulose chromatographic column
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Figure 1. Chromatographic profiles of the xylanase that was produced by F. heterosporum using 

a CM-Cellulose column. The collected fractions are indicated by arrows (). 

 
 
 

 
 
Figure 2. Polyacrylamide gel electrophoresis 

10% SDS-PAGE. The xylanase that was 
produced by F. heterosporum is shown in lane 

B; and molecular mass markers are shown in 
lane A: phosphorylase B (97 kDa), albumin 
(66 kDa), ovalbumin (45 kDa), carbonic 
anhydrase (30 kDa), trypsin inhibitor (21.1 kDa) 
and α-lactalbumin (14.1 kDa). 

 
 
 

followed by a CM-cellulose chromatographic column. The 
enzyme eluted as a single peak with 75 mM NaCl (Figure 
1), and this peak showed a single band with an apparent 

molecular mass of 19.5 kDa by 10% SDS-PAGE (Figure 
2). The molecular mass of this xylanase was lower than 
that of xylanases produced from Thermomyces 
lanuginosus SS-8 (23.79 kDa) (Shrivastava et al., 2011) 
and Penicillium occitanis Pol6 (30 kDa) (Driss et al., 
2012). 
 
 
Effect of pH on the activity and stability of xylanase 
 
The optimum pH of the purified xylanase from F. 
heterosporum was 5.0 (Figure 3A). The enzyme was 
active within the acidic pH range of 4.5 to 5.5 and 
retained more than 87% of its activity after 24 h of 
incubation (Figure 4A). This optimum pH value was 
similar to that described for xylanase produced by F. 
solani SYRN7 (Arabi et al., 2011) and the optimum pH for 
xylanases of other Fusarium species has been reported 
to be within the range of 4.5 to 8.0; for example, 
Fusarium oxysporum f. sp. lycopersici, pH 4.5 (Ruiz et 
al., 1997) and F. solani, pH 8.0 (Bakri et al., 2013). 
 
 
Effect of temperature on the activity and stability of 
xylanase 
 
The xylanase exhibited optimum activity at a temperature 
of 50°C (Figure 3B), and the enzyme was stable within a 
temperature range of 50 to 55°C for 15 min. However, at 
45°C, the half-life (t½) of the xylanase was 53 min (Figure 
4B). Likewise, xylanases from Aspergillus niger (Lopes et  
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Figure 3. Effect of pH (A) and temperature (B) on the activity of xylanase 
from F. heterosporum. 

 
 
 
al., 2013) and A. carneus M34 (Fang et al., 2008) 
showed optimum activity at 50°C. Interestingly, similar 
result regarding optimum temperature was obtained with 
xylanase from F. verticillioides NRRL 26518 (Saha, 
2001). In the contrast, xylanase from F. solani showed 
optimum temperature at 25°C (Bakri et al., 2013). 
 
 
Kinetic parameters 
 
The apparent Km and Vmax values for this xylanase were 
found to be 5.63 mg/ml and 800 µmol/mg/min, 
respectively; when birchwood xylan was used as the 

substrate. The Km value obtained for xylanase from F. 
heterosporum shows that the enzyme has a higher 
affinity for xylan than xylanases produced from 
Streptomyces cyaneus SN32 (Km = 11.1 mg/ml) (Ninawe 
et al., 2008) and Humicola grisea var. thermoidea (Km = 
10.87 mg/ml) (Lucena-Neto and Ferreira, 2004). The 
products released after hydrolysis of birchwood xylan 
were analyzed by thin layer chromatography and were 
found to be xylooligosaccharides (X2 to X5) but no free 
xylose, indicating that this enzyme is typically an endo-
xylanase (results not shown). Similar results have been 
obtained for xylanase from F. oxysporum f. sp. ciceris 
(Jorge et al., 2005). 
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Figure 4. pH (A) and thermal stability (B) of xylanase from F. 

heterosporum. 
 
 

 

Effect of metal ions and other compounds on 
xylanase activity 
 
Metallic ions and some compounds influenced the 
xylanase activity of F. heterosporum (Table 3). Ca

2+
, Ba

2+
 

and Mg
2+

 (1 mM) increased the enzyme activity by 20, 28 
and 38%, respectively. However, Zn

2+
, Pb

2+
 and Hg

2+
 

were the most effective inhibitors (27, 39 and 74% 
inhibition, respectively). This inhibition by heavy-metal 
ions may occur due to complex formation with reactive 
groups of the enzyme, for example, metals of group Ilb 
exhibit high affinity for SH, CONH2, NH2, COOH, PO4, 
and this effect is similar to that of mercaptides (Khasin et 
al., 1993). Furthermore, the heavy metal ions may bind 
non-specifically to regions other than the cysteine thiol 
group of the enzyme to induce inhibition (Krajewska, 

2008). SDS also inhibited (70%) enzyme activity. Simi-
larly, a total loss of xylanase activity from Penicillium 
glabrum was observed in the presence of SDS, indicating 
that hydrophobic interactions may be important in 
maintaining the structure of xylanase (Knob et al., 2013). 
Among the amino acids tested, L-cysteine and cystine did 
not increase enzyme activity. 

Interestingly, compounds containing thiol groups such 
as β-mercaptoethanol and DTT enhanced the activity of 
xylanase from F. heterosporum by 55% and 54%, 
respectively, and a similar effect was observed for 
xylanase from Termitomyces spp. in the presence of 
reducing agents (Faulet et al., 2006). Likewise, crude 
xylanase from T. longibrachiatum and A. niger were 
activated by L-cysteine, DTT and β-mercaptoethanol 
(Medeiros et al., 2003). In contrast, DTT (5 mM) inhibited 
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Table 3. Effects of various compounds on the 
activity of xylanase from F. heterosporum. 
 

Compound 
Residual activity

 
(%) 

1 mM 5 mM 

Control 100 100 

BaCl2 128 ± 3.1 132 ± 2.8 

CaCl2 120 ± 1.8 146 ± 1.4 

CoCl2 111 ± 0.2 112 ± 0.4 

HgCl2 26 ± 0.4 6 ± 0.3 

KCl 112 ± 2.6 115 ± 2.3 

MgCl2 138 ± 3.3 148 ± 3.7 

NaCl 110 ± 2.6 117 ± 2.4 

PbCl2 61 ± 0.4 52 ± 0.5 

ZnCl2 73 ± 2.0 62 ± 2.0 

(NH4)2SO4 118 ± 0.4 118 ± 0.4 

β-Mercaptoethanol 133 ± 2.7 155 ± 2.6 

DTT 141 ± 2.7 154 ± 2.3 

Cystine 99 ± 2.7 82 ± 2.4 

L-cysteine 97 ± 2.4 81 ± 2.5 

Iodoacetamide 84 ± 1.9 82 ± 1.7 

SDS 30 ± 1.5 12 ± 1.3 

EDTA 91 ± 1.0 89 ± 1.5 
 

Results are expressed as a percentage of the 
control, which is 100%. Xylanase used: 2 U ml

-1
. 

a
Residual activity is expressed as a percentage 

of the control. 
 
 
 
xylanase from F. proliferatum NRRL, 26517 by 23% 
(Saha, 2002). 
 
 
Influence of thiol compounds on xylanase activity 
 
In this study, we observed that the activity of xylanase 
from F. heterosporum was inhibited by metal ions (Hg

2+
, 

Pb
2+

 and Zn
2+

), but this activity was subsequently 
restored to control levels after exposure to DTT and β-
mercaptoethanol (Figure 5A). Furthermore, our studies 
show the protective effect of thiol compounds on this 
enzyme when these compounds are previously pre-
incubated with heavy metals (Figure 5B). These results 
suggest that compounds such as β-mercaptoethanol and 
DTT can interact with the enzyme at a higher affinity and 
prevent the formation of heavy metal - enzyme 
complexes. This behavior can be explained by a model 
proposing the non-essential enzyme activation of 
asparaginase from Erwinia carotovora (Warangkar and 
Khobragade, 2010). When β-mercaptoethanol and DTT 
are added, they bind to another site other than the site of 
the enzyme substrate, a conformational change in the 
enzyme results in decreased binding affinity for the heavy 
metal, and the enzyme can recover its catalytic activity. 
Therefore, the finding of a xylanase with an alternative 
form of regulation due to a higher affinity for thiol 

compounds will be particularly useful because of the 
potential to improve and promote the recovery of the 
catalytic efficiency of the enzyme after it has been 
inhibited by metallic ions. 
 

 

Conclusion 
 

The new isolate F. heterosporum proved to be a 
promising strain in producing xylanase using a low-cost, 
alternative substrate such as barley-brewing residue. 
Interestingly, the enzyme showed the versatility of 
interacting with thiol compounds and promoting the 
recovery of the catalytic efficiency of xylanase that had 
been inhibited by heavy metal ions, which thereby 
accentuates the biotechnological potential of this 
enzyme. 
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Figure 5. Recovery of heavy metal-inhibited xylanase activity by thiol 
compounds (A). Protective effect of the thiol compounds on heavy metal-
inhibited xylanase (B). The control (□) is the xylanase activity in the 
absence of a heavy metal ion.

 a
Relative activity is expressed as a 

percentage of the control. 
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