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Comparison of genetic diversity indices of heterologous and species-specific microsatellite loci within a 
species may provide a panel of appropriate markers for genetic studies, but few studies have carried 
out such comparisons. We examined and compared the genetic characteristics of tiger-specific and 
heterologous loci in eight captive Bengal tigers. The mean polymorphic information content (PIC) value 
of the tiger-specific microsatellite loci (n = 15) was 0.447, and the number of alleles was from 2 to 4 per 
locus. In comparison, the heterologous microsatellite loci (n = 15) had a mean PIC value of 0.539, and 
the number of alleles per locus was three to five. Our findings indicate that the heterologous markers 
have a higher frequency (n = 11) of polymorphic microsatellite loci and number of alleles per locus 
compared with tiger-specific loci. We pooled the highly polymorphic (PIC > 0.5) tiger-specific loci (n = 5) 
and heterologous microsatellite loci (n = 11) except one and noted a higher mean observed heterozygosity 
and PIC values of 0.668 and 0.575, respectively, compared with the heterologous and tiger-specific loci 
taken alone. Using a locus selection criterion of PIC > 0.5, we recommend a combined panel of 16 highly 
polymorphic loci for genetic studies of the wild population of the Bengal tigers and suggest that either a 
combination of tiger-specific and heterologous microsatellite primers or heterologous primers be used 
in genetic studies related to the ecology, biology, socio-biology and behavior of Bengal tigers as >13 
loci are needed in such studies. 
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INTRODUCTION 
 
The tiger (Panthera tigris) once had the widest geographical 
distribution among cat species, extending from almost 

10° south of the equator (Bali and Java) to beyond 60° 
north (the Russian Far East) and through more than100°
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of longitude (Mazak, 1996; Nowell and Jackson, 1996). It 
is not surprising that the tiger exhibited considerable 
variation in behavior due to adaptation to diverse biocli-
matic zones and the different groups of prey species 
across its geographical range (Pocock, 1929; Brongersma, 
1935; Mazak, 1981, 1996). Three of the nine genetically 
identified subspecies of the tiger have become extinct 
(Nowell and Jackson, 1996; Luo et al., 2004). 

Poaching is a major conservation threat to the species, 
and there is a need to curtail the global traffic in tiger 
parts and products (Dinerstein et al., 2007; Goodrich et 
al., 2008; Walston et al., 2010). Although the geographic 
distribution of the tiger once extended across Asia from 
eastern Turkey to the Sea of Okhotsk, its range has been 
greatly reduced in recent times due to poaching as well 
as human disturbances that have led to habitat loss and 
a reduction in the availability of wild prey species throughout 
its range (Dinerstein and Wikramanayake, 1993; Nowell 
and Jackson, 1996; Sunquist et al., 1999; Linkie et al., 
2006; Sanderson et al., 2006). Now tigers survive only in 
small pockets spread from India to Vietnam and in 
Sumatra, China and the Russian Far East (Nowell and 
Jackson, 1996). 

The Bengal tiger (P. t. tigris), the national animal of 
India, is listed in Schedule I of the Wildlife (Protection) 
Act, 1972 of India and in Appendix I of the Convention on 
International Trade in Endangered Species (CITES). It is 
one of the six extant tiger subspecies found in India, 
Nepal, Bhutan, Bangladesh and Myanmar (Luo et al., 
2004; 
http://assets.panda.org/downloads/wwf_tiger_factsheet_2
010_1.pdf). The reported world tiger population has 
declined and may be as low as 3200 individuals 
(http://assets.panda.org/downloads/wwf_tiger_factsheet_
2010_1.pdf). The largest population (1706) is that of the 
Bengal tiger in India (Jhala et al., 2011). 

Reliable methods of studying the population dynamics 
and its processes are necessary for designing long-term 
conservation strategies for any species in fragmented 
and human-dominated landscapes. Large carnivores such 
as the tiger are difficult to study because they are often 
wide ranging and have low densities (Boitani et al., 2008; 
Karanth, 2003) and are territorial, elusive, cryptic and 
nocturnal in nature (Karanth et al., 2003). It is practically 
very difficult to estimate numbers of tigers in terms of sex 
to understand the population dynamics. It is also difficult 
to track individual tigers to obtain the ecological, biological 
and genetic information needed to develop conservation 
strategies. 

In view of the recent advances that have taken place in 
DNA technologies, population genetics has been widely 
used in research and conservation of both abundant and 
rare species (Schwartz et al., 2007; Goedbloed et al., 
2013; Holbrook et al., 2013). Molecular methods incorpo-
rating non-invasive sampling are commonly used in 
monitoring the populations of carnivores (Taberlet et al., 
1999; Piggott and Taylor, 2003; Waits and Paetkau, 2005; 
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Schwartz et al., 2007; Cullingham et al., 2010; Miotto et 
al., 2011) and in studying their socio-biology (Langergraber 
et al., 2013) and behavioral genetics (Langergraber and 
Vigilant, 2011; Lyke et al., 2013). 

Among the different genetic markers used in wildlife 
studies are microsatellites, or simple sequence repeats 
(SSRs). These are regions of the genome that are made 
up of short repeat sequences, consisting of one to six 
nucleotides (Hancock, 1999; Sawaya et al., 2013), and 
they are widely used in studies of various organisms 
because of their high degree of polymorphism and their 
co-dominant inheritance. One of the limiting factors in the 
use of these markers is the development of species-
specific primers (Lopes et al., 2010) to resolve genetic 
relationships at all levels of the population structure 
(Jarne and Lagoda, 1996; Hille et al., 2002). Never-
theless, attempts have been made to use these methods 
for the domestic cat (Felis catus) (Menotti-Raymond et 
al., 1999), Sumatran tiger (P. t. sumatrae) (Williamson et 
al., 2002), Asiatic lion (P. leo persica) (Singh et al., 2002), 
South China tiger (P. t. amoyensis) (Zhang et al., 2006), 
puma (Puma concolor) (Kurushima et al., 2006) and 
Bengal tiger (Bhagvatula and Singh, 2006; Sharma et al., 
2008) among the Felidae. 

The use of species-specific microsatellites is limited by 
the time and expense involved and the difficulty in 
isolating these short tandem repeats and their flanking 
regions from the genomes of the target organisms. An 
alternative approach to de novo development is 
exploitation of the available information by cross-species 
amplifications among a range of phylogenetically related 
species (Blanquer-Maumont and Crouau-Roy, 1995; 
Coltman et al., 1996; Pepin et al., 1995; Scribner et al., 
1996; Hille et al., 2002). But it is known that the level of 
information obtained by using heterologous primers 
differs among species, generally because of a decrease 
in the number of successfully amplified loci as the genetic 
distance increases (Francisco et al., 2006). Considering 
the information obtained by using species-specific loci, 
heterologous primers may not be ideal choices for 
estimating genetic diversity indices. Notwithstanding this, 
the use of heterologous primers has become quite 
common in genetic studies because it eliminates the 
need to develop new sets of primers for each species 
(Engel et al., 1996). Heterologous primers have been 
used in studies carried out on the Far Eastern leopard (P. 
pardus orientalis) (Uphyrkina et al., 2002), jaguar (P. 
onca) (Ruiz-Garcia et al., 2006), snow leopard (P. uncia) 
(Waits et al., 2007), clouded leopard (Neofelis nebulosa) 
(Wilting et al., 2007), leopard (P. pardus) (Mondol et al., 
2009), Siberian tiger (P. t. altaica) (Alasaad et al., 2011), 
cheetah (Acinonyx jubatus) (Charruau et al., 2011) and 
jaguarandi (Puma yagouaroundi) (Holbrook et al., 2013) 
and provided support to plan effective conservation 
strategies. Janecka et al. (2008) modified primers for 
short amplicon originally developed for the domestic cat 
(Menotti-Raymond et al., 1999) and used them in  genetic 
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studies they carried out on the snow leopard. 

Thus, heterologous microsatellite loci are of use in 
intra- and inter-population diversity analysis and can 
potentially be used in identifying individuals. Thus they 
may be used in a variety of applications, including gene 
mapping and analysis of family relatedness and paternity 
(Angers and Bernatchez, 1996; Vigilant et al., 2001; 
Inoue et al., 2008), whereas species-specific microsatellite 
loci are very useful and essential for long-term population 
genetic studies (Lopes et al., 2010) and for understanding 
genetic fitness. Therefore, in this study, we compare for 
the first time the genetic characteristics of tiger-specific 
microsatellite loci (n = 15) developed for the Bengal tiger 
(Sharma et al., 2008) and Sumatran tiger (Williamson et 
al., 2002) with those of heterologous microsatellite loci (n 
= 15) developed for the domestic cat (Menotti-Raymond 
et al., 1999, 2005) and Asiatic lion (Singh et al., 2002) in 
captive Bengal tigers using high quality DNA samples. Of 
these 30 loci, seven are different loci that have so far not 
been used in other studies on the Bengal tiger. We also 
suggest a combined panel of highly polymorphic tiger-
specific and heterologous microsatellite loci for studying 
different genetic aspects of the wild population of the 
Bengal tiger. 

 
 
MATERIALS AND METHODS 

 
We obtained blood samples from eight captive Bengal tigers in 
Mahendra Chaudhury Zoological Park, Chhatbir, Mohali, India. 
Details such as individual tigers’ histories and translocation from 
other zoos are poorly documented in the ‘Indian National Studbook 
for Bengal Tigers, 2011’, and hence the geographic origin of these 
tigers is unknown. Genomic DNA was extracted from the blood 
samples using Bio Robot EZ1 (QIAGEN, Germany). We selected 
and amplified 15 tiger-specific loci (12 dinucleotide and three 
tetranucleotide repeat loci) developed for the Bengal tiger (Sharma 
et al., 2008) and Sumatran tiger (Williamson et al., 2002) and 15 
heterologous loci (eight dinucleotide and seven tetranucleotide 
repeat loci) developed for the Asiatic lion (Singh et al., 2002) and 
domestic cat (Menotti-Raymond et al., 1999, 2005). We examined 
these loci for their size, range and level of polymorphism in the 
Bengal tiger (Table 1). Polymerase chain reactions (PCR) were 
carried out in an Applied Biosystems 9700 thermocycler (Applied 
Biosystems, Germany) in a 10 µl reaction mixture containing 1 × 
PCR ABI Taq gold buffer, 2.0 mM MgCl2, 0.4 mM dNTP mix, 
approximately 50 ng of genomic DNA, 4 pmol of forward and 
reverse primers and 1 U Taq Gold DNA Polymerase (Applied 
Biosystems). Amplification of all 30 loci was attempted for all 
samples using amplification conditions described in the literatures. 
The amplified PCR products were detected on 2% agarose gel in 1 
× TAE buffer. Amplified products were visualized and scored on an 
ABI 3130 fluorescent detection system using the GeneMapper 
software package (Applied Biosystems). The quality of the micro-
satellite data was statistically assessed for genotyping errors due to 
non-amplified alleles (null alleles), short-allele dominance (large-
allele dropout) and mis-scoring of stutter peaks using Micro-
Checker 2.2.3 (Van Oosterhout et al., 2004). Statistics of the 
genetic diversity values were generated using GenAlEx 6 (Peakall 
and Smouse 2006) and GIMLET (Valiere, 2002). 
GENEPOP’007(Rousset, 2008) was used to test the deviations from 
the Hardy-Weinberg equilibrium (HWE) and the linkage disequilibrium  

 
 
 
 
(LD) in the population at each locus. The polymorphic information 
content (PIC) of the markers was calculated from the allelic 
frequencies using Cervus (ver. 3.0) (Kalinowski et al., 2007). Since 
details of individual tigers were not available in the ‘Indian National 
Studbook for Bengal Tigers, 2011’, we estimated the Queller and 
Goodnight relatedness coefficients (Queller and Goodnight, 1989) 
using GenAlEx 6 (Peakall and Smouse, 2006) to ensure that the 
selected individuals were not related to each other. The level of 
relationship among individuals was established using the R-value 
as suggested by Blouin (2003). 
 

 

RESULTS AND DISCUSSION 
 
Different kind of genotyping errors have been reported to 
be involved in the use of non-invasively collected 
samples such as scats (Bonin et al., 2004; Pompanon et 
al., 2005). However, genotyping data can be validated by 
the use of a known individual’s DNA (Gerloff et al., 1995; 
Launhardt et al., 1998) and a good-quality sample that 
can be used as a species control DNA (Kohn et al., 1995; 
Paxinos et al., 1997; Wasser et al., 1997). Therefore, 
more studies are needed to document the genetic 
characteristics of microsatellite loci with a good-quality 
source of DNA. In view of this, we used blood samples (n 
= 8) as a source of high-quality DNA to minimize 
genotyping errors. Our data analysis using Micro-
Checker 2.2.3 (Van Oosterhout et al., 2004) clearly 
revealed the absence of null alleles, large-allele dropout 
(Wattier et al., 1998) and scoring errors, associated with 
peak stuttering (Ewen et al., 2000), in genotyping data 
generated using tiger-specific and heterologous 
microsatellite loci. 

All 15 tiger-specific loci were successfully amplified in 
the Bengal tiger samples, and the allele size ranged from 
112 to 285 bp. The average observed (HO) and expected 
(HE) heterozygosities for the 15 polymorphic loci were 
0.500 and 0.555, respectively. Five loci (PttE5, PttF4, 
Ptt4a, 6HDZ056 and 6HDZ170) had expected 
heterozygosity levels above 0.500. The number of alleles 
per locus in these loci ranged from 2 to 4 (average 
2.933), and the mean PIC was 0.447. The effective 
number of alleles per locus ranged from 1.385 to 3.000 
(average 2.196). Only five microsatellite loci out of 15 
tiger-specific loci had PIC values higher than 0.500, 
which is considered to be a very informative value in popu-
lation genetic analysis (Botstein et al., 1980) (Table 1). 

All heterologous loci (n = 15) were amplified, and the 
allele size ranged from 106 to 302 bp. The average 
observed and expected heterozygosities for all 15 loci 
were 0.624 and 0.630, respectively. Fourteen loci (F41, 
F53, F85, F124, Fca008, Fca126, Fca304, Fca441, 
Fca506, Fca628, Fca740, Fca742, Ple23 and Ple57) had 
expected heterozygosity levels above 0.500 (Table 1). 
The number of alleles per locus at the polymorphic loci (n 
= 15) ranged from 3 to 5 (average 3.666), and the mean 
PIC was 0.539. The effective number of alleles per locus 
ranged from 1.588 to 3.447 (average 2.585). Ten 
microsatellite loci out of 15 heterologous loci had PIC 
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Table 1. Genetic characteristics of species-specific and heterologous microsatellite loci in eight captive Bengal tigers (Panthera tigris tigris). 
 

Locus 
Chr. 
Asn. 

Di-
/tetra 

Size range 
(bp) 

N Na Ne HO HE PIC FIS 
Loci selected for  

panel (n = 16) 

A: Species-specific (tiger-specific) microsatellite loci 

Ptt10H
‡
 NK D 162-164 8 2 1.385 0.375 0.325 0.258 -0.166 - 

PttA2
‡
 NK D 188-196 8 2 1.670 0.125 0.458 0.337 0.740 - 

PttA4
‡
 NK D 143-151 7 3 2.032 0.714 0.538 0.427 -0.363 - 

PttC6
‡
 NK D 174-176 8 2 1.800 0.625 0.458 0.337 -0.400 - 

PttE5
‡
 NK D 182-190 8 4 2.314 0.750 0.650 0.559 -0.166 † 

PttF4
‡
 NK D 192-196 8 3 2.945 0.625 0.700 0.582 0.113 † 

PttD5
‡
 NK T 201-213 7 4 2.510 0.286 0.571 0.483 0.520 - 

Ptt4a
‡
 NK D 283-285 8 4 3.000 0.625 0.725 0.624 0.146 † 

PttG4
‡
 NK T 112-120 8 3 2.418 0.500 0.575 0.447 0.138 - 

PttF1
‡
 NK D 129-133 8 3 2.219 0.500 0.592 0.456 0.164 - 

PttD6
‡
 NK D 180-190 8 4 2.000 0.125* 0.575 0.483 0.794 - 

PttB3
‡
 NK T 241-245 8 2 1.528 0.000* 0.400 0.305 1.000 - 

PttB2
‡
 NK D 139-141 8 2 1.800 0.625 0.458 0.337 -0.400 - 

6HDZ056
§
 NK D 172-176 8 3 2.656 0.750 0.625 0.520 -0.191 † 

6HDZ170
§
 NK D 216-226 8 3 2.656 0.875* 0.675 0.556 -0.376 † 

Mean     2.933 2.196 0.500 0.555 0.447 0.103  

            

B: Heterologous microsatellite loci 

F41
¶
 D2 T 170-188 8 4 2.656 0.625 0.708 0.616 0.166 † 

F53
¶
 A1 T 128-152 8 4 2.000 0.667 0.500 0.450 -0.280 † 

F85
¶
 B1 T 156-176 8 3 2.656 0.375* 0.658 0.544 0.340 † 

F124
¶
 E1 T 258-286 8 4 3.306 0.625 0.750 0.644 0.102 † 

Fca008
¶
 A1 D 130-134 8 3 1.906 0.625 0.542 0.428 -0.111 - 

Fca126
¶
 B1 D 124-150 8 4 1.820 0.625 0.525 0.458 -0.176 - 

Fca272
¶
 A3 D 112-122 8 3 1.588 0.500 0.433 0.371 -0.142 - 

Fca304
¶
 A2 D 125-141 8 3 2.656 0.750 0.633 0.511 -0.191 † 

Fca441
¶
 D3 T 149-161 8 4 2.793 0.875 0.742 0.645 -0.154 † 

Fca506
¶
 F2 D 206-220 8 3 2.842 0.625 0.692 0.575 0.030 † 

Fca628
¶
 D2/E3 D 106-110 8 3 2.945 0.444 0.660 0.586 0.378 † 

Fca740
¶
 C1 T 290-302 8 4 1.820 0.625 0.525 0.458 -0.176 - 

Fca742
¶
 D4 T 150-176 8 4 2.842 0.500 0.692 0.592 0.200 † 

Ple23
 ψ

 NK D 152-168 8 4 2.793 0.750 0.692 0.592 -0.154 † 

Ple57
 ψ

 NK D 141-155 8 5 3.447 0.750 0.708 0.618 -0.037 † 

Mean     3.666 2.585 0.624 0.630 0.539 -0.013  
 
†
Locus recommended for panel of 16 microsatellite loci. T, Tetranucleotide repeat; D, dinucleotide repeat; n, number of samples; Na, number of 

alleles; Ne, effective number of alleles; Chr. Asn., chromosomal assignment; NK, not known; HO, observed heterozygosity; HE, expected 
heterozygosity; PIC, polymorphic information content; HW, significance of Hardy-Weinberg test based on 100 permutations (*P < 0.05); FIS, inbreeding 
coefficients. 

‡
Sharma et al. (2008); 

§
Williamson et al. (2002); 

¶ 
Menotti-Raymond et al. (1999, 2005); 

ψ
Singh et al. (2002). 

 
 
 
values greater than 0.500 and were considered to be 
valuable for studies related to population genetic analysis 
(Botstein et al., 1980) (Table 1). These observed 

differences in genetic diversity indices between the two 
types of markers may be arising from the heterologous 
markers (developed for the domestic cat and Asiatic lion) 
being phylogenetically old markers compared with the 
phylogenetically young markers (tiger-specific markers 
developed for the Bengal tiger and Sumatran tiger) as 

phylogenetically old markers are known to have greater 
genetic diversity compared with markers that are young 
in the evolutionary scale. 

The sample size is small in the present study, which 
may affect the HWE analysis. However, the examined 
captive population was found to be in HWE at all tiger-
specific and heterologous microsatellite loci except PttD6, 
PttB3, 6HDZ170 and F85, which showed significant (P < 
0.05) deviations from the HWE (Table 1). The inbreeding  
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Table 2. Comparison of genetic diversity parameters of species-specific (tiger-specific) and heterologous 
microsatellite loci with combined panel of highly polymorphic loci in eight captive Bengal tigers (Panthera tigris tigris). 
 

Mean values 
Species-specific  

Loci  (n = 15) 

Heterologous loci  

(n = 15) 

Combined panel of highly  

Polymorphic  loci (n = 16) 

Na 2.933 3.666 3.625 

Ne 2.196 2.585 2.781 

HO 0.500 0.624 0.668 

HE 0.555 0.630 0.675 

PIC 0.447 0.539 0.575 

FIS 0.103 -0.013 -0.004 
 

Na, Number of alleles; Ne, effective number of alleles; HO, observed heterozygosity; HE, expected heterozygosity; PIC, 
polymorphic information content; FIS, inbreeding coefficients. 

 
 
 
coefficient (FIS) was calculated using the procedure of 
Weir and Cockerham (1984), and a heterozygote excess 
was found at nine heterologous loci (F53, Fca008, 
Fca126, Fca272, Fca304, Fca441, Fca740, Ple23 and 
Ple57), in comparison with seven tiger-specific loci 
(Ptt10H, PttA4, PttC6, PttE5, PttB2, 6HDZ056 and 
6HDZ0170) (Table 1). The mean FIS was found to be 
positive (0.103) with the tiger-specific loci (n = 15); in 
contrast, it was negative (-0.013) with the heterologous 
loci (n = 15) (Table 1). The observed ambiguity in the FIS 

values of the tiger-specific loci and heterologous loci may 
be due to the differences in the allele numbers as well the 
PIC values. Linkage analysis indicates no significant 
evidence of an LD (P > 0.01), demonstrating that each 
locus may be considered as an independent genetic 
marker (Rousset, 2008; Chen et al., 2005). This is an 
important finding because a population is likely to retain 
polymorphisms in the absence of an LD. The effective-
ness of loci selection will be augmented if they are in a 
coupling LD (Wills and Miller, 1976). 

Analysis of the genetic characteristics indicated a larger 
number of highly polymorphic loci, with a higher PIC 
value (>0.500) in the heterologous loci (n = 10) than in 
the tiger-specific loci (n = 5). It was apparent that the 
mean number of alleles per locus, effective number of 
alleles, heterozygosity and PIC values obtained using the 
heterologous loci were greater than those obtained with 
tiger-specific loci (Table 1). However, species-specific loci 
can be very informative genetically as they have been 
specifically developed for targeted species and may be 
quite useful in evaluating the genetic fitness because 
these loci are closer to the species than are the 
heterologous loci in the evolutionary scale. 

The use of more than 13 polymorphic loci is recom-
mended in studies related to molecular ecology for under-
standing population genetics, behavior, socio-biology, 
among others (Blouin, 2003). Similarly, Cornuet and Luikart 
(1996) stated that the statistical power of examining a 
genetic bottleneck in a wild population increases with the 
sample size and the number of loci. However, they also 
emphasize the point that it is more effective to increase 

the number of loci than it is to increase the sample size. 
Therefore, we suggest a combined panel of 16 loci, 
including tiger-specific loci (n = 5) and heterologous loci 
(n = 11), having PIC values >0.500, except F53, which 
was also included in the panel although it has a relatively 
low PIC value (0.450) because it generates a better 
genotyping profile that is easy to interpret and use for 
allele scoring. However, at the same time, the use of a 
greater number of loci may introduce more genotyping 
errors when using non-invasively collected samples of a 
low-quality source of DNA (Creel et al., 2003). This 
problem may be minimized by using the multiple-tube 
approach (Navidi et al., 1992; Goossens et al., 1998) and 
two-step multiplex PCR method without compromising 
with number of loci (Arandjelovic et al., 2009; Chang et 
al., 2012) needed to understand species biology and 
ecology. 

Interestingly, the mean FIS value with the combined 
panel of highly polymorphic loci was close to zero (-
0.004). This indicates that the population of captive tigers 
(n = 8) is in HWE. Hence, the results with the combined 
panel of selected loci are promising compared with the 
tiger-specific loci (n = 15) and heterologous loci (n =15) 
alone. The combined panel yields relatively high average 
values of the heterozygosities (HO = 0.668 and HE = 
0.675). The number of alleles per locus at the 
polymorphic loci (n = 16) ranged from three to five 
(average 3.625), the effective number of alleles per locus 
ranged from 2.000 to 3.447 (average 2.781), and the 
mean PIC was 0.575 (Table 2). Considering the small 
number of individuals in our study, we support our results 
by examining the mean values of HE and HO (0.675 and 
0.668, respectively) of the combined panel (n=16), which 
are comparable with the reported mean values of HE 

(0.655 to 0.810) and HO (0.650 to 0.7624) in non-invasive 
genetic studies carried out on the Bengal tiger (Reddy et 
al., 2012; Gour et al., 2013; Sharma et al., 2013). We 
established the relatedness among the captive tigers (n = 
8) using the combined panel of highly polymorphic loci 
and estimated the mean value of the relatedness 
coefficient (R = -0.143), which indicated that the selected  



 
 
 
 
tigers were not highly related to each other, as is mostly 
expected in captive individuals. 

Our findings clearly indicate that the combined panel of 
16 loci, including Bengal tiger- and Sumatran tiger-
specific microsatellite loci (n = 5) and heterologous loci (n 
= 11) that have been developed for the domestic cat and 
Asiatic lion, will be more useful for genotyping-based 
studies for evaluating the current range and genetic 

diversity and for genetic identification and characterization 
of various geographical populations of wild Bengal tigers 
from tissue, skin, hair and fecal samples (where more 
than 13 loci are recommended) (Blouin, 2003), compared 
with the use of tiger-specific or heterologous primers 
alone (Table 2). 
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