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Sweet sorghum (sugar sorghum, Sorghum bicolor) is one kind of non-grain energy crops. As a novel 
green regenerated high-energy crop with high utility value, high yield of biomass, the sweet sorghum is 
widely used and developed in China. Stalk juice of sweet sorghum was used as the main substrate for 
ethanol production by a Saccharomyces cerevisiae strain because of the high content of sugar.  Effects 
of different medium compositions, including urea, KH2PO4 and MgSO4, on ethanol production were 
studied by response surface methodology in this paper. A second-order model that related the 
concentration of ethanol was developed and thus the optimal medium composition was obtained, which 
was 4.75 g l

-1
 urea, 3.58 g l

-1
 KH2PO4, and 0.98 g l

-1
 MgSO4. Under this condition, the highest ethanol 

concentration reached 86.2 g l
-1
. 
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INTRODUCTION 
 
Ethanol as an alternative energy resource has attracted 
more and more attention with the rising of oil price. 
Currently, in biotechnological ways, ethanol is produced 
mainly from sugar or starches by fermentation (Hu et al., 
2006; Limtong et al., 2007). As part of grain has been 
used for ethanol production in China, it is considered that 
food security is threatened. It is suggested by the 
government that only ‘‘non-grain” materials can be used 
to produce ethanol in middle and long term program of 
renewable energy development (Zhang et al., 2010). 
Therefore, ethanol production from lignocellulose resour-
ces has been widely investigated (Lin et al., 2010; Tang 
et al., 2006; Wang et al., 2007, 2008). As a non-grain 
energy crop, sweet sorghum (also known as sugar 
sorghum) has the advantages of high biomass yield, 
rapid growth, clean and relatively low production cost 
(Zhang et al., 2010). Since stalk juice of sweet sorghum 
is rich in fermentative sugar, it is regarded as  one  of  the  

 
 
 
*Corresponding author. E-mail: zhaoshihao_1@163.com. Tel: 
86031187656833. 

most promising feedstock sources for bioethanol pro-
duction (Laopaiboon et al., 2009; Oberoi et al., 2011; Yu 
et al., 2010). Conventional method changing one 
independent variable at a time for process optimization is 
laborious and time-consuming. Response surface 
methodology (RSM) is a powerful and useful tool in 
rapidly searching the key factors and the optimal 
conditions from a multivariable system, thus reducing the 
number of required experiments and workload (Myers, 
1999). It has been widely applied to many biotech-
nological areas including bioethanol production (Lin et al., 
2010; Oberoi et al., 2011; Wang et al., 2007). In this work, 
the stalk juice of sweet sorghum was used as main 
substrate for ethanol production by a Saccharomyces 
cerevisiae strain. The fermentation medium compositions 
were optimized by RSM, from which the yield of ethanol 
was enhanced. 
 
 
MATERIALS AND METHODS 

 
Materials 
 
Sweet   sorghum   was   obtained   from  the  countryside  of  Jinan,  
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Table 1. Characteristics of the stalk juice of sweet sorghum. 
 

Parameter Concentrations (gl
-1

) 

Reducing sugar 35 

Sucrose 150 

Total sugar 185 

Nitrogen 2.6 

K
+
 3.42*10

-3
 

Na
+
 0.04*10

-3
 

Mg
2+

 0.33*10
-3
 

Fe
2+

 0.13*10
-3
 

Ca
2+

 0.94*10
-3
 

Cu
2+

 0.01*10
-3
 

Zn
2+

 0.06*10
-3
 

 
 

 

Shandong, China. The stalk juice of sweet sorghum was prepared 

as described (Laopaiboon et al., 2009; Yu et al., 2010) and detailed 
characteristics are shown in Table 1. All chemicals were of the 
highest purity commercially available, which were purchased from 
Sinopharm Group Company Limited (Beijing, China). 
 
 
Strain and fermentation 

 

Laboratory strain of S. cerevisiae SEMF1 was used in this study 
and maintained on agar slants at 4°C. The microorganism was 
cultured for 24 h before used. Cultures were first incubated in seed 
medium (200 rpm, 33°C and 75 ml in 300-ml flask), which 
contained 20 g l

-1
 glucose, 5 g l

-1
 yeast extract, 5 g l

-1
 peptone and 5 

g l
-1

 NaCl (pH 5.0). The mid-logarithmic-stage preculture was then 
inoculated (10%, v/v) into fermentation medium prepared with the 
stalk juice of sweet sorghum, in which urea, KH2PO4 and MgSO4 
were added. Fermentation was conducted at 200 rpm, 33°C and 

150 ml medium in 500-ml flask. At regular time intervals, samples 
were removed to determine OD620nm of the culture, and the concen-
trations of total sugar and ethanol. 

 
 
Experimental design and optimization 

 
Central composite design (CCD) was used to optimize ethanol 

production from the stalk juice of sweet sorghum. Urea (X1, g l
-1

), 
KH2PO4 (X2, g l

-1
) and MgSO4 (X3, g l

-1
) were chosen as the 

independent variables, as presented in Table 2. The range of values 
was set based on the results of preliminary studies and the codes 
that correspond to these parameters were resolved. A factorial 2

3
 

design was determined from CCD with ethanol concentration (Y, g l
-

1
) as an output that depends on three basic variables. The 

experiment comprised of 17 runs, which were performed under the 
conditions presented in Table 2. Three-replicate runs were carried 

out at the center point. The ethanol-producing response was 
estimated using the following equation (a second-order response 
surface model): 
 

2 2 2

0 1 1 2 2 3 3 12 1 2 13 1 3 23 2 3 11 1 22 2 33 3Y X X X X X X X X X X X X                  

 
Where, Y is the predicted response (ethanol concentration, g l

-1
); 

β0, β1, β11, β12, β13, β2, β22, β23, β3 and β33 were the regression 

coefficients; and X1, X2, X3 were the coded levels of the 
independent variables. The results were analyzed using a Design 
Expert     7.0    software    package    (STATISTICA,    Inc.).   Three- 

 
 
 
 
dimensional plots were obtained to study the interaction of one 
parameter with another.  The critical concentration was determined 
using an established regression model and was based on the hump 
in the three-dimensional plots. 

 
 
Analytical methods 

 
Cell growth was measured spectrophotometrically at a wavelength 
of 620 nm (OD620nm). Total sugar was determined by the DNS (3, 5-
dinitrosalicylic acid) colorimetric method. Concentration of ethanol 
was measured by a SBA-40E biosensor (Biology institute of 
Shandong Academy of Sciences, Shandong, China) after diluted 

with distilled water. 

 
 
RESULTS AND DISCUSSION 
 
RSM modeling of results 
 
The design matrix of the variables and the experimental 
responses are shown in Table 2. By applying multiple re-
gression analysis to the experimental data, the following 
second order polynomial equation giving the concen-
tration of ethanol (Y, g l

-1
) as a function of urea (X1, g l

-1
), 

KH2PO4 (X2, g l
-1

), MgSO4 (X3, g l
-1

) was obtained: 
 

1 2 3 1 2

2 2 2

1 3 2 3 1 2 3

85.37 2.53 0.82 1.01 1.75

0.65 0.32 2.45 1.42 1.28

Y X X X X X

X X X X X X X

    

    
 

  
Statistical testing was carried out using Fisher’s test for 
analysis of variance (ANOVA) (Table 3).  The F and P 
values were 12.95 and 0.0014, respectively. The test 
model was statistically significant at the 99% level of 
significance. The quality of the fit of the quadratic 
regression model equation is expressed by the coefficient 
of determination (R

2
). The results show the value of R

2
 

was 0.9433, indicating that 94.33% of the variability in the 
response could be explained by the model. The value of 
the adjusted determination coefficient, R

2
Adj, was 0.8704, 

which was also very high. These results show that the 
response equation provided a suitable model for the CCD 
experiment. The significant levels of each variable 
determined by t test are shown in Table 4. The Student’s t 
test and P values were applied to check the significance 
of each coefficient. Among the model terms, the linear of 
urea (X1, P = 0.0002) was more significant than the other 
two factors, which indicate that the concentration of urea 
in the medium had a direct effect on ethanol production. 
At the same time, the concentration of urea was also very 
significant in the quadratic level (X1

2
, P = 0.0005). In 

addition, the linear of MgSO4 (X3), the quadratic of 
KH2PO4 (X2

2
) and MgSO4 (X3

2
), and the interactions 

between urea and KH2PO4 (X1X2) were also significant 
model terms.   

The interactions between urea and MgSO4 (X1X3), 
KH2PO4 and MgSO4 (X2X3), had non-significant influence 
on ethanol production. The three-dimensional  graphs  for  



Zhao et al         6119 
 
 
 

Table 2.  Design and results of the central composition experiment. 
 

Coded level Response 

X1 (Urea, g l
-1
) X2 (KH2PO4, g l

-1
) X3 (MgSO4, g l

-1
) Y (Ethanol, g l

-1
) 

1 (5.0) 1 (4.0) 1 (1.2) 81.5 

1 (5.0) 1 (4.0) -1 (0.6) 81.3 

1 (5.0) -1 (3.2) 1 (1.2) 83.9 

1 (5.0) -1 (3.2) -1 (0.6) 81.4 

-1 (4.0) 1 (4.0) 1 (1.2) 81.9 

-1 (4.0) 1 (4.0) -1 (0.6) 78.1 

-1 (4.0) -1 (3.2) 1 (1.2) 76.3 

-1 (4.0) -1 (3.2) -1 (0.6) 72.2 

0 (4.5) 0 (3.6) 0 (0.9) 85.2 

0 (4.5) 0 (3.6) 0 (0.9) 84.9 

0 (4.5) 0 (3.6) 0 (0.9) 85.7 

0 (4.5) 0 (3.6) -1.68 (0.4) 81.7 

0 (4.5) 0 (3.6) 1.68 (1.4) 83.6 

0 (4.5) -1.68 (2.9) 0 (0.9) 81.6 

0 (4.5) 1.68 (4.3) 0 (0.9) 82.9 

-1.68 (3.7) 0 (3.6) 0 (0.9) 74.9 

1.68 (5.3) 0 (3.6) 0 (0.9) 83.8 

 

 
 

Table 3. ANOVA for evaluation of the second-order model. 

 

Source of variation Degrees of freedom Sum of squares Mean square F P 

Model 9 215.06 23.90 12.95 0.0014 

Residual 7 12.92 1.85   

Lack of fit 5 12.59 2.52 15.42 0.0620 

Pure of error 2 0.33 0.16   

Total 16 227.98    
 

R
2
 = 0.9433, R2Adj = 0.8704. 

 

 
 

Table 4. Coefficients and t values calculated from the central composition experiment. 
 

Parameter Regression coefficient Stand error t P 

Intercept 85.37 0.7828 109.06 ＜0.0001 

X1 2.53 0.3676 6.89 0.0002 

X2 0.82 0.3676 2.23 0.0611 

X3 1.01 0.3676 2.75 0.0286 

X1X2 -1.75 0.4803 -3.64 0.0082 

X1X3 -0.65 0.4803 -1.35 0.2180 

X2X3 -0.33 0.4803 -0.68 0.5204 

X1
2
 -2.45 0.4046 -6.05 0.0005 

X2
2
 -1.42 0.4046 -3.52 0.0097 

X3
2
 -1.28 0.4046 -3.17 0.0157 

 
 
 

the response surface model are shown in Figure 1. It is 
evident that the response surfaces are convex in nature, 
showing that there are well-defined optimum conditions. It 

is obvious from the plots that ethanol production has a 
maximum point in the studied region. When X1 = 0.4982, 
X2 = -0.0498, and X3 = 0.2739, ethanol yield would  reach  
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Figure 1. The response surface plots of ethanol production as a function of urea (X1), KH2PO4 (X2), and 

MgSO4 (X3). (A), the three-dimensional plot of ethanol concentrations (Y) vs. urea (X1) and KH2PO4 (X2). (B), 
the three-dimensional plot of ethanol concentrations (Y) vs. urea (X1) and MgSO4 (X3). (C), the three-
dimensional plot of ethanol concentrations (Y) vs. KH2PO4 (X2) and MgSO4 (X3).  When X1 = 0.4982 (urea, g l-

1), X2 = –0.0498 (KH2PO4, g l-1), and X2 = 0.2739 (MgSO4, g l-1), Y will arrive at the maximum point (ethanol, 
86.1 g l-1). 
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Figure 1. Contd. 

 
 
 

 
 
Figure 2. Time courses of ethanol production. Symbols represent:□, total sugar; ◊, OD620nm; ●, 

ethanol.  
 
 

the point of 86.1 g l
-1

. Therefore, the optimum concen-
trations of the three medium compositions added into the 
stalk juice of sweet sorghum for ethanol production by 
S.cerevisiae are as follows: 4.75 g l

-1
 urea, 3.58 g l

-1
 

KH2PO4, and 0.98 g l
-1

 MgSO4. 

Verification experiment 
 
To confirm the second-order model for predicting maxi-
mum ethanol production, verification experiment was 
performed using the optimal medium. Figure 2 shows  the  
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time course of ethanol production, from which we could 
clearly see the changes of OD620nm and total sugar. The 
highest concentration of ethanol reached 86.2 g l

-1
 at 24 

h, which was closely consistent with the model predicted 
value of 86.1 g l

-1
. The residue sugar was about 5 g l

-1
 

and the yield of ethanol was 91.9%.  The good correlation 
justified the existence of an optimum point and showed 
that the established ethanol production model reliable. 
 
 
Conclusion 
 
In this study, the stalk juice of sweet sorghum was used 
as main substrate for ethanol production, and it was very 
suitable for ethanol fermentation because of the high 
content of fermentable sugars.  The medium composition 
was optimized by RSM and a second-order model that 
related ethanol production was developed. The optimal 
medium composition was thus obtained, which was 4.75 
g l

-1
 urea, 3.58 g l

-1
 KH2PO4, and 0.98 g l

-1
 MgSO4, under 

these conditions, the ethanol producion reached 86.2 g l
-

1
. The present study suggests that stalk juice of sweet 

sorghum can be used as an alternative substrate for 
ethanol production by S. cerevisiae. In the experiment, 
we also found that the stalk juice very unstable, which 
seriously influenced the fermentation process and the 
final ethanol production. Therefore, if the storage method 
of the sweet sorghum juice was developed, the ethanol 
yield would be higher in the mass production in the 
future. 
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