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This investigation was conducted to determine NaCl salinity effects on antioxidant enzymes activities, 
reducing sugar contents and lipid peroxidation in two alfalfa cultivars. Plants grown in solution cultures 
were subjected to 0, 100, 150 and 200 mM solutions of sodium chloride. Yazdi and Diabolourde alfalfa 
were used as tolerant and sensitive cultivars, respectively, in a germination experiment under similar 
conditions. Results show that the amount of reducing sugars and the activities of peroxidase (POD), 
catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) enzymes increased with 
the increase in salt concentration. However, SOD activities decreased at high salt concentrations. The 
increase in the activities of antioxidant enzymes in response to salt treatments was higher in the 
tolerant cultivar. The results also show that salt treatment provoked an oxidative stress in both 
cultivars, as shown by the increase in lipid peroxidation. However, the level of lipid peroxidation was 
higher in the sensitive cultivar. The increase in antioxidant activities could also be a response to the 
cellular damage induced by NaCl. It seems that the tolerant cultivar has a better mechanism to cope 
with the deleterious effects ROS produced under salt stress. 
 
Key words: Alfalfa, antioxidant enzymes, malondialdehyde, salt stress. 

 
 
INTRODUCTION 
 
Sodium chloride (NaCl) salinity is one of the major 
environmental factors that limit plant growth, productivity 
and distribution (Wang et al., 2003). NaCl salt stress 
occurs in areas where soils are naturally high in salts and 
where irrigation, hydraulic lifting of salty underground 
water or invasion of seawater in coastal areas brings salt 
to the surface soil where plants inhabit (Zhang et al., 
2006). The problem of soil salinity also is becoming even  
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more serious because of high evapotranspiration and 
improper water management (Wang and Han, 2009). It  
has been estimated that two-thirds of the potential yield 
of major crops are usually lost due to adverse effects of 
salt in the plants environment (Munns, 2002; Bajaj et al., 
1999).  

Salt stress adversely affects legume production mainly  
due to the dependency of these plants on symbiotic N2 
fixation for their nitrogen requirements (Elsheikh and 
Wood, 1995). Some processes affected in such 
conditions include the rates of host plants growth (Tejera 
et al., 2004; Tejera et al., 2006), the development of root-
nodules (Georgiev and Atkins, 1993) and finally, the 
nitrogen-fixing capacity (Delgado et al., 1993). The mere 
presence of different cultivars, genotypes and ecotypes 
of alfalfa is a valuable source for screening and 
identifying the tolerant types with regard to environmental 
stresses such as salinity. In Iran, alfalfa is the most 
commonly grown forage crop. In 2006, the total area 
covered   by   alfalfa  crop,  its  annual  yield  and  annual  
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productivity were 6.161 × 105 hectares; 4.762 × 106 tones 
and 8.287 × 103 Kg ha-1 dry mass, respectively 
(Anonymous, 2006). As a perennial forage crop, alfalfa 
(Medicago sativa L.) can be cultivated in marginal lands 
and has high yield and good quality proteins (Ehsanpour 
and Fatahian, 2003). In addition, Alfalfa’s deep-root 
system can help soils to prevent water loss in semi-dry 
lands (Moran et al., 1994). Due to the legumes capacity 
of symbiotic nitrogen fixation, these plants are often used 
to improve soil organic fertility and nitrogen economy 
(Howieson and Ballard, 2004).  

The widespread use of this forage crop is due to its 
high yield, nutritional quality, high protein content, 
presence of different vitamins and digestible materials 
and its adaptability to different habitats. According to FAO 
report, 40% of irrigated lands in Iran are exposed to 
secondary salinization (Pessarakli, 1993). Alkaline lands 
in this country are about 26.399 × 106 hectares and sodic 
lands are about 6.86 × 105 hectares (Abrol, 1988). 
Therefore, cultivation of tolerant varieties and species of 
alfalfa is an effective way of making good use of these 
lands. Studies on salt tolerance of alfalfa are scarce and 
controversial, which makes it necessary to do more 
research in the line of finding both more tolerant species 
and their mechanism of salt tolerance. It is well known 
that high salinity levels in external media affect many 
physiological and metabolic processes, leading to low cell 
growth and development (Ashraf and Harris, 2004). The 
effects of various environmental stresses such as salinity 
on plants are known to be mediated, at least partially, by 
an enhanced generation of reactive oxygen species 
(ROS) such as superoxide (O.-2), hydrogen peroxide 
(H2O2) and hydroxyl radicals (.OH). These ROS species 
can react with PUFA, forming conjugated dienes (CD) or 
trienes (CT), lipid peroxyl radicals and lipid 
hydroperoxides (Smirnoff, 1995). Under these conditions, 
different biochemical and physiological responses are 
induced in order to help the plants to survive (Seki et al., 
2003). Therefore, understanding the biochemical and 
physiological mechanisms of salt stress effects is 
essential for breeding tolerance cultivars and improving 
environmental conditions to increase crop productivity 
(Wang and Han, 2009). In order to decrease the oxidative 
damages, plants employ the enzymatic and non-
enzymatic mechanisms to scavenge ROS, which include 
antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), peroxidases and enzymes 
involved in the ascorbate-glutathione cycle [ASC-GSH 
cycle: ascorbate peroxidase (APX), dehydroascorbate 
reductase (DHAR), monodehydroascorbate reductase 
(MDHAR) and glutathione reductase (GR)] (Foyer and 
Halliwell, 1976). One of the most common non-enzymatic 
mechanisms in plants is overproduction of different types 
of compatible organic solutes (Serraj and Sinclair, 2002), 
which could fall into three major groups: amino acids 
(proline),   quaternary   amines   (glycine    betaine    and  

 
 
 
 
dimethylsulfoniopropionate) and polyol/sugars (mannitol 
and trehalose) (Wang et al., 2003).  

The aim of this investigation was to compare the 
germination rate of different alfalfa cultivars under salt 
stress and also study some enzymatic, non enzymatic 
responses of tolerant and sensitive alfalfa plants to salt 
stress. 
 
 
MATERIALS AND METHODS 
 
Plant material 
 
Seeds of 11 alfalfa (M. sativa L.) cultivars (Silvaneh, Garghalogh, 
Nikshahri, Dastjerd, Zivar, Sequel, Yazdi, Diabolourde, Bami, 
Gharayonje and Ghahavand) were provided by the Department of 
Plant and Seed Research Institute of Karaj, Iran.  
 
 
Germination experiment 
 
Ten alfalfa (M. sativa L.) cultivars seeds were surface-sterilized with 
5% sodium hypochloride solution for 5 min. Seeds were then 
thoroughly rinsed three times with distilled water and germinated in 
10 cm petri dishes with one Whatman No. 1 filter papers moistened 
with the appropriate saline solutions or distilled water for control (0). 
Salinity levels of 100, 150 and 200 mM NaCl were used. Five 
replicates of 20 seeds each were used for each treatment. 
Germination tests were carried out in growth chamber (HPG- 400, 
Haerbin, China) set at 16 h/8 h day/night photoperiod and a PPFD 
of around 500 µmol m−2 s−1 generated by white fluorescent and 
incandescent lamps. Germinated seeds were kept in petri dishes 
under light condition for 7 days. The rate of germination was 
determined by counting the germinated seeds for a period of 7 days 
at one day intervals. Alfalfa seeds were considered to have 
germinated when the radicles were visibly protruded from the seed 
coat by at least 2 mm. 
 
 
Growth condition and stress treatment 
 
Based on the results obtained from screening experiment, Yazdi 
and Diabolourde were selected as salt tolerant and salt sensitive 
cultivars, respectively. Seeds of these two cultivars were surface 
sterilized as before and were germinated for 48 h in growth 
chamber under dark condition. Uniform seedlings of alfalfa plants 
were transferred into pots containing half strength Hoagland 
solution (6 pots for each treatment and 5 seedlings per pot). The pH 
of the solutions was adjusted to 7.0 to 7.5 daily, using 200 mM KOH 
or HCl. Plants were grown for 21 days, followed by another 14 days 
in the presence of 0, 100, 150 and 200 mM NaCl added to the 
nutrient solutions. Experiments were conducted in a house 
chamber with the average temperature of 27°C/18°C day/night. 
Photosynthetic photon flux density of 500 µmol m-2 s-1 was supplied 
by combined fluorescent and incandescent lamps. Plants were 
harvested at the end of the14 days of salt treatment. 
 
 
Enzyme extraction 
 
Leaf samples (200 mg each) were ground into fine powder with 
liquid nitrogen in a pre-chilled mortar and pestle. Further grinding 
was performed in a solution of 50 mM potassium phosphate buffer 
pH 7.0 containing 1 mM EDTA and 2% (w/v) polyvinyl-
polypyrrolidone   (PVPP)   for   APX   and   CAT   assays,  and  in  a  



 
 
 
 
 
solution of 50 mM potassium phosphate buffer at pH 7.0 containing 
0.5 mM EDTA for SOD and POD assays. The homogenates were 
centrifuged at 14000 × g for 15 min at 4°C. The resulting 
supernatants were centrifuged again and used immediately for 
enzyme activity assays or stored at -30°C to be used later. 
 
 
Enzyme assays 
 
Total SOD (EC 1.15.1.1) activity was determined according to 
Giannopolitis and Ries (1977) method by monitoring its ability to 
inhibit the photochemical reduction of nitro blue tetrazolium (NBT). 
Each 3 ml reaction mixture contained 50 mM potassium phosphate 
(pH 7.8), 13 mM methionine, 2 µM riboflavin, 75 µM NBT, 0.1 mM 
EDTA and 25 to 100 µl of the enzyme extract. The production of 
blue formazan was followed by monitoring the increase in 
absorbance at 560 nm. Identical tubes with the same reaction 
mixtures were kept in the dark and served as blanks. Reactions 
were carried out in test tubes (10 mm in diameter) at 25°C under 
illumination supplied by two fluorescent lamps (20 W). The entire 
reaction assembly was enclosed in a box lined with aluminum foil. 
Riboflavin was added last and the tubes were shaken before they 
were placed in the reaction assembly. The reaction was initiated by 
switching on the light and was run for 15 min, before been stopped 
by switching off the light while the tubes were still covered by 
aluminum foil. Under the experimental conditions, the initial rate of 
reaction, as measured by the difference in increase in absorbance 
at 560 nm in the presence and absence of leaf extract, was 
proportional to the amount of enzyme. One unit SOD activity was 
defined as the amount of enzyme required to result in a 50% 
inhibition of the rate of NBT reduction measured at 560 nm 
(Martinez et al., 2001).  

Activities of CAT and POD were measured by the methods of 
Chandlee and Scandalios (1984) and Chance and Maehly (1955), 
respectively. For CAT (EC 1.11.1.6), the decomposition of H2O2 
was determined by following the decline in absorbance at 240 nm. 
Reaction mixture of 3 ml contained 50 mM phosphate buffer (pH 
7.0), 15 mM H2O2 and 25 to 100 µl of the enzyme extract. The 
reaction was initiated by adding the enzyme extract. CAT activity 
was determined by following the consumption of H2O2 (extinction 
coefficient of 39.4 mM-1.cm-1) at 240 nm over a 2 min intervals. For 
POD (EC 1.11.1.7), the oxidation of guaiacol was measured by the 
increase in absorbance at 470 nm. The assay mixture of 3 ml 
contained 30 µl of enzyme extract, and 2970 µl of guaiacol (45 mM) 
and H2O2 (100 mM) which was prepared in 50 mM potassium 
phosphate buffer pH 7.0 containing 0.5 mM EDTA. POD activity 
was determined by measuring the oxidation of guaiacol in the 
presence of H2O2 (extinction coefficient of 26.6 mM-1.cm-1) at 470 
nm over a 2 min intervals. APX activity (EC 1.11.1.11) was 
determined by following the decrease of ascorbate and measuring 
the change in absorbance at 290 nm over 2 min intervals. The 
reaction mixture contained 50 mM potassium phosphate buffer (pH 
7.0), 0.1 mM EDTA, 0.5 mM ascorbic acid, 0.1 mM H2O2 and 50 µl 
of crude enzyme extract (Nakano and Asada, 1981). The activity of 
ascorbate peroxidase was calculated using the extinction coefficient 
(2.8 mM-1 cm-1). 
 
 
Lipid peroxidation 
 
The method of Heath and Packer (1968) was used to determine 
lipid peroxidation. Leaf samples of 0.3 g were homogenized in 4 ml 
of 1% (w/v) tri chloro acetic acid (TCA), and then centrifuged at 
10000 × g for 10 min. 1.5 ml of 20% (w/v) TCA containing 0.5% 
(w/v) TBA was added to 1.5 ml of the supernatant aliquot. The 
mixture was heated at 95°C for 30 min  and then  quickly  cooled  in  
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an ice bath. The mixture was centrifuged at 10000 × g for 5 min and 
their absorbance was read at 532 nm. The values for non-specific 
absorption at 600 nm were subtracted from the 532 nm reading. 
The malondialdehyde (MDA) content was calculated using its 
extinction coefficient of 155 mM-1.cm-1 and expressed as µmol/g 
FW. 
 
 
Extraction and determination of reducing sugars 
 
Sugars extraction was carried out following the method of Naureen 
and Naqvi (2010) with some modifications. Leaf sections (250 mg) 
were frozen in liquid nitrogen and subjected to a triple extraction of 
ethanol-soluble sugars (ESS) by boiling in ethanol (80%) at final 
volume of 20 ml in water bath. Chloroform of 5 ml was added to the 
extractions and mixed with vortex, then centrifuged at 12000 × g for 
3 min. The supernatant used for the determination of reducing 
sugars was as described by Nelson (1944). 
 
 
Statistical analysis 
 
Mean values from five replications were subjected to Duncan’s test 
to discriminate significant differences (P < 0.05). Data were shown 
as the mean ± standard error (SE). Analyses were done using the 
SAS software; graphs were drawn by Excel 2003. 
 
 
RESULTS 
 
Germination experiment 
 
The salt effects on alfalfa seeds germination are shown in 
Figure 1. Except for Sizivar and Silvane, in other 
cultivars, the highest germination rate occurred in control 
(no salinity). Thus, under salt treatment, Yazdi and 
Diabolourde cultivars had the highest and the lowest rate 
of germination (86.8 and 31.3%, respectively). The rate of 
germination, decreased with the increase in salinity. At 
200 mM NaCl, Yazdi and Diabolourde cultivars had the 
highest and the lowest rate of germination, respectively 
(72.5% versus 7.5%). According to these results, salt 
stress decreased germination rate of alfalfa significantly 
(P < 0.05). Thus, Yazdi and Diabolourde were selected 
as resistant and sensitive alfalfa cultivars, respectively 
and were used for biochemical experiments.  
 
 
Antioxidant enzymes 
 
SOD 
 
The effects of various NaCl concentrations on SOD 
activities of the two alfalfa cultivars are shown in Figure 
2A. In both cultivars, salt increased in a dose-dependent 
manner and SOD specific activity increased significantly 
(P < 0.05). The rates of increase in SOD activity were 
slower in Diabolourde than in Yazdi. At 150 mM NaCl, the 
rates of SOD activity in Diabolourde  and  Yazdi  cultivars  
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Figure 1. Germination rate of the 11 alfalfa cultivars seeds under 0, 100, 150 and 200 mM NaCl. Values are 
expressed as means of five independent experiments ± standard error (S.E.). Treatments with the same lower-case 
letters were not significantly different based on mean comparison by Duncan’s method at P < 0.05. 
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Figure 2. Changes in antioxidant enzymes activities; SOD (A), POD (B), APX (C) and CAT (D) of 
Gharayonje (grey bars) and Yazdi (black bars) cultivars under 0, 100, 150 and 200 mM NaCl. Values are 
expressed as means of five independent experiments ± standard error (S.E.). Treatments with the same 
lower-case letters were not significantly different based on mean comparison by Duncan’s method at P < 
0.05. 



 
 
 
 
 
increased by 1.9 and 2.52 folds, respectively, as 
compared to their controls. However, in 200 mM NaCl 
solution, the increase in SOD activity in both cultivars 
were lower than in 150 mM NaCl, which were 2.02 and 
1.63 folds in Yazdi and Diabolourde, respectively, when 
compared with the control.  
 
 
POD 
 
The rate of POD activity, which catalyzes the decom-
position of H2O2 produced by SOD, also changed with 
respect to species and salinization as shown in Figure 
2B. Similar to SOD, POD activities in alfalfa cultivars 
leaves also increased remarkably with the increase in 
NaCl concentration when compared with control (P < 
0.05). In the control, POD activity in Yazdi cultivar was 
lower than that in Diabolourde, but the highest POD 
activity was observed in Yazdi cultivar in 200 mM NaCl. 
POD activity in Yazdi cultivar increased by 4.66 and 7.55 
folds in 150 and 200 mM NaCl, respectively when 
compared with the control. However, the corresponding 
values were 1.76 and 2.52 folds, respectively in 
Diabolourde. 
 
 
APX 
 
Salinity effects on APX activity is shown in Figure 4. The 
activity of APX, which also decomposes H2O2 increased 
significantly in both species with the increase in salinity 
(P < 0.05). Examination of the control groups of Yazdi 
and Diabolourde indicates that constitutive activity of APX 
was relatively higher in the latter. However, salt-induced 
APX activity was significantly higher in Yazdi cultivar than 
in Diabolourde in 150 and 200 mM. Results show that 
APX activity increased by 3.26 and 4.4 folds in150 mM 
and 200mM NaCl, respectively in Yazdi when compared 
with the control and by 2.25 and 2.58 folds, respectively 
in Diabolourde (Figure 2C). 
 
 
CAT 
 
Activity of CAT, as a scavenger of H2O2 outside the 
chloroplasts, was affected by all salinity treatments in 
both cultivars throughout the experiment (Figure 2D). Salt 
stress caused a significant increase in CAT activity in 
both cultivars (P < 0.05). However, the rates of increase 
in CAT activity in Diabolourde cultivar were slower than 
that in Yazdi cultivar. The activity of CAT in Yazdi cultivar 
was 2.53 and 3.92 times higher in 150 and 200 mM NaCl, 
respectively in comparison with the control, but it was 
2.18 and 2.45 folds under the same condition in 
Diabolourde (Figure 2D). However, the activity of CAT 
was the same in control group of both cultivars. 
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Lipid peroxidation 
 
Lipid   peroxidation  levels  in  leaves of  the   two  alfalfa 
cultivars, as measured by the content of MDA, are given 
in Figure 3. In the leaves of both cultivars which were 
growing under normal growth conditions, a small level of 
lipid peroxidation was apparent; however, under salt 
stress, the levels of MDA content in both alfalfa cultivars 
increased significantly with the increase in NaCl concen-
tration (P < 0.05). The MDA accumulation in Diabolourde 
was considerably greater (10.68 and 12.33 folds) than in 
Yazdi (6.38 and 9.16 folds), at 150 and 200 mM NaCl, 
respectively when compared with the control groups. 
These results indicate a higher degree of lipid per-
oxidation at 150 and 200 mM salt treatments. 
 
 
Reducing sugars 
 
The amounts of reducing sugars in leaves of both 
cultivars are shown in Figure 4. Salt stress increased 
significantly the reducing sugar levels of both cultivars (P 
< 0.05). As shown in Figure 4, reducing sugar contents 
show low differences in non saline treatments, but the 
increase in sugar contents due to high levels of salt was 
lower in Diabolourde than in Yazdi when compared with 
the control groups. Precisely, in 100, 150 and 200 mM 
NaCl, sugar contents in Diabolourde increased by 15.4, 
20.1 and 31.2%, respectively when  compared  with  their 
controls, whereas, the increase in sugar contents in 
Yazdi cultivar under similar conditions were 31.1, 38.0 
and 51.1%, respectively when compared with their 
control groups. 
 
 
DISCUSSION 
 
Seed germination is normally limited by the intensity of 
abiotic stresses, such as high salinity. In this study, a 
significant difference in the germination rate of 11 alfalfa 
cultivars treated with different sodium chloride concen-
trations were observed. Similar observations were made 
in alfalfa sensitive and tolerant cultivars by Wang et al. 
(2009) and in Medicago ruthenica by Guan et al. (2009) 
under salt stress. The decrease in germination may be 
ascribed to an apparent osmotic ‘dormancy’ developed 
under salinity stress conditions, which may represent an 
adaptive strategy to prevent germination under stressful 
environment (Patanea et al., 2009). The germination rate 
due to increasing salinity can be correlated to the nature 
of salinity that reduces imbibitions of water due to 
lowered osmotic potentials of the medium and causes 
changes in metabolic activity (Yupsanis et al., 1994). 
Moreover, salinity perturbs plant hormone balances 
(Khan and Rizvi, 1994) and reduces the utilization of 
seed reserves (Ahmad and Bano, 1992). 
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Figure 3. Changes in MDA content of Gharayonje (grey bars) and Yazdi (black bars) 
cultivars incubated under 0, 100, 150 and 200 mM NaCl. Values are expressed as means of 
five independent experiments ± standard error (S.E.).Treatments with the same lower-case 
letters were not significantly different based on mean comparison by Duncan’s method at P 
< 0.05. 
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Figure 4. Changes in reducing sugars content of Gharayonje (grey bars) and 
Yazdi (black bars) cultivars incubated under 0, 100, 150 and 200 mM NaCl. 
Values are expressed as means of five independent experiments ± standard error 
(S.E.). Treatments with the same lower-case letters were not significantly different 
based on mean comparison by Duncan’s method at P < 0.05. 



 
 
 
 
 
Salt provoked a dose-dependent increase in SOD 
activity, which could represent a defense mechanism 
against NaCl-induced O2

.- generation. SOD catalyzes the 
conversion of the superoxide anion to H2O2. Although the 
rates of salt-induced SOD activity in Diabolourde were 
lower than in Yazdi, a comparison of absolute enzymatic 
activity values at 100,150 and 200 mM NaCl clearly 
indicates that Yazdi cultivar has a higher dismutating 
capacity under moderate and high doses of NaCl salinity. 
These results are in a good agreement with those 
reported by Wang et al. (2009). Wang and Han (2009) 
found higher constitutive and induced level of SOD in 
tolerant alfalfa cultivar under salt stress. Similarly, Shalata 
and Tal (1998) and Koca et al. (2010) reported higher 
activities of SOD in wild salt-tolerant tomato species than 
in the cultivated salt sensitive ones. 

Significant roles of POD have been suggested in plant 
development processes (Gaspar et al., 1985). POD is 
among the enzymes that scavenge H2O2 in chloroplasts, 
which is produced through dismutation of O2

.-
 catalyzed 

by SOD. In tolerant plant species, POD activity was found 
to be higher, providing a greater protection against the 
oxidative stress caused by salt stress (Asada and 
Takahashi, 1987). In this study, POD activity increased 
significantly in Yazdi and Diabolourde cultivars in 150 and 
200 mM treatments. However, induction in POD activity 
due to salinity was higher in 200 mM NaCl treatment. 
This may be considered as an indication that Yazdi has a 
higher capacity in removing H2O2 more rapidly. Similarly, 
increased POD activity has also been reported in salt-
tolerant and sensitive species of alfalfa (Wang et al., 
2009; Wang and Han, 2009), tomato (Shalata and Tal, 
1998; Koca et al., 2010) and rice cultivars (Dionisio-Sese 
and Tobita, 1998). Increased POD activities in wild salt-
tolerant Yazdi and relatively salt sensitive Diabolourde 
may be attributed to increased activity of POD encoding 
genes or increased activation of already existing 
enzymes as suggested (Dionisio-Sese and Tobita, 1998). 

High levels of intercellular H2O2 induced cytosolic APX 
activity under salt stress (Lee et al., 2001); APX activity 
may have an important role in the mechanism of salt 
tolerance in plants (Gueta et al., 1997). APX and GR, the 
key enzymes in the Halliwell-Asada pathway, are 
involved in the reduction of H2O2 by using ASC as an 
antioxidant and NADPH as a reductant, to regenerate 
ASC (Asada, 1992) and GSH (Foyer and Halliwell, 1976), 
respectively. Hence, ASC-GSH cycle is well known to be 
important in the removal of H2O2 (Asada and Takahashi, 
1987), and thereby protecting plants against oxidative 
stress (Khan and Ungar, 1984; Foyer and Halliwell, 1976; 
Guy and Carter, 1984; Wang et al., 1999). These results 
are in good agreement with those reported by Wang and 
Han (2009) and Wang et al. (2009) who reported higher 
inherently and induced levels of APX in wild salt-tolerant 
alfalfa. Same observation have been reported by Shalata 
and Tal  (1998)  and  Lopez  et  al.  (1996)  who  reported  
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higher levels of APX activity in wild salt-tolerant tomato 
and radish plants, respectively. 

CAT eliminates H2O2 by breaking it down directly to 
form water and oxygen. Thus, this enzyme does not 
require a reducing power and has a high reaction rate but 
a low affinity for H2O2 (Willekens et al., 1997). CAT 
together with SOD are the most effective antioxidant 
enzymes in preventing cellular damage (Scandalios, 
1993). Olmos et al. (1994) reported that increase in the 
activity of CAT, a hydrogen peroxide scavenging enzyme 
located in peroxisomes, is related to the increase in 
stress tolerance. This might be due to increased levels of 
H2O2 which is formed from dismutation of O2

.− by SOD. 
Supporting this observation, increase in the activities of 
CAT, have been reported in alfalfa (Wang and Han, 
2009; Wang et al., 2009), soybean (Comba et al., 1998), 
tobacco (Bueno et al., 1998) and mulberry (Chinta et al., 
2001) under salt stress. 

MDA is the decomposition product of polyunsaturated 
fatty acids of plants membranes under stress. The rate of 
lipid peroxidation level in terms of MDA can therefore be 
used as an indicator to evaluate plants tolerance to 
oxidative stress as well as the sensitivity of plants to salt 
stress (Jain et al., 2001). It is also known that the 
formation of ROS enhances peroxidation at the cellular 
level, and that the rate of such enhancement relates to 
plant species and the severity of stress (Navari-Izzo et 
al., 1996). Increase in lipid peroxidation level in plants 
exposed to 1 00, 150 and 200 mM NaCl shows that 
increased activities of APX, SOD, POD and CAT might 
have not been enough to prevent the peroxidation of 
membrane lipids caused by high concentration of salinity. 
On the other hand, increase in MDA level in different salt 
treatments might also be correlated with inadequate 
activities of SOD, POD, APX and CAT to scavenge ROS 
produced in alfalfa leaves (Wang and Han, 2009; Wang 
et al., 2009). Variations in MDA contents were found in 
rice (Tijen and Ismail, 2005) and cotton (Diego et al., 
2003) cultivars differing in salt tolerance. 

It has been reported that drought and NaCl salt 
stresses cause an active conversion of starch to sugars, 
the phenomenon that stresses cause a decrease in 
starch content and an increase in sugar content (Stewart, 
1971). This observation is supported by studies on a 
variety of plants that demonstrate a water stress-induced 
conversion of hexoses and other carbohydrates, such as 
starch, into sugar alcohols (polyols) and proline (Perez-
Alfocea and Larher, 1995; Wang et al., 1996). High salt 
concentrations in soil, reduces the ability of plant to take 
up water which results in slower plant growth (Munns, 
2005). Under stress conditions, plants need to maintain 
internal water potential below that of soil and maintain 
turgor and water uptake for growth (Tester and 
Davenport, 2003). This requires an increase in osmotica, 
either by uptake of soil solutes or by synthesis of 
metabolic  (compatible)   solutes.   However,  the  type  of  
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solutes accumulated varies between plant species. A 
major category of organic osmotic solutes which consists 
of simple sugars (mainly fructose and glucose), sugar 
alcohols (glycerol and methylated inositols) and complex 
sugars (trehalose, raffinose and fructans) are accu-
mulated (Bohnert and Jensen, 1996). Change of external 
osmolarity, and osmotic balance which support continued 
water influx (Hasegawa et al., 2000), protection of cell 
structures against oxidative damage and maintaining the 
structure of proteins and membranes are the main 
functions of compatible solutes (Hajihashemi et al., 
2006). Same observation was reported by Sidari et al., 
(2008) and Thakura and Dev-Sharma (2005) in their 
study of the effects of salt stress on different varieties of 
lentil and sorghum, respectively.  
 
 
ACKNOWLEDGEMENTS 
 
This study was conducted in the laboratory complex of 
Tonekabone Islamic Azad University. Authors are grateful 
to Professor Bahman Kholdebarin of the Shiraz 
University for editing the manuscript. We are also grateful 
to Mrs. Ghotbi and Mr. Mofidian for providing the alfalfa 
seeds. The technical assistance of Mr. Pourbakhshian is 
sincerely acknowledged.  
 
 
REFERENCES 
 
Abrol DP (1988). Effect of climatic factors on pollination activity of 

Alfalfa-pollinating subtropical bees Megachile nana Bingh and 
Megachile flavipes Spinola (Hymnoptera: Megachilidae). Acta. 
Oecologia Genera, 9: 371-377. 

Ahmad J, Bano M (1992). The effect of sodium chloride on physiology 
of cotyledons and mobilization of reserved food in Cicer arietinum. 
Pak. J. Bot. 24: 40-48. 

Asada K (1992). Ascorbate peroxidase-a hydrogen scavenging enzyme 
in plants. Physiol. Plant, 85: 235-241. 

Asada K, Takahashi M (1987). Production and scavenging of active 
oxygen in photosynthesis, in: Kyle DJ, Osmond CD, Arntzen, CJ 
(Eds.), Photoinhibition. Elsevier Sci. Publishers, Amsterdam, pp. 227-
287. 

Ashraf M, Harris PJC (2004). Potential biochemical indicators of salinity 
tolerance in plants. Plant Sci. 166: 3-16. 

Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999). Transgenic 
approaches to increase dehydration-stress tolerance in plants. Mol. 
Breed, 5: 493-503. 

Bohnert HJ, Jensen RG (1996). Strategies for engineering water-stress 
tolerance in plants. Trends Biotechnol. 14: 89-97. 

Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Montagu 
VM, Inze D (1998). Expression of antioxidant enzymes in responses 
to abscisic acid and high osmoticum in tobacco BY-2 cell cultures. 
Plant Sci. 138: 27-34. 

Chance B, Maehly SK (1955). Assay of catalase and peroxidase. 
Methods Enzymol. 2: 764-775. 

Chandlee JM, Scandalios JG (1984). Analysis of variants affecting the 
catalase developmental program in maize scutellum. Theor. Appl. 
Genet. 69: 71-77. 

Chinta S, Lakshmi A, Giridarakumar S (2001). Change in the 
antioxidant enzyme efficacy in two high yielding genotypes of 
mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161: 613-619. 

Comba ME, Benavides MP, Gallego SM, Tomaro ML (1998). 

 
 
 
 

Relationship between nitrogen fixation and oxidative stress induction 
in nodules of salt-treated soybean plants. Phyton-International J. Exp. 
Bot. 60: 115-126. 

Delgado MJ, Garrido JM, Ligero F, Lluch C (1993). Nitrogen fixation and 
carbon metabolism by nodules and bacteroids of pea plants under 
sodium chloride. Physiol. Plant, 89: 824-829. 

Diego AM, Marco AO, Carlos AM, Jose C, (2003). Photosynthesis and 
activity of superoxide dismutase peroxidase and glutathione 
reductase in cotton under salt stress. Environ. Exp. Bot. 49: 69-76. 

Dionisio-Sese ML, Tobita S (1998). Antioxidant responses of rice 
seedlings to salinity stress. Plant Sci. 135: 1-9. 

Ehsanpour AA, Fatahian N (2003). Effects of salt and proline on 
Medicago sativa callus, Plant Cell Tissue Org. 73: 53-56. 

Elsheikh EAE, Wood M (1995). Nodulation and N2 fixation in soybean 
inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in 
saline soil. Soil Biol. Biochem. 27: 657-661. 

Foyer CH, Halliwell B (1976). Presence of glutathione and glutathione 
reductase in chloroplasts: a proposed role in ascorbic acid 
metabolism. Planta, 133: 21-25. 

Gaspar T, Penel C, Castillo FJ, Greppin H (1985). A two step control of 
basic and acid peroxidases and its significance for growth and 
development. Plant Physiol. 64: 418-423. 

Georgiev GI, Atkins CA (1993). Effects of salinity on N2 fixation, nitrogen 
metabolism and export and diffusive conductance of cowpea root 
nodules. Symbiosis, 15: 239-255. 

Giannopolitis CN, Ries SK (1977). Superoxide dismutase: I. Occurrence 
in higher plants. Plant Physiol. 59: 309-314. 

Guan B, Zhou D, Zhang H, Tian Y, Japhet W, Wang P (2009). 
Germination responses of Medicago ruthenica seeds to salinity, 
alkalinity, and temperature. J. Arid Environ. 73: 135-138 

Gueta DY, Yaniv Z, Zilinskas BA, Ben-Hayyem G (1997). Salt and 
oxidative stress: similar and specific responses and their relation to 
salt tolerance in citrus. Planta, 203: 460-469. 

Guy CL, Carter JV (1984). Characteristic of partially purified glutathione 
reductase from cold-hardened and non-hardened spinach leaf tissue 
Cryobiol. 21: 454-464. 

Hajihashemi S, Kiarostami K, Enteshari S, Saboora A (2006). The 
effects of salt stress and paclobutrazol on some physiological 
parameters of two salt tolerant and salt sensitive cultivars of wheat. 
Pak. J. Biol. Sci. 9: 1370-1374. 

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000). Plant cellular 
and molecular responses to high salinity. Annu. Rev. Plant Physiol. 
Plant Mol. Biol. 51: 463-499. 

Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplast. I. 
Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. 
Biophys. 125: 189-198. 

Howieson J, Ballard R (2004). Optimising the legume symbiosis in 
stressful and competitive environments within southern Australia: 
some contemporary thoughts. Soil Biol. Biochem. 36: 1261-1273. 

Jain M, Mathur G, Koul S, Sarin NB (2001). Ameliorative effects of 
proline on salt stress-induced lipid peroxidation in cell lines of 
groundnut (Arachis hypogea L.). Plant Cell Rep. 20: 463-468. 

Khan MA, Rizvi Y (1994). Effect of salinity, temperature and growth 
regulators on the germination and early seedling growth of Atriplex 
griffithii var, Stocksii. Can. J. Bot. 72: 475-479. 

Khan MA, Ungar IA (1984). The effect of salinity and temperature on the 
germination of polymorphic seeds and growth of Atriplex triangularis 
Willd. Am. J. Bot. 71: 481-489. 

Koca H, Ozdemir F, Turkan I (2010). Effect of salt stress on chlorophyll 
fluorescence, lipid peroxidation, superoxide dismutase and 
peroxidase activities of cultivated tomato (L. esculentum ) and its wild 
relative (L. pennellii ). Environ. Exp. Bot. (in press). 

Lee DH, Kim YS, Lee CB (2001). The inductive responses of the 
antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. 
Plant Physiol. 158: 737-745. 

Lopez F, Vansuyt G, Casse-Delbart F, Fourcroy P (1996). Ascorbate 
peroxidase activity not the mRNA level, is enhanced in salt stressed  
Raphanus sativus plants. Physiol. Plant. 97: 13-20. 

Martinez CA, Loureiro ME, Oliva MA, Maestri M (2001). Differential 
responses of  superoxide  dismutase  in  freezing  resistant  Solanum 



 
 
 
 
 

curtilobum and freezing sensitive Solanum tuberosum subjected to 
oxidative and water stress. Plant Sci. 160: 505-515. 

Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, 
Aparicio-Tejo P (1994). Drought induces oxidative stress in pea 
plants, Planta, 194: 346-352. 

Munns R (2002). Comparative physiology of salt and water stress. Plant 
Cell Environ. 25: 239-50. 

Munns R (2005). Genes and salt tolerance: bringing them together. 
New Phytol. 167: 645-663. 

Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by 
ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell 
Physiol. 22: 867-880. 

Naureen G, Naqvi FN (2010). Salt tolerance classification in wheat 
genotypes using reducing sugar accumulation and growth 
characteristics. Emir. J. Food Agric. 22(4): 308-317. 

Navari-Izzo F, Quatacci MF, Sgherri CLM (1996). Superoxide 
generation in relation to dehydratation and rehydration. Biochem. 
Soc. 24: 447-450. 

Nelson N (1944). A photometric adaptation of the somogyi method for 
the determination of glucose. J. Biol. Chem. 153: 375-380. 

Olmos E, Hernandez JA, Sevilla F, Hellin E (1994). Induction of several 
antioxidant enzymes in the selection of salt tolerant cell line of Pisum 
sativum. J. Plant Physiol.144: 594-598. 

Patanea C, Cavallaroa V, Cosentinob SL (2009). Germination and 
radicle growth in unprimed and primed seeds of sweet sorghum as 
affected by reduced water potential in NaCl at different temperatures. 
Ind. Crop Prod. 30: 1-8. 

Perez–Alfocea F, Larher F (1995). Effects of phlorizin and p– 
chloromercuribenzenesulfonic acid on sucrose and praline 
accumulation in detached tomato leaves submitted to NaCl and 
osmotic stresses. J. Plant Physiol. 145: 367-73. 

Pessarakli M (1993). Handbook of plant and crop stress, first ed. CRC 
Press, Boca Raton, London, New York. 

Scandalios JG (1993). Oxygen stress and superoxide dismutase. Plant 
Physiol. 101: 7-12. 

Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003). 
Molecular responses to drought, salinity and frost: common and 
different paths for plant protection. Curr. Opin. Biotechnol. 14: 194-9. 

Serraj R, Sinclair TR (2002). Osmolyte accumulation: can it really help 
increase crop yield under drought conditions?. Plant Cell Environ. 25: 
333-341. 

Shalata A, Tal M (1998). The effect of salt stress on lipid peroxidation 
and antioxidants in the cultivated tomato and its wild salt tolerant 
relative Lycopersicon pennellii. Physiol. Planta. 104: 169-174. 

Sidari M, Santonoceto C, Anastasi U, Preiti G, Muscolo A (2008). 
Variations in four genotypes of lentil under NaCl-salinity stress. Am. 
J. Agric. Biol. Sci. 3(1): 410-416.  

Smirnoff N (1995). The role of active oxygen in the response of plants to 
water deficit and desiccation. New Phytol. 125: 27-58. 

Stewart CR (1971). Effect of wilting on carbohydrates during incubation 
of excised bean leaves in the dark. Plant Physiol. 48: 792-794 

Tejera NA, Campos R, Sanjuan J, Lluch C (2004). Nitrogenase and 
antioxidant enzyme activities in Phaseolus vulgaris nodules formed 
by Rhizobium tropici isogenic strains with varying tolerance to salt 
stress. J. Plant Physiol. 161: 329-338. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Babakhani et al.        11441 
 
 
 
Tejera NA, Soussi M, Lluch C (2006). Physiological and nutritional 

indicators of tolerance to salinity in chickpea plants growing under 
symbiotic conditions, Environ. Exp. Bot. 58: 17-24. 

Tester M, Davenport R (2003). Na+ tolerance and Na+ transport in 
higher plants. Ann. Bot. 91: 503-527. 

Thakur M, Dev-Sharma A (2005). Salt stress and phytohormone (ABA) 
induced changes in germination, sugars and enzymes of 
carbohydrate metabolism in Sorghum bicolor (L.) Moench Seeds. J. 
Agric. Soc. Sci. 1(2): 89-93. 

Tijen D, Ismail T (2005). Comparative lipid peroxidation, antioxidant 
defense systems and praline content in roots of two rice cultivars 
differing in salt tolerance. Environ. Exp. Bot. 53: 247-257. 

Wang BW, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009). 
Analysis of antioxidant enzyme activity during germination of alfalfa 
under salt and drought stresses. Plant Physiol. Biochem. 47: 570-
577. 

Wang FZ, Wanga QB, Kwon SY, Kwak SS, Su WA (2005). Enhanced 
drought tolerance of transgenic rice plants expressing a pea 
manganese superoxide dismutase. J. Plant Physiol. 162: 465-472. 

Wang J, Zhang H, Allen RD (1999). Overexpression of an Arabidopsis 
peroximal ascorbate gene increases protection against oxidative 
stress. Plant Cell Physiol. 40: 725-732. 

Wang W, Vinocur B, Altman A (2003). Plant responses to drought, 
salinity and extreme temperatures: towards genetic engineering for 
stress tolerance. Planta. 218: 1-14. 

Wang XS, Han JG (2009). Changes of proline content, activity, and 
active isoforms of antioxidative enzymes in two alfalfa cultivars under 
salt stress. Agric. Sci. China. 8(4): 431-440. 

Wang Z, Quebedeaux B, Stutte GW (1996). Partitioning of (14C) glucose 
into sorbitol and other carbohydrates in apple under water stress. 
Aust. J. Plant Physiol. 23: 245-51. 

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels 
C, Van-Montagu M, Inze D, Van-Camp W (1997). Catalase is a sink 
for H2O2 and is indispensable for stress defense in C3 plants. EMBO 
J. 16: 4806-4816. 

Yupsanis T, Moustakas M, Domiandou K (1994). Protein 
phosphorylation– dephosphorylation in alfalfa seeds germination 
under salt stress. J. Plant Physiol. 143, 234-240 

Zhang J, Jia W, Yang J, Ismail AM (2006). Role of ABA in integrating 
plant responses to drought and salt stresses. Field Crops Res. 97: 
111-119. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


