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Compartmentation of Na
+
 into vacuoles is an important way for cells to avoid the toxic effects of salt. 

Here, Arabidopsis AtCCX1 was studied in Pitch pastoris GS115. Yeast expressing AtCCX1 grew better 
in high H

+
 concentration medium and high salt medium than original strain and increased Na

+
 

accumulation and decreased K
+
 accumulation. AtCCX1 was located in tonoplast in yeast. Transport 

essays were indicated by fluorescence SBFI and PBFI, respectively. Results show that AtCCX1 
simultaneously participate in transports both of Na

+
 and K

+
 and the process was inhibited by H

+
-ATPase 

inhibitor vanadate. In conclusion, we suggest that AtCCX1 is an H
+
-dependent Na

+
/K

+
 exchanger.  
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INTRODUCTION 
 
Ion ratios in plants are altered by the influx of Na

+
 through 

K
+
 pathways (Blumwald, 2000; Santa-Cruz et al., 1999; 

Rees et al., 1992). The similarity of the hydrated ionic 
radii of Na

+
 and K

+
 makes it difficult to discriminate 

between them and this is the basis of Na
+
 toxicity. For 

plant cell to deal with this deleterious ionic effect of 
salinity, it has to perform two tasks: to exclude or 
sequester Na

+ 
and Cl

-
 to avoid their toxicity in the 

cytoplasm and to maintain appropriate cellular levels of 
K

+ 
and Ca

2+
 necessary for metabolic activities (Mansour 

et al., 2003). 
CAX7 to CAX11 were recently renamed as CCX1 to 

CCX5 (Cai and Lytton, 2004; Shigaki et al., 2006) 
because they display limited primary amino-acid 
sequence homology with other CAX, but have a striking 
sequence similarity to the mammalian K

+
-dependent 

eXchanger) family is one of the five families of the CaCA. 
 
 
 
*Corresponding author. E-mail: guowang211@yahoo.com.cn. 
Fax: (+86) 29 87092262.  

 
Abbreviations: [K

+
], K

+
 Concentration; [K

+
]m, K

+
 concentration 

in medium; [K
+
]c, K

+
 content in yeast cells; [Na

+
], Na

+
 

concentration; [Na
+
]m, Na

+
 concentration in medium; [Na

+
]c, 

Na
+
 content in yeast cells; GAtCCX1, the Pitch pastoris GS115 

expressing AtCCX1; T[Control], the Pitch pastoris GS115; 
[H

+
]m, H

+
 concentration in culture media 

superfamily. CAXs are a group of proteins that export 
cations from the cytosol to maintain optimal ionic 
concentrations in the cell. CAXs are energized by the pH 
gradient established by proton pumps such as H

+
- 

ATPase and H
+
-pyrophosphatase (Kamiya and 

Maeshima, 2004). Several plant CAXs have been 
characterized as vacuole-localized transporters, which 
function in H

+
-coupled antiport of Ca

2+
, Mg

2+
 and Mn

2+
, 

resulting in the accumulation of these cations in vacuoles 
(Hirschi et al., 1996; Hirschi, 1999; Pittman et al., 2004; 
Mei et al., 2007). However, most members of CCXs have 
not yet to be identified and their transport properties are 
needed to complete urgently. 

The gene of AtCCX1 had been cloned and subcloned 
into Pitch pastoris GS115. In this study, static and 
dynamic transport properties of AtCCX1 in P. pastoris 
GS115 were investigated. 
 
 
MATERIALS AND METHODS 

 
Yeast was grown overnight in YPD medium at 28°C. After 
measuring the OD600, equal numbers of cells were grown in 50 ml 
of yeast peptone dextrose (YPD) +supplements.  

AtCCX1 was amplified from Arabidopsis (Arabidopsis thaliana) 
genomic DNA using PCR. Two oligonucleotide primers that are 
complementary to the 5’ and 3’ ends of the predicted AtCCX1 gene 
were generated: AtCCX1 forward primer, 5’-GGGGGTACCCCT 
CATTATTGT-TCCACTTCATACCC3’ and AtCCX1 reverse primer, 
5’- GGGCCGCGGCCTCTCGATAGTAATTCAACTATGCACA3’. Kpn 
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I and Sac II sites (underlined) were introduced for sub-cloning. 
Genomic DNA was isolated using the E.Z.N.A. TM Plant DNA Maxi 
Kit (Omega, USA), according to the manufacturer’s instructions. 
AtCCX1 genomic DNA was subcloned into the yeast expression 
vector pGAPZ B (Invitrogen, USA). 

EGFP (enhanced green fluorescent protein) sequence was 
cloned from vector pIRES2-EGFP (Invitrogen, USA) using PCR by 
two oligonucleotide primers. The forward primer was 
GCGCAAGCTTGTATGGGATCTGATCTGGGGCCTCG and the 
reverse primer was GCGCAAGCTTTGTTTCAGGTTCAGGGGG 
AGGTGTG. Hind III sites (underlined) were introduced for sub-
cloning. Then, EGFP sequence was fused to C-terminal of AtCCX1 
in vector pGAPZ B. The primers CGTTGCTTGAGACACTAGGGTT 
CTT and ACCTCTACAAATGTGGTATGGCTGAT were used to test 
the correct reading order of EGFP by PCR. Yeast vacuolar protein 
P51 was used as a marker protein and fused to EGFP as described 
previously (Morris et al., 2008; Carter et al., 2004). 

Inductively coupled plasma mass spectrometry (ICP-MS) analy-
sis was done as described previously with a little modification (Eide 
et al., 2005). Yeast cells were collected from the 50 ml yeast culture 
suspension by centrifugation at 3,000 × g for 10 min and washed 
with 50 ml of distilled, deionized H2O. To ensure remove unbound 
elements, this process was repeated for three times. The cells were 
then placed in a 50 ml conical flask with stopper and 5 ml 30% 
HNO3 was added. The samples were digested overnight in a 65°C 
water bath. Afterward, 5 ml of distilled, deionized H2O was added, 
the samples were vortexed briefly. Before ICP-MS analysis, the cell 
digests were diluted 100 times or even more. ICP-MS analysis was 
performed with a Varian 820-MS ICP mass spectrometer (made in 
USA) with a three-channel peristaltic pump. 

Yeast membrane vesicles were prepared as described previously 
with a few modifications (Nakanishi et al., 2001). Yeast cells were 
precultured at 30°C for 2 days in YPD medium that contained 
supplements. The cell culture was diluted 64-fold and then grown 
for 12 h to reach an exponential phase. After being washed with 0.1 
M Tris-HCl, pH 9.4, 50 mM 2-mercaptoethanol and 0.1 M glucose at 
30°C for 10 min, cells were treated with a zymolyase medium at 
30°C for 1 h with gentle agitation. The medium contained 0.05% 
zymolyase 20 T, 0.9 M sorbitol, 0.1 M glucose, 50 mM Tris-Mes, pH 
7.6, 5 mM DTT, 0.043% yeast nitrogen base without amino acids 
and ammonium sulfate and 0.25×dropout solution composed of all 
amino acids and adenines. Spheroplasets were collected from the 
suspension by centrifugation at 3,000×g for 10 min and washed 
with 1 M sorbitol. 

The spheroplasts were resuspended in 50 mM Tris-ascorbate, pH 
7.6, 1.1 M glycerol, 1.5% polyvinylpyrrolidone (Mr 40,000), 5 mM 
EGTA-Tris, 1 mM DTT, 0.2% bovine serum albumin, 1 mM PMSF 
and 1 mg/l leupeptin and then homogenized with a motor-driven 
Teflon homogenizer. After centrifugation at 2,000×g for 10 min, the 
precipitate wassuspended in the same buffer and centrifuged again. 
All of the supernatant fractions were pooled and centrifuged at 
120,000×g for 30 min. The precipitate was suspended in 15% (w/w) 
sucrose and layered on a 35% (w/w) sucrose solution. Both 
sucrose solutions contained 10 mM Tris-Mes, pH 7.6, 1 mM EGTA-
Tris, 2 mM DTT, 25 mM KCl, 1.1 M glycrol, 0.2% bovine serum 
albumin, 1 mM PMSF and 1 mg/l leupeptin. After centrifugation at 
150,000×g for 30 min, the interface portion was collected and 
diluted with 5 mM Tris-Mes, pH 7.6, 0.3 M sorbitol, 1 mM DTT, 1 
mM EGTA-Tris, 0.1 M KCl, 1 mM PMSF, 1 mg/l leupeptin and 5 mM 
MgCl2. The precipitate after centrifugation at 150,000×g for 30 min 
was resuspended in 5 mM Tris-Mes, pH 7.6, 0.3 M sorbitol, 1 mM 
DTT, 1 mM EGTA-Tris, 1 mM PMSF, 1 mg/l leupeptin and 1.5 mM 
MgCl2. The suspension was stored at ‐80°C until use. 

The fluorescence quenching of SBFI and PBFI were used to 
monitor the dynamic of Na

+
 and K

+
 concentration inside membrane 

vesicles. Membrane vesicle suspensions were recollected by 
centrifugation at 150,000×g for 30 min and the precipitate was kept. 
The precipitate was  then  loaded  with  SBFI-AM  (or  PBFI-AM)  by   

 
 
 
 
adding 50 µl of 10 µmol/l SBFI-AM (or PBFI-AM) with 0.04% 
pluronic F-127. After 100 min, excess SBFI-AM (or PBFI-AM) was 
removed by washing with buffer. While the indicator is SBFI, the 
buffer is 5 mM Tris-Mes, pH 6.0, 0.3 M sorbitol, 1 mM DTT, 1 mM 
EGTA-Tris, 0.1 M KCl, 1 mM PMSF, 1 mg/l leupeptin. While the 
indicator is PBFI, the buffer is 5 mM Tris-Mes, pH 6.0, 0.3 M 
sorbitol, 1 mM DTT, 1 mM EGTA-Tris, 0.1 M NaCl, 1 mM PMSF, 1 
mg/l leupeptin. Excitation ratios of fluorescence at 344 and 400 nm 
measured at emission 500 nm were used to estimate the content of 
Na

+
 or K

+
 inner vesicle. The time-dependent fluorescence changes 

were monitored on a Hitachi F4500 fluorescence spectro-
photometer. Results were corrected for background fluorescence 
and presented as percentage of untreated control. 
 
 

RESULTS 
 

AtCCX1 was introduced into P. pastoris GS115. To test 
the properties of AtCCX1 in yeast, yeast growth density 
was tested in OD600 by ultraviolet spectrophotometer. 
After expressing ATCCX1, yeast showed the different 
performance in [H

+
] gradient medium. The variant 

expressing AtCCX1, unlike original strain, preferred to 
growing best at [H

+
]m 0.01 µM (pH = 6) rather than at 

[H
+
]m 1 µM (pH = 8). Figure 1A shows that GAtCCX1 

grew more better in high [H
+
]m than T[control]. And the 

most suitable fittest [H
+
]m shifted from 0.01 to 1 µM. The 

growth of yeast under salt stress was also tested. The 
variant expressing AtCCX1 significantly grew better in 
both NaCl and KCl medium than control (Figure 1B,C). 
The results indicate that expression of AtCCX1 might be 
helpful for yeast against salt stress. 

To identify localization of AtCCX1 in yeast cell, C-
terminal of AtCCX1 was fused to EGFP (enhanced green 
fluorescent protein). Vacuolar protein P51 was also fused 
to EGFP as a marker protein. Fluorescent pictures were 
obtained by Olympus fluorescence microscope. Figure 2 
shows that AtCCX1 was located in tonoplast apparently, 
consistent with P51. 

To investigate substrates of AtCCX1, ICP-MS analysis 
was performed in H

+
 gradient medium. 8 elements con-

centration in different [H
+
] concentration medium were 

tested with ICP-MS and relative concentration variation 
percentages of 8 elements were calculated with ∆cation = 
(C[AtCCX1]cation- C[control]cation)/ C[control]cation 
(Figure 3). The results show that ∆Na

+
 and ∆K

+
 were the 

highest, especially while [H
+
]m=1 µM, respectively to be 

160.5% and -49.1%. 
ICP-MS analysis was performed in K

+
 gradient medium 

to further investigate accumulation of Na
+
 and K

+
. Both 

GAtCCX1 and T[control] were grown in [K
+
] gradient 

culture medium for 14 h and [Na
+
]c and [K

+
]c were tested 

with ICP-MS. Accumulation of K
+
 in original strains raised 

up significantly companying with the increasing of [K
+
]m, 

but accumulation of K
+
 in variants stayed at a steady level 

in all [K
+
] gradient culture medium (Figure 4). Accumu-

lation of Na
+
 in original strains raised up significantly with 

the increasing of [K
+
]m, but accumulation of Na

+
 in 

variants was strengthened more than that of original 
strains (Figure 5). 
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Figure 1. Growth of AtCCX1-expressing yeast strains (A) growth of yeast in 
various [H

+
] gradient medium; (B and C) growth of yeast in various [Na

+
] and 

[K
+
] gradient medium. 
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Figure 2. Localization of AtCCX1 in yeast (A) excited at 488 nm, filtered between 500 and 510 nm; (B) bright 
field; (C) excited at 488 nm, observed at full wavelength cation content in yeast.  
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Figure 3. ICP-MS analysis from dry weight of unit volume yeast 
culture. 
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Figure 4. Accumulation of K

+
 in yeast strains growing in [K

+
] gradient medium. 

 
 
 

0

0. 5
1

1. 5
2

2. 5
3

3. 5

0 10 20 40 60 80 100
[ K+] m ( mM)

[N
a+ ]c

 (
ug

/m
g)

GAt CCX1
GS115

 
 
Figure 5. Accumulation of Na

+ 
in yeast strains growing in [K

+
] gradient medium. 

 
 
 
 

It was reasonable to infer that AtCCX1 took part in 
transports of Na

+
 and K

+
, according to the results of ICP-

MS analysis. However, a piece of evidence that AtCCX1 
dynamically transported Na

+
 and K

+
 are still needed. In 

this section, dynamic of Na
+
/K

+
 transport essay by 

AtCCX1 was described. SBFI and PBFI, which were 
fluorescent indicators for sodium and potassium, 
respectively, were used in this experiment. Membrane 
vesicle of the variants which had been treated with AM-
PBFI was preloaded with a K

+
 buffer (5 mM Tris-Mes, pH 

6.0, 0.3 M sorbitol, 1 mM DTT, 1 mM EGTA-Tris, 0.1 M 
KCl, 1 mM PMSF, 1 mg/l leupeptin) (Figure 6). After 
detecting for 6 min, 20 mM [Na

+
] was added into the 

buffer. Without [Na
+
] in the solution, a steady-state PBFI 

fluorescence ratio level was observed. While 20 mM [Na
+
] 

was added into the solution, PBFI fluorescence ratio 
began to reduce sharply. However, if vanadate, a H

+
-

ATPase inhibitor, was contained in the solutions, PBFI 
fluorescence ratio was kept in a steady level all the time, 
no matter whether [Na

+
] was added. Compared with PBFI 

fluorescence ratio, similar performance was observed in 
SBFI fluorescence ratio, but a slightly difference. 
Membrane vesicle of variants that had been treated with 
AM-SBF I was preloaded with a Na

+
 buffer (5 mM Tris-

Mes, pH 6.0, 0.3 M sorbitol, 1 mM DTT, 1 mM EGTA-Tris, 
0.1 M NaCl, 1 mM PMSF, 1 mg/l leupeptin) (Figure 7). 
After detecting for 6 min, 20 mM [K

+
] was added into the 

buffer. Without [K
+
] in the solution, a steady-state SBFI 

fluorescence ratio level was observed while   20  mM  [K
+
]  

was  added  into  the  solution,  SBFI fluorescence ratio
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Figure 6. Fluorescent image of membrane vesicles loaded with PBFI. 20 mM [Na

+
] was 

added after the beginning of testing for 6 min in form of NaCl. 
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Figure 7. Fluorescent image of membrane vesicles loaded with SBFI. 20 mM [Ka

+
] 

was added after the beginning of testing for 6 min in form of KCl. 
 
 
 

raised up dramatically. However, if vanadate was 
contained in the solution, PBFI fluore-scence ratio will be 
kept in a steady level all the time, no matter whether [K

+
] 

was added. 
 
 
DISCUSSION  
 
To avoid the toxic effects of salt, cell sequesters Na

+
 into 

vacuoles (Ye et al., 2009). In Arabidopsis, the AtNHX 
family of Na

+
/H

+
 antiporters functions in Na

+
 compart-

mentation (Blumwald, 2000; Hanana et al., 2009; Xu et 
al., 2009). AtNHX1 and AtNHX2 are localized in the 
tonoplast membrane and their transcript levels are 
upregulated by ABA or osmotic stress (Yokoi et al., 
2002). However, recently, CCXs in Arabidopsis were also 

found to be related to Na
+
 compartmentation. Hetero-

logous expression of AtCCX3 in yeast increased 
accumulation of Na

+
 in yeast (Morris et al., 2008), similar 

to NHX1 to promote Na
+
 uptake (Kinclova et al., 2003; 

Darley et al., 2000; Fukuda et al., 2011). When compared 
with NHX1, AtCCX3 simultaneously transported K

+
 and 

Mn
2+

 apart from Na
+
. In this study, we found that Na

+
 and 

K
+
 were the main substrates of AtCCX1. AtCCX1 was 

located in tonoplast (Figure 2) and increased 
accumulation of Na

+
 and decreased accumulation of K

+
 

and Cu
2+

 (Figures 3 to 5). Dynamic of Na
+
/K

+
 transport 

essay indicated that AtCCX1 facilitated Na
+
 influx and K

+
 

efflux depending on H
+
 gradient. These results suggest 

that AtCCX1 be an H
+
 dependent Na

+
/K

+
 exchanger. 

Actually, the results are consistent with AtCCX3 and 
AtCCX4 (Morris et al., 2008).  Vacuolar  sequestration  of 



 
 
 
 
Na

+
 not only lowers Na

+
 concentration in the cytoplasm, 

but also contributes to osmotic adjustment to maintain 
water uptake from saline solutions. Na

+
 compart-

mentation is an economical means of preventing Na
+
 

toxicity in the cytosol because the Na
+
 can be used as an 

osmolyte in the vacuole to help to achieve osmotic 
homeostasis (Li et al., 2010; Zhu, 2001). 

A wealth of evidence indicates that most of the 
transporters in plant are regulated by pH (Sze, 1993; 
Duan et al., 2007; Kuchitsu et al., 1992). Here, we 
analyzed the effect of pH on AtCCX1. After expressing 
AtCCX1, the fittest growth pH in culture medium shifted 
from 8 to 6. While pH in the medium is identical to 6, 
relative changes of Na

+
 and K

+
 of GAtCCX1, compared 

with wild type, were the highest. Dynamic of Na
+
/K

+
 

transport essay showed that exchange between Na
+
 and 

K
+
 caused by AtCCX1 could be prevented by vanadate, 

an H
+
-ATPase inhibitor. These results suggest that [H

+
] 

gradient regulated ion transport of AtCCX1. Similar 
results were found in other transporters. Structure-
function studies have proved that CAX1, CAX2 and 
CAX3 share a similar sequence domain participating in 
pH regulation (Pittman et al., 2005). In Escherichia coli 
NhaA, it was found that His-226 is part of the pH sensor 
(Gerchman et al., 1993; Rimon et al., 1995).  

A high cytosolic K
+
/Na

+
 ratio is important for main-

taining cellular metabolism (Zhu, 2003; Hauser and 
Horie, 2010; Leidi et al., 2010). Various reports have 
indicated that increasing cytosolic K

+
 levels relative to 

Na
+
, thus, increasing the K

+
/Na

+
 ratio, is crucial for Na

+
 

tolerance in plants and maintaining high K
+
/Na

+
 ratio in 

shoots is highly correlated with salinity tolerance in 
glycophytes (Dubcovsky et al., 1996; Ren et al., 2005; 
Sunarpi et al., 2005; Zhu et al., 1998; Mason et al., 
2010). The Arabidopsis AtHKT1 protein, a Na

+
-K

+
 co-

transporter, mediates Na
+
 influx when expressed in 

heterologous systems such as Xenopus oocytes, yeast 
and wheat (Mason et al., 2010; Uozumi et al., 2000; 
Laurie et al., 2002; Baek et al., 2011; Plett et al., 2010). 
The novel CCXs family is also possibly correlated with 
maintenance of Na

+
/K

+
 ratio in plant. In this study, the 

results indicate that AtCCX1 was a Na
+
/K

+
 exchanger and 

is regulated by [H
+
] gradient. It was proposed that 

AtCCX1 contribute to lower cytosolic Na
+
 concentration 

by K
+
 reverse flow.  
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