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The content of flavonoids and phenolic acids in the extract of bamboo leaves (EBL) was determined 
using near-infrared spectroscopy. Optimal partial least squares models and least squares-support 
vector machine models were developed to enable rapid and non-destructive validation based on EBL 
contents as determined by photocolorimetric methods and high performance liquid chromatography. 
The least squares-support vector machine models performed slightly better than the partial least 
squares models. For least squares-support vector machine models, the correlation coefficients (R) and 
root mean square errors (RMSE) of calibration and validation were R(cal)= 0.9998, RMSE(cal)= 0.05, 
R(val)= 0.9418 and RMSE(val)= 3.91 for total flavonoids (TF) and R(cal)= 0.9778, RMSE(cal)= 2.49, R(val)= 
0.9535, and RMSE(val)= 3.61 for total phenolic acids (TP). For optimal partial least squares models, the 
corresponding values were 0.9962, 1.12, 0.9124 and 4.97 for TF and 0.9966, 0.98, 0.9325 and 4.33 for TP. 
The results indicated that near-infrared spectroscopy with least squares-support vector machine could 
be utilized as a precise method for the determination of flavonoids and phenolic acids in EBL. 
 
Key words: Near-infrared spectroscopy, extract of bamboo leaves (EBL), flavonoids, phenolic acids, partial 
least squares models, least squares-support vector machine models. 

 
 
INTRODUCTION 
 
Bamboo is a giant, woody grass with has a tropical and 
subtropical (cosmopolitan) distribution and represents an 
important commodity. Bamboo leaves have been used in 
traditional Chinese medicine for treating fever and detoxi-
fication for over 1000 years. Recently, some biologically 
active components in bamboo leaves and their potential 
health benefits have been widely studied. Extract of 
bamboo  leaves  (EBL)  is  a  polyphenol-rich  preparation  
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Abbreviations: EBL, Extract bamboo leaves; TF, total 
flavonoids; TP, total phenolic acids; RMSE, root mean square 
errors. 

made from the leaves of the Phyllostachys Sieb. et  
Zucc.family by extraction, separation, concentration and 
spray drying. The main bioactive components of EBL are 
flavonoids, phenolic acids and coumaric lactones and 
include the compounds orientin, homoorientin, vitexin, 
isovitexin, naringin-7-rhamnoglucoside, quercetin, luteolin, 
rutin, tricin, caffeic acid, chlorogenic acid and phydroxy 
coumaric acid (Lu et al., 2005 and 2006). Animal 
experiments and clinical trials have confirmed that EBL 
has medicinal properties, such as antioxidant, anti-aging, 
antibiosis, antiviral and neuroprotective potential (Zhang, 
1995). For this reason, EBL has been added to foods, 
beverages, wine, cosmetics and animal feed and has a 
large pros-pective market in Asia. However, as with the 
production of other plant extracts, the content of these 
bioactive  components  in  EBL    preparations    can    be  



 
 
 
 
affected by origin of bamboo leaves, technology of 
preparation and method of storage.  

According to the structures and the properties of these 
bioactive components in EBL, many could be determined 
quantitatively by photocolorimetric methods, high 
performance liquid chromatography (HPLC) and high 
performance capillary electrophoresis. Zhang (2002) 
determined the total content of flavonoids and phenolic 
acids by a photocolorimetric method using lutin and para-
hydroxybenzoic acid as standards. Zhang et al. (2005) 
and Lu et al. (2005) determined the composition of other 
bioactive components in EBL, including naringin-7-
rhamnoglucoside, isovitexin, rutin, vitexin, homoorientin, 
tricin, orientin and chlorogenic acid by the retention times 
of pure sample standards using HPLC and high 
performance capillary electrophoresis. However, these 
methods are time consuming, laborious, costly and 
inconvenient for online, rapid evaluation of flavonoids and 
phenolic acids in EBL. For improved quality control, it is 
necessary to develop a rapid, real-time and non-
destructive detection method for the evaluation of flavo-
noids and phenolic acids in EBL. 

Near-infrared spectroscopy can record the multi-
frequency and co-frequency information of organic 
molecules that contain hydrogen bonds, such as C-H, N-
H and O-H (Liu et al., 2009). Though, near-infrared 
spectroscopy is not as accurate as chromatographic and 
photocolorimetric methods, it is rapid, non-destructive, 
simple, and cost-effective and so is suitable for high-
throughput and real-time product control. Near-infrared 
spectroscopy has been widely used as an alternative to 
wet chemistry procedures for qualitative and quantitative 
analysis in the agricultural, pharmaceutical, food, textile, 
cosmetic and the polymer production industries (Wang et 
al., 2008a; Woodcock et al., 2008; Sinija and Mishra, 
2008; Chen et al., 2009; Shao and He, 2009). However, 
there have been few reports on the simultaneous 
determination of flavonoids and phenolic acid content by 
near-infrared spectroscopy. 

The objectives of this study were threefold: (1) to 
validate the feasibility of using  near-infrared spectro-
scopy to determine the flavonoids and phenolic acids in 
EBL; (2) to acquire the best calibration models and to 
confirm the effective wavelengths and validate the 
prediction performance; (3) to realize the potential of this 
method for commercial production. 
 
 
MATERIALS AND METHODS 
 
Extract of bamboo leaves (EBL) 
 
In this study, EBL samples were obtained from a local factory 
(Hangzhou U-mate technology Co., Ltd.). The raw material was 
allowed to dry in the sun, then was pulverized and sieved through 
20 mesh to yield a fine powder. The powder was extracted by 
deionized water at a ratio of 1:10 (w/v) at 100 ± 1°C for 1.5 h and 
then filtered. The extract was concentrated by removing the water 
under vacuum and then spray-drying. The extract samples (each 
about 1 L)  were  obtained  from  different  sections  of   the   factory 
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production line. All EBL samples were stored in the laboratory at a 
constant temperature of 25 ± 1°C for more than 48 h to equalize the 
temperature and then filtered through one layer of filter paper. Sixty-
one samples were used directly for physical and chemical mea-
suring using near-infrared spectroscopy to obtain reference values. 
Fractions of these samples were also used as the calibration (46 
samples) and validation sets (15 samples) from 10 different batches 
of bamboo leave extract. Samples were diluted 1:5 with water 
before HPLC analysis. 
 
 
Reference methods for flavonoids and phenolic acids 
 
Total flavonoids and phenolic acids were determined using a 
photocolorimetric method (Zhang, 2002) with lutin and para-
hydroxybenzoic acid as standards (Sigma-Aldrich Co., Ltd., USA). 
In order to determine whether one pure constituent or the sum of 
four constituents could be determined by near-infrared spectro-
scopy, reversed phase HPLC was used to separate and quantify 
the main flavonoids (homoorientin, orientin, isovitexin and vitexin) 
and phenolic acids (chlorogenic acid, caffeic acid, p-coumaric acid 
and ferulic acid) against known standards (Sigma-Aldrich Co., Ltd., 
USA). In order to detect the main polyphenol components of EBL, 
HPLC separations was performed using a Waters 2695 HPLC 
chromatography system (Waters, Milford, MA, USA) equipped with 
a Luna C18 reversed phase column (5 µm, 250 mm × 4.6 mm ID) at 
40°C (Phenomenex, Torrance, CA, USA) and a detection 
wavelength of 330 nm. The mobile phase was methyl cyanide (A) 
and acetic acid solution diluted 1:100 in water (B). The flow rate 
was 1.0 ml/min and the gradient elution requirement was as follows: 
0 to15 min, A 15%, B 85%; 15 to 25 min, A 15 to 40%, B 85 to 60%; 
25 to 34 min, A 40%, B 60%; 34 to 40 min, A 40 to 15%, B 60 to 
85%. 
 
 
Spectral acquisition 

 
A Nexus FT-IR spectrometer (Thermo Nicolet, Madison, WI, USA) 
was used for spectral scanning from 12,000 to 4,000 cm

−1
. The 

resolution of the spectrometer was 4.0 cm
−1

 in transmission mode. 
The spectral data were obtained by first adding an appropriate 
volume (about 4/5 of the cell volume) into the fixed liquid cell (2.0 
mm light path length). The background value for spectral scanning 
was obtained using an empty cell (air). A new background value 
was obtained every 100 min. The scan results of the samples were 
the average value up to 64 individual scans depending on the 
signal-to-noise. The spectrometer was equipped with OMNIC 
spectral acquisition software (Thermo Nicolet, Madison, WI, USA) 
that controlled acquisition, storage and analysis.  
 
 
Preprocessing and partial least squares analysis 
 
For partial least squares analysis of the results, TQ Analyst V6 
analysis software (Thermo Nicolet, Madison, WI, USA) was used. 
To acquire the optimal performance of the partial least squares 
models, the spectra were preprocessed prior to the calibration. The 
pretreatments included 1

st
 and 2

nd
 derivatives, Norris derivative and 

Savitzky-Golay filters. The 1
st
 and 2

nd
 derivatives were used to 

reduce baseline shift, whereas Norris derivative filter and Savitzky-
Golay filter were applied to decrease noise. Norris derivative filter, 
however, could be employed only after the 1

st 
and 2

nd 
derivative was 

applied. Thus, the single pretreatment or the combination pretreat-
ments included 1

st
 or 2

nd
 derivative only, 1

st
 or 2

nd
 derivative 

combined with Norris derivative filter, Savitzky-Golay filter only or all 
filtering methods. 

Partial least squares is a widely utilized regression method in 
spectroscopic analysis (Geladi and Kowalski, 1986) that considers  
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Table 1. Values of flavonoids and phenolic acids assayed by reference method. 

 

Parameter Model Sample number Range Mean Standard deviation 

TF
a
 

Calibration 46 36.7-99.5 65.0 12.9 

Validation 15 53.8-87.3 69.8 11.6 

      

PA
b
 

Calibration 42 40.6-90.8 56.2 11.9 

Validation 14 44.7-82.5 57.8 12.0 

      

SF
c
 

Calibration 46 4.9-21.5 11.5 4.1 

Validation 15 7.3-18.8 12.0 3.2 

      

SP
d
 

Calibration 42 2.3-7.5 4.2 1.4 

Validation 14 3.1-6.4 4.5 1.0 
 

a: Total flavonoids (mg/ml); b: phenolic acids (mg/ml); c: sum of homoorientin, orientin, isovitexin and vitexin (mg/ml); d: 
sum of chlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid (mg/ml). 

 
 
 
the spectral data matrix and the target chemical properties matrix. 
In the development of calibration models, partial least squares were 
chosen and full cross-validation was used to validate its quality and 
to prevent over-fitting of the calibration model. Model assessment 
and predictive capability were evaluated by the following indices: 
correlation coefficient (R), root mean square errors of prediction 
(RMSEP), bias, slope and offset (Liu et al., 2009). The main 
evaluation indices in this paper were R and RMSEP. The two 
indices are calculated as follows: 
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Where, Ci' is the value calculated by multivariate calibration 

methods; Ci is the value determined by reference methods; C is the 
mean of Ci; n is the number of the samples.  
 
Generally, a good model should have high correlation coefficients 
and low RMSEPs. However, PMSEP relates to the root mean 
square errors of the reference values and the value of the former 
should be less than 1/2 of the latter. 
 
 
Least squares-support vector machine 
 
Least squares-support vector machine, a state-of-the-art learning 
algorithm, has a solid theoretical foundation in statistical learning 
methods (Liu et al., 2009). It is capable of dealing with linear and 
nonlinear multivariate analysis and of resolving these problems 
relatively quickly (Vapnik, 1995; Suykens and Vandewalle, 1999). 
Furthermore, support vector machine can learn in high-dimensional 
feature space with fewer training data. Instead of quadratic 
programming problems and the traditional empirical risk 
minimization principle, it employs a set of linear equations and the 
structural risk minimization principle to obtain the support vectors 
and to avoid over-fitting problems. In this study, the full length 

spectrum was applied as the input data and the performance of the 
models was assessed mainly by R and RMSEP. A free least 
squares-support vector machine lab 1.5 toolbox (Suykens, Leuven, 
Belgium) was applied with Matlab V7.0 (The Math Works, Natick, 
USA) to develop the calibration models. 
 
 

RESULTS AND DISCUSSION 
 
Reference values 
 
The reference values of total flavonoids (TF) and phenolic 
acids (TP) were obtained using photocolorimetric 
methods as described. The main flavonoids (homo-
orientin, orientin, isovitexin and vitexin) and phenolic 
acids (chlorogenic acid, caffeic acid, p-coumaric acid and 
ferulic acid) were also determined by HPLC methods as 
described. The calibration parameters for TF, TP, homo-
orientin, orientin, isovitexin, vitexin, chlorogenic acid, 
caffeic acid, p-coumaric acid and ferulic acid assayed by 
the photocolorimetric method or by HPLC are shown in 
Table 1. The five point calibration curves of each value 
were achieved by linear regression analysis, which 
revealed high linearity (correlation coefficients over 
0.999) for all values. This indicated that the chemical 
values of flavonoids and phenolic acids by these linear 
regression functions are accurate and of high predictive 
value within the calibration range. 

Using the calibration equation, the concentrations of 
flavonoids and phenolic acids could be determined for 
further spectral calibration analysis. The statistical values 
for TF, TP, sum of homoorientin, orientin, isovitexin and 
vitexin (SF) and sum of chlorogenic acid, caffeic acid, p-
coumaric acid and ferulic acid (SP) in EBL are shown in 
Table 2 and Figure 1. The highest values were 99.5 
mg/ml TF, 90.8 mg.ml TP, 21.5 mg/ml SF and 7.5 mg/ml 
SP, while the lowest values were 36.7, 40.6,  4.9  and  2.3  
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Table 2. Calibration equations of flavonoids and phenolic acids. 

 

Parameter 

HPLC analysis (mg/ml) 
Photocolorimetric 
analysis (mg/ml) 

Homo-orientin Orientin Isovitexin Vitexin 
Chlorogeni

c acid 
Caffeic acid 

p-Coumaric 
acid 

Ferulic 
acid 

Total 
flavonoid 

Phenolic 
acid 

Calibration equation 
Y=20075X-2957.5 Y=21009X-

1751.9 
Y=25695X-

3478 
Y=22241X

-4319.3 
Y=26345X-

4644.9 
Y=50534X+48

43.5 
Y=39890X-

3594.9 
Y=50534X-

4843.5 
Y=0.0811X

-0.0013 
Y=0.74X+

0.0269 

           

Correlation coefficient 0.9999 0.9998 0.9999 0.9999 0.9997 0.9998 0.9999 0.9999 0.9992 0.9933 
 
 
 

mg/ml, respectively. The average values were 
65.0 mg/m TF, 40.6 mg/ml TP, 11.6 mg/ml SF and 
4.2 mg/ml SP.  

A broad range of concentrations were observed 
in the calibration and validation sets, indicating 
that the samples in calibration and validation sets 
are representative of the range of possible 
chemical contents. These data will aid in the 
development of a stable and robust calibration 
model. 
 
 
Spectral features 
 
The transmittance spectra of the samples and of 
the backgrounds are shown in Figure 2. To obtain 
the transmittance spectra, a relatively short light 
path length of 2.0 mm was chosen. In addition, air 
was applied as the background because of the 
intense absorbance in the near infrared wave-
length of the solvent water (Yu, 2007). A spectral 
resolution of 4 cm

-1 
was used in this study (Wang 

et al., 2008b; Yang et al., 2003; Yu et al., 2007) 
and individual spectra were based on the average 
of up to 64 scans to increase the signal-to-noise 
ratio and to reduce error. 

There were troughs in the transmittance spectra 

around wave numbers 6,897 and 5,128 cm
−1

 that 
were related to the first overtone of the O-H 
stretch and a combination of stretch and defor-
mation of the O-H group in water (Murray, 1986). 
The small transmittance troughs around 5,550 
and 8500 cm

−1
 might be associated with stretch 

and deformation of the specific structures of 
flavonoids and phenolic acids. 
 
 
Partial least squares models 
 
Partial least squares models with different pre-
treatments were developed for the determination 
of TF, TP, SF and SP in EBL. All of the 
pretreatments have been mentioned earlier, but 
the performances of partial least squares models 
with the pretreatment 1

st
 or 2

nd
 derivative and 1

st
 

or 2
nd

 derivative combined with Savitzky-Golay 
filtering was inadequate. Thus, we only compared 
the performance of the partial least squares 
models with 1

st
 or 2

nd
 derivative combined with or 

without Norris derivative (ND) filter and Savitzky-
Golay (SG) filter alone or SG with all pre-
treatments (Table 3). For flavonoids, 46 samples 
were used in the calibration set and 15 samples in 
the validation set; for phenolic acid, the calibration 

set and validation set contained 42 and 14 sam-
ples, respectively.  

Taking the prediction performance into consi-
deration, which can be judged by the prediction 
performance evaluation indices R and RMSEP, 
the optimal models were those that employed 
pretreatment SG for both flavonoids and phenolic 
acids, possibly because SG can decrease the 
noise of the spectrum. In contrast, models with the 
pretreatments 1

st
 or 2

nd
 derivative and 1

st 
or 2

nd
 

derivative combine with Norris derivative filter may 
have introduced significant noise into the spectra 
at the highest and lowest wave numbers. The 
optimal R and RMSEP for the validation set were 
0.9124 and 4.97 for TF and 0.9325 and 4.33 for 
TP.  

However, the partial least squares models of SF 
and SP were not practical, because the Rs for the 
two models were only 0.5229 and 0.5059 and the 
root mean square errors of the calibration and the 
validation were quite high (3.49 and 3.80 for SF 
and 1.19 and 1.15 for SP), while the RMSEPs 
were even higher than the standard deviations. 
These high RMSE values for SF and SP can 
make the model calibration difficult when the 
concentrations are below 5% of the totals as is 
usually the case.  
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Figure 1. HPLC spectra of two typical samples. 

 
 
 

Least squares-support vector machine models 
and comparison with partial least squares 
models 
 
Least squares-support vector machine models for 
the determination of TF, TP, SF and SP in EBL 
were developed using the least squares-support 

vector machine lab 1.5 toolbox with Matlab V7.0. 
The performances are shown in Table 4. The 
inputs were the full length spectra for flavonoids 
and phenolic acids. For flavonoids, 46 samples 
were used as the calibration set and 15 samples 
were used for the validation set. For phenolic 
acids, the calibration set and validation set 

contained 42 and 14 samples. As shown, the 
prediction values in both the calibration sets and 
the validation sets were quite accurate for both TF 
and TP, especially the prediction performance 
evaluation indices R and RMSEP. According to 
partial least squares models, the performance of 
the least squares-support vector machine  models  
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Figure 2. Near infrared spectra of samples and the background.  

 
 
 

Table 3. The prediction results of flavonoids and phenolic acids in calibration and validation sets by 
partial least squares models. 
 

Parameter Pretreatment 
Calibration Validation 

R(cal)
f
 RMSE(cal)

g
 R (val)

h
 RMSE(val)

i
 

TF
a
 

None 0.9978 0.85 0.9118 4.99 

1
st
 derivative +ND

e
 0.9996 0.39 0.8727 5.93 

2
nd

 derivative +ND 0.9997 0.30 0.8542 6.32 

SG 0.9962 1.12 0.9124 4.97 

      

PA
b
 

None 0.9919 1.51 0.9277 4.48 

1
st
 derivative +ND 0.9988 0.57 0.8281 6.72 

2
nd

 derivative +ND 0.9995 0.38 0.7168 8.36 

SG 0.9966 0.98 0.9325 4.33 

      

SF
c
 

None 0.7735 2.60 / 5.04 

1
st
 derivative +ND 0.9973 0.30 / 3.92 

2
nd

 derivative +ND 0.5229 3.49 / 3.80 

SG 0.7574 2.68 / 4.96 

      

SP
d
 

None 0.7903 0.85 / 1.47 

1
st
 derivative +ND 0.5156 1.18 / 1.16 

2
nd

 derivative +ND 0.5059 1.19 / 1.15 

SG
j
 0.7716 0.88 / 1.45 

 

a: Total flavonoids (mg/ml); b: phenolic acids (mg/ml); c: sum of homoorientin, orientin, isovitexin and vitexin 
(mg/ml); c: sum of chlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid(mg/ml); e: Norris derivative 
filter; f: correlation coefficient of calibration; h: correlation coefficient of validation; g: root mean square error of 
calibration (RMSEC); i: root mean square error of validation; j: Savitzky-Golay. 
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Table 4. The prediction results of flavonoids and phenolic acids in calibration and validation sets in least 

squares-support vector machine models and the comparison with the partial least squares models. 
 

Parameter Model (γ, σ
2
)
e
 

Calibration Validation 

R(cal)
f
 RMSE(cal)

g
 R(val)

h
 RMSE(val)

i
 

TF
a
 

PLS
j
 / 0.9962 1.12 0.9124 4.97 

LS-SVM
k
 45.607,24771 0.9998 0.05 0.9418 3.91 

       

PA
b
 

PLS / 0.9966 0.98 0.9325 4.33 

LS-SVM 1235.5,27974 0.9778 2.49 0.9535 3.61 

       

SF
c
 

PLS / 0.5229 3.49 / 3.80 

LS-SVM 52.024,22465 0.9317 1.49 / 4.05 

       

SP
d
 

PLS / 0.5059 1.19 / 1.15 

LS-SVM 51.958,29841 0.8921 0.62 0.49 0.91 
 

a: Total flavonoids (mg/ml); b: phenolic acids (mg/ml); c: sum of homoorientin, orientin, isovitexin and vitexin (mg/ml); c: 
sum of chlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid(mg/ml); e: parameters of LS-SVM model; f: 
correlation coefficient of calibration; h: correlation coefficient of validation; g: root mean square error of calibration 
(RMSEC); i: root mean square error of validation; j: partial least squares; k: least square-support vector machine. 

 
 
 

of SF and SP are unfavorable. 
Compared with the partial least squares models, the 

results in Table 4 indicated that least squares-support 
vector machine models performed better. One possible 
reason for the success of the least squares-support 
vector machine models could be that there was useful 
nonlinear information in the spectral data and partial least 
squares only dealt with the linear relationships between 
the spectra data and chemical compositions (Liu et al., 
2009). But the R and RMSEC of TP using least squares- 
support vector machine models were higher than those 
obtained from the partial least squares models, possibly 
because least squares-support vector machine can learn 
in high-dimensional feature space with fewer training data 
and deal with linear and nonlinear multivariate analysis, 
while partial least squares dealt with fewer factors. This is 
demonstrated clearly when comparing the partial least 
squares models with the pretreatments 1

st
 or 2

nd
 

derivative. In conclusion, the least squares-support vector 
machine is quite a robust learning algorithm for the 
determination of TF and TP. The R and RMSEP for the 
validation set were 0.9418 and 3.91 for TF and 0.9535 
and 3.61 for TP. 
 
 
Conclusion 
 
Near-infrared spectroscopy combined with least squares-
support vector machine modeling was successfully 
utilized for the determination of TF and TP in EBL. The 
partial least squares models and least squares-support 
vector machine models were developed and compared to 

determine TF, TP, SF and SP in EBL and the optimal 
prediction performance was achieved using raw spectra 
for TF and TP. The results indicated that least squares-
support vector machine models performed slightly better 
than partial least squares models for the prediction of TF 
and TP. For the least squares-support vector machine 
models, the correlation coefficient of calibration (R(cal)) 
and validation (R(val)) were 0.9998 and 0.9418, while the 
RMSEC and RMSEP values were 0.05 and 3.91 for TF. 
For TP, the corresponding values were 0.9778, 0.9535, 
2.49 and 3.61. The overall results indicated that near-
infrared spectroscopy combined with least squares-
support vector machine could be applied as a rapid, real-
time and non-destructive technique for the determination 
of TF and TP in EBL. The results might be useful for the 
process of in situ monitoring of EBL chemical composition 
for quality control. 
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