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One of the important parameters in genetic linkage analysis is recombination fraction. In this paper, we 
proposed a two stage Markov Chain Monte Carlo (MCMC) method to calculate an approximate 
confidence interval (ACI) for the recombination fraction. We also presented a formula for calculation of 
simulation size namely: outer and inner Gibbs sample sizes. 
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INTRODUCTION 
 
The Markov Chain Monte Carlo (MCMC) Gibbs sampler 
(Geman and Geman, 1984) is an iterative procedure for 
drawing multiple dependent realizations from a 
distribution known only to be up to a proportionality 
constant. In genetics, the Gibbs sampler provides 

realizations from the distribution of genotypes ( )P gθ , 

beginning from any initial realization of genotypes of the 
pedigree that is compatible with observed phenotypes. 
An individual’s genotype is updated in turn by sampling 

from local conditional distributions at parameter valuesθ , 

given the observed data (phenotypes) and the genotypes 
of all other members of the pedigree. The general 
theoretical justification for the Gibbs sampler was 
developed by Geman and Geman (1984).  

The calculation of the likelihood plays an important role 
in the analysis of genetic data. In many instances, the 
likelihood can be written as a product of probabilities 
summed over all possible genotype configurations. The 
sum over genotypes can be computed easily along the  
 
 
 
 
Abbreviations: MCMC, Markov Chain Monte Carlo; ACI, 
approximate confidence interval. 

lines of the Elston-Stewart algorithm (Elston and Stewart, 
1971) and its extensions (Cannings et al., 1978; Janss et 
al., 1995; Lange and Boehnke, 1983; Lang and Elston, 
1983; Stricker et al., 1995; Thomas, 1986a, b). If exact 
peeling over all genotypic configurations is not possible, 
one alternative is to use MCMC procedures to sample 
genotypic configurations according to the posterior 
distribution. The known difficulties with using Gibbs 
sampler such as the determination of initial configuration, 
advantages of random scans versus fixed scans and 
other aspects of the procedure, has been investigated by 
Sheehan et al. (1993), Jandaghi (1994) and Abraham et 
al. (2007).  

One of the important parameters of interest in genetic 
linkage analysis is recombination fraction which plays an 
important role in analysis of pedigree data. In this paper, 
we proposed a two stage Monte Carlo Gibbs sampling 
procedure for calculation of an approximate confidence 
interval (ACI) for recombination fraction.  
 
 
TERMINOLOGY AND NOTATIONS 
 
Consider a pedigree with n  individuals. Let 

( )1 2
, ,...,

n
g g g g=  be  the  vector  of  genotypes  of  the  
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individuals in the pedigree, where 
j

g  is the genotype of 

the j-th individual. Let ( )1 2 1 1
, ,..., , ,...,

j j j n
g g g g g g− − +=  

and   ( )1 2
, ,...,

n
x x x x=   be   the   vector   of   observed 

phenotypes where 
j

x is the phenotype of the j-th 

individual. Let F be the set of founders (individuals 

whose parents are not in the pedigree) and θ  be the 

recombination fraction. ( )|P x g  is the penetrance 

probability, that is, the probability that an individual with 

genotype g has phenotype x . Let ( )| ,
k kk f m

P g g g  be 

the transmission probability, that is, the probability that an 

individual having genotype 
k

g  is given the parental 

genotypes 
kf

g and 
km

g . The likelihood function for the 

pedigree will be as follows: 
 
 

( ) ( ) ( )| ,
feasiblegenes

L P x g P gθ θ= ∑  

 
 
Where 
  
 

( ) ( )
1

| |

n

j j

j

P x g P x g
=

= ∏  

 
and  
 
 

( ) ( ) ( ), | ,
j jj f m j

j F j F

P g P g g g P gθθ
∉ ∈

= ∏ ∏  

 
Jandaghi (2010) has proposed a two stage Gibbs 
sampling procedure for calculating the distribution of 
score and likelihood ratio statistics through the following 
steps: 

 

Step 1. Generating 
O

n outer Gibbs samples from the 

distribution of pedigree genotypes unconditional on their 
phenotypes. 

 
Step 2. Assigning the phenotypes consistent with each 
set of genotypes generated in step, so that we have 

O
n sets of phenotypes for the pedigree. 

 
Step 3. For each set of phenotypes produced in step 2, 

I
n  inner Gibbs samples are generated from the 

conditional distribution of genotypes on phenotypes. 

 
 
 
 
Step 4. Using the realizations generated in previous 

steps to calculate 
O

n values of score and likelihood ratio 

statistics to estimate the distribution of those statistics. 
 
 
APPROXIMATE CONFIDENCE INTERVAL FOR 
RECOMBINATION FRACTION  
 
Approximations to the distribution of an estimate of test 
statistic may be used for generating tests of hypotheses 
and confidence intervals. When calculating likelihoods on  
pedigrees, we can approximate the distribution of an 

estimate of θ , the parameter of interest and an ACI for it. 

Assuming we are interested in calculating the distribution 

of an estimate of recombination (θ ) and its ACI, it can be 

done based on the following stepwise procedure; also 

assuming the true value of θ  has been estimated by ˆ
m

θ . 

 
 

Step 1. Calculating the likelihood ratio at two more points 

ˆ
l

θ  and ˆ
r

θ , where ˆ
l

θ  and ˆ
r

θ  stand for the left and right 

equidistant values of ˆ
m

θ . 

 
 

Step 2. Since the likelihood ratio at ˆ
m

θ  is 1, we can fit a 

quadratic polynomial to the three points 

( )
( )

( )
ˆ

ˆ ˆ, , ,1
ˆ

l

l m

m

L

L

θ
θ θ

θ

 
 
 
 

 and 
( )
( )

ˆ
ˆ ,

ˆ

r

r

m

L

L

θ
θ

θ

 
 
 
 

. So, the 

equation would be of the form: 
 

2
.A B Cθ θ+ +     (1)                                                                    

 
 
Step 3. Maximizing the quadratic polynomial with respect 

to θ  yielding: 

 

* 1

1

ˆ ˆ ˆ
.

ˆ ˆ ˆ
l m m r r

l m m r r

L L L

L L L

α α α
θ

β β β

+ +
=

+ +
 

 
 

Since we have 
O

n  different sets of  

 

( )( ) ( )( ) ( )( ){ }, , , , , , , ,
l l m m m m r r m

l l lθ θ θ θ θ θ θ θ θ , 

 

 where ( ).,.l  denotes the likelihood ratio, Equation (1) 

yields 
O

n  values of 
*θ  since the distribution of θ̂  can be 

estimated. Once the approximate empirical distribution of  



 
 
 
 

θ̂  is built, we can use it to calculate its quantiles and 

hence an ACI. 
 
 
SIMULATION SIZE FOR CALCULATION OF THE 
DISTRIBUTION OF TEST STATISTICS 
 
Based on the procedures shown earlier, we can provide 
some ideas of the simulation sizes required for both inner 
and outer Gibbs samples. Suppose: 
 

l̂ l e= +           (2)                                                                     

 

Where, l  is the true value of likelihood ratio and e  is the 

random error. Substituting (2) in (1) and after some 
algebra, we have: 
 
 

1

* 1 1

1 1

1 1l m m r r l m m r r

l m m r r l m m r r

e e e e e e

l l l l l l

α α α β β β
θ

α α α β β β

−
  + + + +

= + +  
+ + + +  

            (3) 

 

Using the expansion of ( )
1

1 x
−

+  for the second term in 

the right hand of Equation (3): 
 
 

1

1 1

1 1

1 1l m m r r l m m r r

l m m r r l m m r r

e e e e e e

l l l l l l

β β β β β β

β β β β β β

−
 + + + +

+ ≈ − 
+ + + + 

 

 
we will have: 
 

* ˆ lθ θ η= +   

 

Where ( ), ,
l m r

η η η η=  and ( )
'

, ,
l m r

l l l l=  

 

Assuming the quadratic approximation to l  is plausible 

and assuming the approximate independence of θ̂  and 

lη : 

 

( ) ( ) ( )*ˆvar var var lθ θ η= +  

 
Since  
 

( ) '
var

l
lη η η= ∑  

 

Where 
l

∑  is the variance-covariance matrix of ,
l m

l l  and 

r
l  and again assuming the independence of ( )*

var θ  

and 
'

l
η η∑  we have: 
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( )( ) *

2 '

ˆˆ ˆvar var l

O I

S

n n

θ η η
θ

∑
+�          (4)                                           

 
To minimize Equation (4) with an additional condition of 

O I
n n K= , where K  is an arbitrary total number of 

Gibbs samples, we will have: 

 

*

2

'

.

O

l

S K
n θ

η η
≈

∑
              (5)                                                     

 
and 
 

*

'

2

.
.l

I

K
n

S
θ

η η∑
≈              (6)                                                       

 
 

So, if we want to generate a total K  Gibbs realizations to 
estimate the distributions of score and likelihood statistics 
as well as building an ACI for recombination fraction, 
Equations (5) and (6) determine how many inner and 
outer Gibbs samples will be suitable. Of course, before 
determining these sample sizes, we require a trial outer 
and inner Gibbs samples based on which the calculation 

of 
O

n and 
I

n  is made. 

 
 
Conclusion 
 
Recombination fraction is an important parameter in 
genetic linkage analysis. To have an estimate of the 
recombination fraction, one needs to use simulation 
analysis due to existence of the huge number of gene 
configurations and the amount of computation involved. 
The two stage Monte Carlo method proposed in this 
paper can aid researchers to calculate an approximate 
confidence limit for recombination fraction. The size of 
simulation is another issue in the computations. This 
paper gives some idea about the size of inner and outer 
Gibbs samples. This area still needs more work since 
there are many more complicated problems in pedigree 
analysis such as looped pedigrees in which one needs to 
do simulations and the simulation size may increase 
drastically. 
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