Full Length Research Paper

Karyotype analyses of the species of the genus *Jurinea* Cass. (Compositae) in Turkey

Bekir Dogan¹*, Ahmet Duran², Esra Martin³ and Erdogan E. Hakki⁴

¹Selcuk University, Education Faculty, Department of Science Education, Konya, Turkey.
²Selcuk University, Education Faculty, Department of Biology Education, Konya, Turkey.
³Selcuk University, Education Faculty, Department of Biology Education, Konya, Turkey.
⁴Selcuk University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Konya, Turkey.

Accepted 3 January, 2011

In this study, karyotype analyses of 13 species belonging to the genus *Jurinea* Cass. (Compositae) and grown naturally in Turkey were conducted. These taxa include *Jurinea alpigena* C. Koch, *Jurinea ancyrensis* Bornm., *Jurinea aucherana* DC., *Jurinea cadmea* Boiss., *Jurinea cataonica* Boiss. and Hausskn., *Jurinea consanguinea* DC., *Jurinea cypria* Boiss., *Jurinea macrocalathia* C. Koch., *Jurinea macrocephala* DC., *Jurinea mollis* (L.) Reichb., *Jurinea pontica* Hausskn. and Freyn ex Hausskn., *Jurinea pulchella* DC., *Jurinea ramulosa* Boiss. and Hausskn. Karyotype analysis of all the species are introduced to the scientific community for the first time and they were obtained through an Image analysis system. The study has made contribution to the cytotaxonomic revision of the genus *Jurinea* in Turkey.

Key words: Asteraceae, Image analysis, Jurinea, karyotype, Turkey.

INTRODUCTION

The Asteraceae with its approximately 1,620 genera and more than 23,600 species is the largest family of flowering plants (Stevens, 2001). Asteraceae is widely distributed within diverse regions ranging from southwest of US, Mexico, southern Brazil, South Africa, middle and southwest Asia as well as Australia. South America is accepted to be phylogenetically the geographic origin of the family (Bremer, 1994).

Asteraceae is represented with the largest number of species in the Flora of Turkey with a total number of recorded species being 1209. From these species, 447 are endemic, with an endemism ratio of 37%. With a total number of 134 genera, this family constitutes the second largest family of Turkish flora (Davis et al., 1988; Özhatay and Kültür, 2006).

Jurinea Cass. is one of the most important genera within *Asteraceae* and it comprises about 200 species in total (Susanna et al., 2006). Native distribution of *Jurinea*

specifically involved Central Asia, Iran, Turkey, and the Mediterranean basin. The genus *Jurinea* is represented with 18 species within Mediterranean and Irano-Turanian phytogeographic regions of Turkey. Five of these species are endemic to Turkey resulting in an endemism ratio of 27.8% (Danin and Davis, 1975; Dogan, 2007; Dogan et al., 2007; Dogan et al., 2010).

There are cytological studies on the genus *Jurinea* such as Baksay (1956), Blanca and Cueto (1992), Borhidi (1968), Chichiricco et al. (1979), Chouksanova et al. (1968), Gagnidze and Gviniashvili (1997), Humphries et al. (1978), Jee et al. (1989), Kieft and Loon (1978), Küpfer (1969a, b), Kuzmanov and Kozuharov (1967), Kuzmanov and Ancev (1973), Kuzmanov and Georgieva (1977), Kuzmanov et al. (1986), Kuzmanov et al. (1990, 1993), Lungeanu (1973), Magulaev (1976, 1982, 1986), Sokolovskaia and Probatova (1980), Vir and Kachroo (1985), Kochjarova (1990), Vogt and Oberprieler (1993) and Dogan et al. (2009).

Karyological knowledge needs to be used in conjunction with other sources of data to achieve a better understanding of the cytological relationships of *Jurinea* species, leading to their natural classification. In this regard, karyotypes were determined in 13 species of

^{*}Corresponding author. E-mail: bdogan@selcuk.edu.tr. Tel. +90.332 323 8220-5850, +90.505 482 98 57. Fax. +90.332 323 82 25.

Chromosome pairs	J. alpigena		J. ancyrensis		J. aucherana		J. cadmea		J. cataonica	
	Total	Relative	Total	Relative	Total	Relative	Total	Relative	Total	Relative
	length	sizes	length	sizes (%)	length	Sizes	length	sizes	length	sizes
		(%)				(%)		(%)		(%)
I	1,3700	8,3081	1,6800	8,4380	1.5000	8,1699	1,4600	9,3410	1,3800	7,9861
II	1,3300	8,0655	1,4600	7,3330	1,4100	7,6797	1,2500	7,9974	1,2500	7,2338
III	1,2000	7,2771	1,3700	6,8810	1,3700	7,4619	1,1300	7,2297	1,2000	6,9444
IV	1,1100	6,7314	1,3500	6,7805	1,2500	6,8083	1,0700	6,8458	1,1700	6,7708
V	1,0800	6,5494	1,2900	6,4792	1,2000	6,5359	1,0000	6,3980	1,1100	6,4236
VI	1,0400	6,3069	1,2800	6,4289	1,1300	6,1547	0,9800	6,2700	1,1000	6,3657
VII	1,0000	6,0643	1,2400	6,2280	1,1100	6,0458	0,9600	6,1420	1,0600	6,1343
VIII	0,9500	5,7611	1,2200	6,1276	1,0600	5,7734	0,9400	6,0141	1,0300	5,9606
IX	0,9400	5,7004	1,2000	6,0271	1,0400	5,6645	0,9000	5,7582	1,0000	5,7870
Х	0.8900	5,3972	1,1300	5,6755	1,0300	5,6100	0,8600	5,5022	0,9600	5,5556
XI	0,8600	5,2153	1,1100	5,5751	1,0000	5,4466	0,8500	5,4383	0,9400	5,4398
XII	0,8600	5,2153	1,0300	5,1733	0,9800	5,3377	0,7900	5,0544	0,9200	5,3241
XIII	0,8500	5,1546	1,0000	5,0226	0,9400	5,1198	0,7700	4,9264	0,8900	5,1505
XIV	0,8200	4,9727	0,9600	4,8217	0,9000	4,9020	0,7300	4,6704	0,8600	4,9769
XV	0,7700	4,6695	0,9000	4,5203	0,8600	4,6841	0,6900	4,4146	0,8300	4,8032
XVI	0,7300	4,4269	0,8600	4,3194	0,8100	4,4118	0,6500	4,1587	0,8100	4,6875
XVII	0,6900	4,1844	0,8300	4,1688	0,7700	4,1939	0,6000	3,8388	0,7700	4,4560

Table 1. Total, haploid total, relative and mean lengths of metaphase chromosomes of Jurinea species studied karyologically.

Jurinea growing naturally in Turkey and karyological attributes of selected species were evaluated for the first time.

MATERIALS AND METHODS

Samples of the genus Jurinea were collected from different localities of Turkey, with their akenes, during 2004 to 2006 vegetation periods. Collected samples were maintained as herbarium material at the KNYA and Selcuk University Faculty of Education herbaria (Appendix). For karyotypes, root tips were obtained from seeds germinated for ten days on wet filter paper in petri dishes. Root tips were pretreated with α -monobromonaphthalene for 16 h at 4 °C, fixed in ethanol: glacial acetic acid (3:1) for 24 h and stored at 4°C until use. Root tips were washed in distilled water to remove the fixative, hydrolysed in 1N HCl for 13 min at room temperature and stained in 2% aceto-orcein for 2 h. After staining directly, permanent slides were made with the standard liquid nitrogen method, slides were dried for 24 h at room temperature and mounted in depex. Karyotype analyses were made using Bs200Pro Image analysis software. Measurements were based on ten metaphase plates for each species. Homologous chromosomes were determined according to their total and relative lengths for each species. The total length of the haploid chromosome complements was also determined. Ideograms of each species were sequenced according to their total lengths.

RESULTS AND DISCUSSION

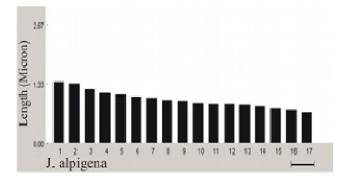
A chromosome number of 2n=34 was reported for all

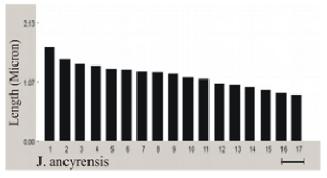
species (Dogan et al., 2009). In addition to homologous, chromosome pairs were also determined through total and relative length of each chromosome for each species. However, it was impossible to determine the position of centromers and karyotype formula, because the chromosomes of *Jurinea* species in *Carduinae* subtribe are invariable and very small. The characteristics of somatic chromosomes in the studied species are explained further. The detailed karyological features are presented in Table 1.

Jurinea alpigena C.Koch

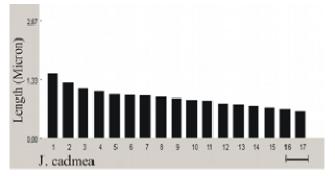
The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.69 to 1.37 µm. The relative sizes are between 4.18 and 8.30. Total length of the haploid chromosome complement is 16.49 µm. The ideogram of species is shown in Figure 1. Detailed morphological characteristics of chromosome pairs are given in Table 1.

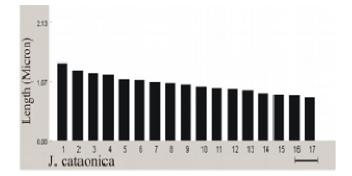
Jurinea ancyrensis Bornm.

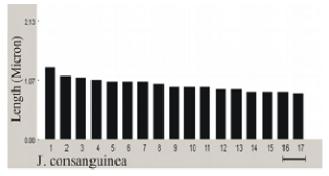

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.83 to 1.68 μ m. The relative sizes are between 4.17 and 8.44. Total length of the haploid chromosome complement

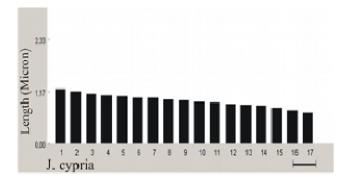

Table 1. (Continued).

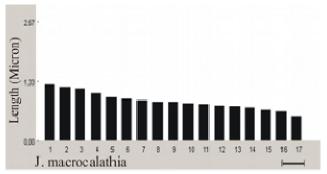
	J. consanguinea		J. cypria		J. macrocalathia		J. macrocephala		J. mollis	
Chromosome pairs	Total length	Relative sizes (%)	Total length	Relative Sizes (%)	Total length	Relative sizes (%)	Total length	Relative Sizes (%)	Total length	Relative sizes (%)
I	1,2900	7,7338	1,2200	7,4755	1,2500	8,3167	1,6500	8,4572	1,5600	9,3750
II	1,1300	6,7746	1,1600	7,1078	1,2000	7,9840	1,5400	7,8934	1,3200	7,9327
III	1,1100	6,6547	1,1100	6,8015	1,1600	7,7179	1,4600	7,4833	1,1900	7,1514
IV	1,0700	6,4149	1,0800	6,6176	1,0700	7,1191	1,3500	6,9195	1,1100	6,6707
V	1,0300	6,1751	1,0600	6,4951	0,9700	6,4538	1,3100	6,7145	1,0700	6,4303
VI	1,0300	6,1751	1,0400	6,3755	0,9400	6,2542	1,2900	6,6120	1,0300	6,1899
VII	1,0300	6,1751	1,0300	6,3113	0,9000	5,9880	1,2500	6,4070	0,9600	5,7692
VIII	0,9800	5,8753	0,9800	6,0049	0,8600	5,7219	1,1600	5,9457	0,9400	5,6490
IX	0,9400	5,6355	0,9600	5,8824	0,8600	5,7219	1,1100	5,6894	0,9400	5,6490
Х	0,9400	5,6355	0,9400	5,7598	0,8300	5,5223	1,0800	5,5356	0,9000	5,4087
XI	0,9400	5,6355	0,9200	5,6373	0,8100	5,3892	1,0300	5,2793	0,8600	5,1683
XII	0,8900	5,3357	0,8900	5,4534	0,7900	5,2562	1,9800	5,0231	0,8600	5,1683
XIII	0,8900	5,3357	0,8600	5,2696	0,7700	5,1231	1,9400	4,8180	0,8300	4,9880
XIV	0,8600	5,1559	0,8500	5,2083	0,7300	4,8570	1,9200	4,7155	0,8100	4,8678
XV	0,8600	5,1559	0,8000	4,9020	0,6900	4,5908	1,8800	4,5105	0,7900	4,7476
XVI	0,8600	5,1559	0,7300	4,4730	0,6500	4,3247	0,8200	4,2030	0,7700	4,6274
XVII	0,8300	4,9760	0,6900	4,2279	0,5500	3,6593	0,7400	3,7929	0,7000	4,2067

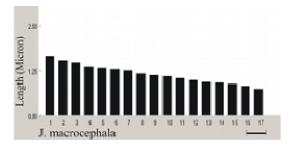

Table 1. (Continued).


	J. p	ontica	J. pi	ulchella	J. ramulosa		
Chromosome pairs	Total length	Relative sizes (%)	Total length	Relative sizes (%)	Total length	Relative Sizes (%)	
1	1,4600	9,1997	1,2900	7,8087	1,5000	8,8080	
П	1,3700	8,6326	1,1300	6,8402	1,2500	7,3400	
III	1,3500	8,5066	1,1100	6,7191	1,1700	6,8702	
IV	1,1300	7,1204	1,0800	6,5375	1,1300	6,6353	
V	1,0300	6,4902	1,0600	6,4165	1,1000	6,4592	
VI	0,9800	6,1752	1,0400	6,2954	1,0600	6,2243	
VII	0,9400	5,9231	1,0300	6,2349	1,0400	6,1069	
VIII	0,9000	5,6711	1,0200	6,1743	1,0300	6,0482	
IX	0,8600	5,4190	0,9700	5,8717	0,9800	5,7546	
Х	0,8100	5,1040	0,9400	5,6901	0,9400	5,5197	
ХІ	0,7700	4,8519	0,9200	5,5690	0,9200	5,4022	
XII	0,7700	4,8519	0,8900	5,3874	0,8900	5,2261	
XIII	0,7400	4,6629	0,8800	5,3269	0,8600	5,0499	
XIV	0,7200	4,5369	0,8600	5,2058	0,8300	4,8738	
XV	0,7000	4,4108	0,8100	4,9031	0,8100	4,7563	
XVI	0,6900	4,3478	0,7700	4,6610	0,7900	4,6389	
XVII	0,6500	4,0958	0,7200	4,3584	0,7300	4,2866	









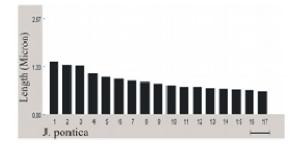


Figure 1. Ideograms of species in Jurinea (Bar:10 µm).

is 19.91 µm.

Jurinea aucherana DC.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.77 to 1.50 μ m. The relative sizes are between 4.19 and 8.17. Total length of the haploid chromosome complement is 18.36 μ m.

Jurinea cadmea Boiss.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.60 to 1.46 μ m. The relative sizes are between 3.84 and

9.34. Total length of the haploid chromosome complement is 15.63 $\mu m.$

Jurinea cataonica Boiss. and Hausskn.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.77 to 1.38 µm. The relative sizes are between 4.46 and 7.99. Total length of the haploid chromosome complement is 17.28 µm.

Jurinea consanguinea DC.

The number of somatic chromosome is 2n=34 (Dogan et

al., 2009). The sizes of chromosomes are changed from 0.83 to 1.29 μ m. The relative sizes are between 4.98 and 7.73. Total length of the haploid chromosome complement is 16.68 μ m.

Jurinea cypria Boiss.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.69 to 1.22 µm. The relative sizes are between 4.23 and 7.48. Total length of the haploid chromosome complement is 16.32 µm.

Jurinea macrocalathia C. Koch

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.55 to 1.25 μ m. The relative sizes are between 3.66 and 8.32. Total length of the haploid chromosome complement is 15.03 μ m.

Jurinea macrocephala DC.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.74 to 1.65 μ m. The relative sizes are between 3.79 and 8.46. Total length of the haploid chromosome complement is 19.51 μ m.

Jurinea mollis (L.) Reichb.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.70 to 1.56 µm. The relative sizes are between 4.21 and 9.38. Total length of the haploid chromosome complement is 16.64 µm.

Jurinea pontica Hausskn. and Freyn ex Hausskn.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.65 to 1.46 µm. The relative sizes are between 4.10 and 9.20. Total length of the haploid chromosome complement is 15.87 µm.

Jurinea pulchella DC.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.72 to 1.29 μ m. The relative sizes are between 4.36 and 7.81. Total length of the haploid chromosome complement is 16.52 μ m.

Jurinea ramulosa Boiss. and Hausskn.

The number of somatic chromosome is 2n=34 (Dogan et al., 2009). The sizes of chromosomes are changed from 0.73 to 1.50 µm. The relative sizes are between 4.29 and 8.80. Total length of the haploid chromosome complement is 17.03 µm.

Conclusion

According to the information in this study, only one study has been carried out on the chromosome number of the Jurinea species from Turkey (Dogan et al., 2009). In all of the species in the genus Jurinea examined, the somatic chromosome number were observed as 2n=34 again. These findings are in agreement with the somatic chromosome numbers given for the Jurinea genus species in the previous research (Dogan et al., 2009). In this study, the karyotypes of the 13 species studied first were determined by Image analysis system belonging to the genus Jurinea. Ideograms of these species were arranged in order of decreasing lengths. Centromers and the type of chromosomes could not be determined, because the chromosomes of these species are very small. Karyotyping was not possible for the species Jurinea kileae, Jurinea brevicaulis and Jurinea stoechadifolia due to the fact that, we were unable to germinate the achenes of these species.

The chromosome morphologies of the genus Jurinea species studied are slightly different from each other. The length of the smallest chromosome was 0.55 μ m and found in *J. macrocalathia*. The length of the largest chromosome was 1.65 μ m and found in *J. macrocalathia*. The smallest relative length (3.66) in *J. macrocalathia* and the largest arm ratio (9.38) in *J. mollis* were observed. According to the mean length, *J. macrocalathia* species has the smallest (0.44 μ m) and *J. ancyrensis* species had the largest (0.59 μ m) mean length values. The total haploid chromosome length is the shortest in *J. macrocalathia* (15.03 μ m) and the longest in *J. ancyrensis* (19.91 μ m).

In general, Jurinea presents low level of variation in chromosome number, with 2n=34 in most of the species. Some species of Jurinea are diploids, with 2n=24, 30, 32, 36 (Missouri 35. and 58 Botanical Garden, http://mobot.mobot.org/W3T/Search/ipcn.html and Index to Chromosome numbers in the Asteraceae, http://wwwasteraceae.cla.kobe-u.ac.jp/index. html). From the Jurinea species that are naturally grown in Turkey, only J. mollis was previously studied by different research groups and its somatic chromosome number was reported as 2n=30, 34, 35 and 36 (Missouri Botanical Garden, http://mobot.mobot.org/W3T/Search/ipcn. html and Index to Chromosome numbers in the Asteraceae; http://www-asteraceae.cla.kobe-u.ac.jp/index.html; Dogan et al., 2009).

The present study determined the karyotypes of *Jurinea* species growing naturally in Turkey. We believe this study will play a positive role on shedding light on this taxonomically complex genus with morphologically unsolved problems.

ACKNOWLEDGEMENTS

We express our thanks to TUBITAK (Project no. TBAG-105-T-355) and the Scientific Investigation Projects Coordinate Office of The Selcuk University (Project no: 05401046) for financial support.

REFERENCES

- Baksay L (1956). Cytotaxonomical studies on the flora of Hungary. Ann. Hist. Nat. Mus. Natl. Hungarici, Ser. Nova, 7: 321-334.
- Blanca G, Cueto M (1992). In Numeros cromosomaticos de plantas occidentales, pp. 654-660. Ann. Jard. Bot. Madrid, 50: p. 83.
- Borhidi A (1968). Karyological studies on southeast European plant species. I. Acta Bot. Acad. Sci. Hung. 14: 253-260.
- Bremer K (1994). Compositae. Cladistics and classification, Portland, Oregon: Timber Press. USA.
- Chichiricco G, Frizzi G, Tammaro F (1979). In Numeri cromosomici per la Flora Italiana: pp. 598-601. Inform. Bot. Ital. 11: 659-660.
- Chouksanova NA, Sveshnikova LT, Alexandrova TV (1968). Data on karyology of the family Compositae Giseke. Citologija, 10: 198-206.
- Danin A, Davis PH (1975). Jurinea Cass. In: Davis PH (ed.). Flora of Turkey and the East Aegean Islands, Vol. 5, pp. 439-450, Edinburgh Univ. Pres, Edinburgh.

Davis PH, Tan K, Mill RR (eds.) (1988). Flora of Turkey and the East Aegean Islands, Vol. 10, pp. 463, Edinburgh Univ. Press, Edinburgh.

- Dogan B (2007). Türkiye *Jurinea* Cass. (Asteraceae) Cinsinin Revizyonu. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
- Dogan B, Duran A, Hakkı EE (2007). Phylogenetic Analysis of *Jurinea* (Asteraceae) Species from Turkey Based on ISSR Amplification. Ann. Bot. Fennici, 44 (5): 353-358.
- Dogan B, Duran A, Martin E, Hakki EE (2009). Chromosome numbers in Turkish species of *Jurinea* Cass. (Asteraceae). Caryologia, 62(1): 16-23.
- Dogan B, Hakki EE, Duran A (2010). A phylogenetic analysis of *Jurinea* (Compositae) species from Turkey based on ITS sequence data. Afr. J. Biotechnol. 9(12): 1741-1745.
- Gagnidze RI, Gviniashvili T (1997). In IOPB chromosome data 11. Newslett. Int. Organ. Plant Biosyst. 26-27: 20-21.
- Humphries C, Murray J, Bocquet G, Vasudevan K (1978). Chromosome numbers of phanerogams from Morocco and Algeria. Bot. Not. 131: 391-406.
- Jee KR, Vır U, Wafai BA, Kachroo P (1989). Cytology of Senecio jacquemontianus (Decne.) Benth. ex Hook. f. (Asteraceae) from Kashmir Himalaya meiotic studies. Chromo. Inform. Serv. 46: 4-6.
- Kieft B, Loon V (1978). In IOPB chromosome number reports LXII. Taxon, 27: 519-535.
- Kochjarova J (1990). Karyological study of the Slovak Flora. Acta Facultatis Rerum Naturalim Universitatis Botanica, 38: 89-99.
- Kuzmanov BA, Ancev ME (1973). In IOPB Chromosome number reports XLI. Taxon, 22: 459-464.
- Kuzmanov BA, Georgieva S (1977). In IOPB Chromosome number reports LVIII. Taxon, 26: 557-565.
- Kuzmanov BA, Kozuharov SI (1967). Karyotypes of four Bulgarian Compositae species. C. R. Acad. Bulgar. Sci. 20: 469-472.
- Kuzmanov BA, Georgieva SB, Nikolova VA (1986). Chromosome numbers of Bulgarian flowering plants. I. Fam. Asteraceae. Fitologiya (Sofia), 31: 71-74.

- Kuzmanov BA, Jurukova-Grancarova PD, Georgieva SB (1990). Chromosome numbers of Bulgarian angiosperms. Fitologiya (Sofia), 38: p. 92.
- Kuzmanov BA, Jurukova-Grancarova PD, Georgieva SB (1993). Karyological study of Bulgarian Asteraceae. IV. Fitologiya (Sofia), 44: 3-15.
- Küpfer P (1969a). In IOPB Chromosome number reports XXII. Taxon, 18: 433-442.
- Küpfer P (1969b). Recherches cytotaxinomiques sur la flora des Montagnes de la Peninsule Iberique. Bull. Soc. Neuchateloise Soc. Nat. 92: 31-48.
- Lungeanu I (1973). In IOPB chromosome number reports XLII. Taxon, 22: 647-654.
- Magulaev AJ (1976). The chromosome numbers of flowering plants of the northern Caucasus (Part 2). The Flora of the Northern Caucasus, 2: 51-62.
- Magulaev AJ (1982). The number of chromosomes of the species of Asteraceae, Caryophyllaceae and Plantaginaceae of the North Caucasus. Sci. Rep. Higher. School Biol. Sci. 11(227): 74-79.
- Magulaev AJ (1986). Chromosome numbers in some species of flowering plants of the Crimea and Caucasus floras. Bot. Zhurn. 71: 1575-1578.
- Özhatay N, Kültür Ş (2006). Check-List of Additional Taxa to the Supplement Flora of Turkey III. Trend J. Bot. 30: 281-316.
- Sokolovskaia AP, Probatova NS (1980). Chromosome numbers in some species from the sands of Sarykum (Daghestan ASSR). Bot. Zhurn. 65: 1169-1172.
- Stevens PF (2001). Angiosperm Phylogeny Website. Version 8, June 2007 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/. (Accessed March 27, 2008).
- Susanna Á, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006). The Cardueae (Compositae) revisited: Insights from its, trnL-trnF, and matK nuclear and chloroplast DNA analysis. Ann. Missouri. Bot. Gard. 93(1): 150-171.
- Vir JD, Kachroo P (1985). Chromosomal conspectus of some alpinesubalpine taxa of Kashmir Himalaya. Chrom. Inform. Serv. 39: 33-35.
- Vogt R, Oberprieler C (1993). Chromosome numbers of North African phanerogams. I. Fl. Mediterranean, 3: 187-210.

http://mobot.mobot.org/W3T/Search/ipcn. html and Index to Chromosome Numbers in the Asteraceae, Missouri Botanical Garden. http://www-asteraceae.cla.kobe-u.ac.jp/index.html.

APPENDIX

Localitiy information for the studied species

Jurinea consanguinea - Turkey: B3 Konya: Sultan Daglari, North of Hidirlik dag hotel, 1130 m, 37°14.913 N, 038°49.427 E, 18.07.2006, BD 1001; J. alpigena -Turkey: A4 Karabuk: Yenice, Keltepe, 1630 to 1680 m, 41°03.796'N, 032°27.781'E, 21.07.2006, BD 1510; J. cadmea - Turkey: B2 İzmir: Odemis, Bozdag, 1650-1750 m, 38°20.671 N, 028°06.403 E, 19.07.2006, BD 1503; J. mollis - Turkey: A1 Kirklareli: 1 km after the cross-road for Vize-Sergen, Quercus sp. forest, 310 to 320 m, 41°37.312N, 027°40.950E, 07.07.2005, BD 1504; J. macrocalathia - Turkey: A1 Tekirdag: Malkara, North of Kumbag, 5-25 m, 40°51.852N, 027°27.604E, BD 1507; J. pontica - Turkey: A3 Kocaeli: Esme, 500 m before the signboard of the Sakarya province, 40-50 m, 40°44.118N, 033°36.871N, 09.07.2005, BD 1011; J. pulchella – Turkey: A9 Van: Yuzuncu Yil University campus, around the heating center, 1650 m, 05.08.2005,

BD 1025; J. cypria - Turkey: C4 Mersin: Mut, plateau of Kozlar, edge of Avi stream, 1330 m, 30.08.2006, BD 1521; J. macrocephala – Turkey: C5 Konya: Halkapinar, Aydos mountain, Kayasaray village, 1 km East of Karasirt, 1700 m, 37° 22.249N, 034°17.308E, 31.07.2005, BD 1017; *J. aucherana* – Turkey: B7 Erzincan: Old Cayirli road, 1-1.5 km apart from Botas petroleum pipeline, slopes of the hill on the left, 1760 to 2095 m, 39°53.429N, 039°45.778E, 22.08.2006, BD 1519; J. ramulosa – Turkey: C6 Kahramanmaras: Ahirdagi, 1390 m, 37°37.057 N, 036°52.074 E, BD 1513; J. cataonica – Turkey: B7 Erzincan: Old Cayirli road, 10 km, slopes aside the road, 1750 m, 39°47.954 N, 039°30.343 E, 07.08.2005, BD 1029; J. ancyrensis -Turkey: B7 Elazig: Keban, Keban-Agli road, 3th km, on the slopes, 800 to 850 m, 38°48.692 N, 038°43.929 E, 21.08.2006, BD 1516.