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Nisin is a bacteriocin approved in more than 50 countries as a safe natural food preservative. Response 
surface methodology (RSM) combined with artificial neural network-genetic algorithm (ANN-GA) was 
employed to optimize the fermentation medium for nisin production. Plackett-Burman design (PBD) was 
used for identifying the significant components in the fermentation medium. After that, the path of 
steepest ascent method (PSA) was employed to approach their optimal concentrations. Sequentially, 
Box-Behnken design experiments were implemented for further optimization. RSM combined with ANN-
GA were used for analysis of data. Specially, a RSM model was used for determining the individual 
effect and mutual interaction effect of tested variables on nisin titer (NT), an ANN model was used for 
NT prediction, and GA was employed to search for the optimum solutions based on the ANN model. As 
the optimal medium obtained by ANN-GA was located at the verge of the test region, a further Box-
Behnken design based on the RSM statistical analysis results was implemented. ANN-GA was 
implemented using the further Box-Behnken design data to locate the optimum solution which was as 
follow (g/l): Glucose (GLU) 15.92, peptone (PEP) 30.57, yeast extraction powder (YEP) 39.07, NaCl 5.25, 
KH2PO4 10.00, and MgSO4·7H2O 0.20, with expected NT of 22216 IU/ml. The validation experiments with 
the optimum solution were implemented in triplicate and the average NT was 21423 IU/ml, which was 
2.13 times higher than that without ANN-GA methods and 8.34 times higher than that without 
optimization. 
 
Key words: Response surface methodology, artificial neural network, genetic algorithm, nisin titer. 

 
 
INTRODUCTION 
 
Nisin is a bacteriocin produced by molecular strains of 
Lactococcus lactis  subsp.  lactis.  It  is  composed  of  34 
amino acids and approved in more than 50 countries as a 
natural food preservative for various products such as 
processed cheese, beverages, canned foods, etc. Nisin 
is reported to act primarily upon the cytoplasmic  membrane, 
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and is effective against a broad range of Gram-positive 
bacteria and their spores. Besides, it can also inhibit the 
growth of a wide variety of Gram-negative bacteria with 
ethylenediaminetetraacetic acid (EDTA) (Cheigh and 
Pyun, 2005; Delves-Broughton et al., 1996; Economou et 
al., 2009; Soriano et al., 2004). The nisin precursor is 
synthesized in the early active growth phase, the nisin 
production rate is maximal towards the end of the 
exponential growth phase, and cells completely stop nisin 
biosynthesis when entering the stationary growth phase. 
Therefore, nisin production is greatly influenced by the 
growth of bacteria and the fermentation media (Liu et  al., 



 
 
 
 
2005; De Vuyst and Vandamme, 1993; Mirdamadi et al., 
2008; Wardani et al., 2006). Optimal nisin production in 
batch culture usually requires a complex fermen-ation 
media. Several literatures presented studies on the 
optimization of fermentation media for nisin production 
using statistical methods, such as response surface 
methodology (RSM), multi-linear regression and logistic 
model. However, these methods are not suitable for such 
complex system, and it is difficult to develop satisfying 
models with high predictive accuracy using these methods 
(Lv et al., 2004; Lv et al., 2005; Penna and Moraes, 2002; 
Vazquez and Murado, 2008). 

RSM is a collection of statistical techniques for desig-
ning experiments, developing models, evaluating the 
effects of factors, and searching for optimum conditions. 
Plackett-Burman design (PBD) is a 2-level experimental 
design that requires fewer runs than a comparable 
fractional design. It can be used to identify the significant 
factors among many candidate factors. The path of 
steepest ascent (PSA) is a procedure for moving sequen-
tially along the path of the steepest ascent, that is, in the 
direction of the maximum increase in the response. Box-
Behnken design and multi-quadric regression could find 
out the relationship between the variables and response 
values based on statistical analysis, and the optimum of 
each variable would be obtained as well. RSM has been 
extensively used in the optimization of medium composition, 
conditions of enzymatic hydrolysis, fermentation and food 
manufacturing processes (Choudhari and Singhal, 2008; 
Ghosalkar et al., 2008; Mannan et al., 2007; Wang and 
Liu, 2008; Wu et al., 2007). 

Artificial neural network (ANN) is a non-linear com-
putational model based on biological neural networks. It 
simulates the human brain learning process by mathema-
tically modeling the network structure of interconnected 
node cells. ANN has been utilized with high success for 
system design, modeling, optimization and control mainly 
due to their capacity to learn, filter noisy signals and 
generalize information through a training procedure. Several 
literatures have demonstrated that the predictive accuracy 
of ANN models were superior to RSM model using the same 
experimental design. The advantages of ANN compared to 
RSM are: (i) ANN does not require a prior specification of 
suitable fitting function and (ii) ANN has universal 
approximation capability, that is, it can approximate 
almost all kinds of non-linear functions including quadratic 
functions, whereas RSM is useful only for quadratic 
approximations. However, ANN is known as a black box 
modeling approach. Therefore, the effect of factors on 
response values and the interaction effect among the 
factors cannot be studied by ANN model. Genetic 
algorithm (GA) which is an artificial intelligence based 
stochastic non-linear optimization formalism, is used to 
optimize the input space of the ANN model. This hybrid 
methodology will be referred to as ANN-GA hereafter. The 
GA mimics the principles of biological evolution, namely 
“survival-of-the-fittest” and “random exchange of data 
during   propagation”   followed   by  biologically   evolving 
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species. GA has been considered an ideal technique to 
solve diverse optimization problems in biochemical 
engineering. In the present work, RSM and ANN-GA were 
applied to optimize the fermentation media for nisin 
production simultaneously. This method can much more 
efficaciously evaluate both the effect of the individual 
factor and the interaction effect among the factors, and 
increase the nisin titer (NT) as well (Chen et al., 2004; 
Desai et al., 2006; Moreira et al., 2007; Nagy, 2007; 
Singh et al., 2008; Tramer and Fowler, 1964).  
 
 
MATERIALS AND METHODS 
 
Microorganism and seed culture preparation 
 
A mutant strain L. lactis subsp. lactis CGMCC NO. 3050 obtained 
by treating L. lactis subsp. lactis ATCC 11454 with diethyl sulfate 
(DES) was used for the optimization studies. L. lactis subsp. lactis 
ATCC 11454 was purchased from the American Type Culture 
Collection. L. lactis subsp. lactis CGMCC NO. 3050 was collected in 
China General Microbiological Culture Collection Center. It was 
maintained on CM slants medium composed of (g/l): Glucose (GLU) 
10, peptone (PEP)10, yeast extraction powder (YEP)10, KH2PO4 
10, NaCl 2, MgSO4·7H2O 0.2 and agar 15. The medium was 
adjusted to pH 6.8 using 5 M NaOH before autoclaving at 121°C for 
30 min. GLU was separately autoclaved at 105°C for 10 min. The 
slants were inoculated to 3 ml sterile CM liquid medium in cuvette 
(15 ml) and incubated at 37°C in a rotary shaker at 150 rpm for 24 
h. Then, the culture was inoculated to Erlenmeyer flask (250 ml) 
containing 100 ml sterile CM liquid medium, which was incubated at 
37°C in a rotary shaker at 150 rpm for 18 h, and the seed culture 
was prepared. 
 
 
Production media and cultivation condition 
 
The initial medium for nisin production was CM medium. The 
concentrations of the components in CM medium were varied 
depending on the experimental design used for nisin production 
fermentation. 3% (v/v) inoculum was added aseptically to 
Erlenmeyer flasks (250 ml) containing 100 ml of designed medium. 
The fermentation medium was incubated at 37°C in rotary flasks at 
150 rpm for 24 h. 
 
 
Analytical methods 
 
NT was measured by a modified method of Tramer and Fowler 
(1964). The fermentation broth was adjusted to pH 2 using 10 M 
HCl, and then centrifuged at 5000 rpmin for 10 min. The 
supernatant was appropriately diluted with 0.02 M HCl and nisin 
assay were performed by an agar well diffusion assay. A standard 
curve (200 - 3000 IU /ml) was plotted using a stock solution of 4000 
IU/ml nisin (Sigma, USA). Each assay was performed in triplicate 
and the average result was presented.  
 
 
PBD 
 
PBD experiments had 9 factors and 2 levels, employed to select the 
Significant factors based on statistical analysis.  Among the 9 
factors, six were the components in the CM medium. The high (+1) 
and low (-1) level of the six components were GLU (X1) 12.5 and 
10.0 g/l; PEP (X2) 12.5 and 10.0 g/l; YEP(X3) 12.5 and 10.0 g/l; 
KH2PO4 (X4) 12.5 and 10.0 g/l;  NaCl (X5) 2.5  and  2.0 g/l;  MgSO4· 
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7H2O (X6) 0.25 and 0.20 g/l. The other three factors were dummy 
variables (X7, X8, X9), used for estimating the experimental error 
and checking the adequacy of the first-order model. Twelve 
experimental runs were carried out in the present work. Then, a 
first-order model in coded variables was obtained using SAS 
(version 8.02) for the regression analysis of the experimental data. 
At the end of this stage, GLU, PEP, YEP, and NaCl were screened 
out as significant factors that impact the NT. 
 
 
PSA method 
 
PSA experiments were applied to approach the optimal regions of 
the significant factors while the non-significant were set at the 
lowest level. PSA started from the center of PBD and moved along 
the path in which the concentration of GLU, PEP, YEP and NaCl 
increased according to their coefficients in the above mentioned 
first-order model. 
 
 
Box-Behnken design  
 
Box-Behnken design was used for further optimization of fermentation 
media. The low (-1), middle (0) and high level (1) of GLU (U1), PEP 
(U2), YEP (U3) and NaCl (U4) in Box-Behnken design were 13.2, 
23.2 and 33.2 g/l ; 12.6, 22.6 and 32.6 g/l; 7.2, 17.2 and 27.2 g/l; 
4.4, 6.4 and 8.4 g/l, respectively.  
 
 
The integration of RSM and ANN for modeling 
 
In RSM modeling, the second-order polynomial coefficients were 
calculated using SAS 8.02 to estimate the responses of the 
dependent variables. Multilayer perceptron (MLP) is a commonly 
used feed-forward ANN model that maps sets of input data onto a 
set of appropriate output data. In this work, the neural network 
architecture had three layers, namely the input, hidden and output 
layer. The concentrations of the significant components in CM 
medium (coded data) were used as the input nodes, and the NTs 
were used as the output nodes.  

The number of hidden nodes greatly affects the capabilities of the 
ANN model. Generally, when the number of hidden nodes incre-
ases, the ANN model fits the training set better. However, too many 
hidden nodes will lead to ANN model over-fitting. In order to avoid 
the over-fitting of ANN model, a criterion named the degree of 
approximation (Da) (Guo et al., 2006) was employed to select the 
suitable number of hidden nodes, as defined in Equation 1  
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Where,  MSEc and MSEt are the mean-square-errors (MSE) of 
calibration set and validation set, respectively;  nc and nv, number of 
calibration set and validation set;  n, sum of the number of calibra-
tion set and validation set; c, a constant number (in the present 
work c was 1000) by which Da was adjusted to get a good chart.  
According to the above equation, it was obvious that the larger Da 
obtained, the more the ANN models approached the experimental 
data. Since Da achieved the maximum value when there were 15 
hidden nodes, the number of hidden nodes was set to 15. 
Training of ANN was minimized by adjusting the network weights 
appropriately using Levenberg-Marquardt algorithm. The ANN model 
was trained with Levenberg-Marquardt algorithm for 1000 interations. 
The MSE function, a commonly employed error function, was used 
in this work and defines as in Equation 2: 
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Where, n referred to the number of patterns used in the training; i 
denotes the index of the input pattern (vector); yACTUi and yBPANNi 

were the desired and predicted outputs of the nth output node, 
respectively.  

In the present work, the ANN model with a fixed topology struc-
ture was developed by neural network fitting tool (nftool) in Matlab 
7.6.0. It was trained thirty times with the initial weight given ran-
domly and the best ANN model were selected according to their Da.  
 
 
Optimization by ANN-GA 
 
After the optimum ANN model was developed, GA was employed to 
search for the optimum solution in the input space of the ANN 
model, which was implemented in Matlab 7.6.0. The values of GA-
specific parameters used in the optimization simulations were: 
Population type as double vector, population size as 20, the initial 
population as given randomly, selection function as stochastic 
uniform, elite count as 2, crossover fraction as 0.8, crossover 
function as scattered, migration fraction as 0.2, penalty factor as 
100 and number of generation over which GA evolved as 100. The 
fitness function was defined as follows: 
 

elANNNT
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Where, NTANN model is the NT calculated by ANN model. 
 
Besides, the GA-based optimization simulations were repeated by 
using each time a different randomly initialized population of the 
candidate solutions. Dissimilar initial populations ensure that each 
time, the GA began its search for the optimal solution from a 
different search sub-space which helped in locating the lowest local 
or the global minimum on the fitness function surface. 
 
 
RESULTS 
 
PBD 
 
Base on the initial medium (CM medium), a PBD experi-
ment was developed. The initial NT was 2568.71 IU/ml 
obtained by the initial medium. The experimental data of 
PBD are presented in Table 1 and a linear model was 
employed to fit these data obtained using SAS 8.02. The 
first-order model is shown in Equation 4 and the statistical 
analysis results are shown in Table 1. The coefficient of 
determination (R2) was 0.9847, indicating that 98.47% of 
the variability in the response could be explained by the 
model. The statistical significance of this model was 
evaluated by the F-test analysis of variance which rev-
eals that this regression was statistically significant (P 
<0.1) at 90% confidence level. The F-test was used for 
identifying the effect of candidate factors on NT. The 
concentrations of GLU (X1), PEP (X2), YEP (X3) and NaCl 
(X5) were selected as significant factors.  
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Table 1. The matrix of the PBD and the experimental results. 
 

Run X1 X2 X3 X4 X5 X6 X7
 X8

 X9 NT (IU/ml) 

1 1 -1 1 -1 -1 -1 1 1 1 1682 
2 1 1 -1 1 -1 -1 -1 1 1 1937 
3 -1 1 1 -1 1 -1 -1 -1 1 2079 

4 1 -1 1 1 -1 1 -1 -1 -1 1937 

5 1 1 -1 1 1 -1 1 -1 -1 2570 
6 1 1 1 -1 1 1 -1 1 -1 2231 
7 -1 1 1 1 -1 1 1 -1 1 1805 

8 -1 -1 1 1 1 -1 1 1 -1 1460 
9 -1 -1 -1 1 1 1 -1 1 1 890 

10 1 -1 -1 -1 1 1 1 -1 1 1682 

11 -1 1 -1 -1 -1 1 1 1 -1 1360 

12 -1 -1 -1 -1 -1 -1 -1 -1 -1 829 

F values 49.303 46.278 13.984 2.043 6.992 1.602 1.618 6.788 0.371 -- 

p values 0.020 0.021 0.065 0.289 0.118 0.333 0.331 0.121 0.605 -- 
 
 
 

Table 2.  Experimental design and results of PSA. 
 

Run GLU (g/l) PEP (g/l) YEP (g/l) NaCl (g/l) Nisin titer (IU/ml) 

1 11.2 11.2 11.2 2.2 3947 
2 13.2 13.1 12.2 2.9 4236 

3 15.2 15.0 13.2 3.6 4546 

4 17.2 16.9 14.2 4.3 6030 
5 19.2 18.8 15.2 5.0 6946 
6 21.2 20.7 16.2 5.7 8000 

7 23.2 22.6 17.2 6.4 9214 

8 25.2 24.5 18.2 7.1 8586 
 
 
 

 

 

Y=1705.636+301.202X1+291.818X2+160.414X3+61.307X4+113.431
+113.431X5-54.296X6+54.572X7-111.764X8-26.118X9         (4) 
 
 
The PSA method 
 
PSA started from the center of PBD and moved along the 
path in which the concentration of GLU, PEP, YEP and 
NaCl increased according to their coefficients. The design 
and results of PSA experiments are shown in Table 2. As 
can be seen, the maximum NT was 9214 IU/ml, when the 
media were GLU 23.2 g/l, PEP 22.6 g/l, YEP 17.2 g/l, and 
NaCl 6.4 g/l, respectively. It was suggested that this point 
is near the region of maximum response. 
 
 
The integration of RSM and ANN for modeling 
 
The Box-Behnken design matrix  and  the  corresponding 

experimental data are shown in Table 3. A multi-quadratic 
model in coded variables and a two-layer feed forward 
ANN were applied to fit the Box-Behnken design 
simultaneously. The multi-quadratic model was as 
follows: 
 

�

Y=9214.551-511.186U1+1806.975U2+1790.820U3-505.839
1235.416U2

2 445.821U2U3-1169.692U2U4-1456.222U3
2

505.839U4-1603.912U1
2+677.520U1U2-1491.210U1U3+418.087U1U4-

2+354.405U3U4-2620.689U4
2�

                                                                                       (5) 
 
The statistical analysis results of RSM model are shown 
in Table 4. According to Table 4, the smaller the magnitude 
of the P-value, the more significant the corresponding co-
efficient. The P-values that were less than 0.05 indicating 
corresponding   model   terms   were   significant. The co- 
efficient estimates and the corres-ponding P-values 
suggested that among the test factors, U2 (PEP), U3 
(YEP), U1U3  (interaction effect between  GLU  and  YEP), 
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Table 3. The matrix of Box-Behnken design and experimental results. 
 
Run U1 U2 U3 U4 Experimental NT (IU/ml) NTRSM model

1 (IU/ml) NTANN model
  (IU/ml) 

1 -1 -1 0 0 6946 5757 6937 
2 -1 1 0 0 8000 8016 8747 

3 1 -1 0 0 4236 3380 4252 

4 1 1 0 0 8000 8349 7983 

5 0 0 -1 -1 4878 4207 4868 

6 0 0 -1 1 2407 2487 2419 

7 0 0 1 -1 8000 7080 8013 

8 0 0 1 1 6946 6777 6564 

9 -1 0 0 -1 5619 6425 5621 

10 -1 0 0 1 4878 4577 4890 

11 1 0 0 -1 3947 4567 3937 

12 1 0 0 1 4878 4391 4884 
13 0 -1 -1 0 1947 2479 1064 
14 0 -1 1 0 5619 6953 5632 

15 0 1 -1 0 8000 6985 7933 

16 0 1 1 0 9889 9675 9898 

17 -1 0 -1 0 2772 3384 2783 

18 -1 0 1 0 9889 9948 9886 

19 1 0 -1 0 4878 5344 3263 
20 1 0 1 0 6030 5943 6038 
21 0 -1 0 -1 2975 2888 3676 
22 0 -1 0 1 3947 4215 4201 
23 0 1 0 -1 8586 8841 8643 
24 0 1 0 1 4878 5490 5831 
25 0 0 0 0 9216 9215 9193 
26 0 0 0 0 9214 9215 9193 
27 0 0 0 0 9212 9215 9193 

 

NTRSM model
1, Nisin titer predicted by RSM model. 

 
 
 
U2U4 (interaction effect between PEP and NaCl) and all of 
the quadratic terms were significant in the RSM model. 

The twenty-seven Box-Behnken design experimental 
data were randomly divided into three sets: nineteen of 
them as calibration set, four as prediction set, and the last 
four as test set. The ANN model was trained with 
Levenberg-Marquardt algorithm for 1000 interations. Since 
Da achieved the maximum value when there were 15 
hidden nodes, the number of hidden nodes was set to 15. 

The R2 of the RSM and ANN models were 0.9394 and 
0.9829, respectively, the MSE of them were 342222.1 
and 206225.7 indicating that the fits of the RSM model 
and ANN model were satisfied. 
 
 
The optimized fermentation medium by RSM and 
ANN-GA 
 
The optimum concentrations  of  four  components  in  the  

fermentation medium obtained by RSM model using 
partial differentiation method were (g/l): GLU 19.3, PEP 
28.6, YEP 24.1 and NaCl 5.9. The best solution was 
expected to result in NT of 10531 IU/ml. The verified 
experiments were implemented with this fermentation 
medium in triplicate, and the average NT was 10070 
IU/ml. The relative error between the expected value and 
the verified was 4.3%.  

The three best solutions obtained by GA after conduc-
ting numerous (~50) generations were: GLU 16.81, 16.91 
and 16.01 g/l; PEP 28.59, 28.82 and 28.32 g/l; YEP 
27.20, 27.20 and 27.20 g-/l; NaCl 5.25, 5.23 and 5.22 g/l. 
It was also observed that despite beginning the search in 
a different search space, the GA converged to similar 
optimal solution corresponding to the lowest local or 
global minimum on the fitness function surface. The 
expected NTs with the GA-optimized solutions were: 
13209, 13206 and 13216 IU/ml. The best set of fermen-
tation medium  was  expected  to  result  in  NT  of  13216  
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Table 4. The statistical results of multi-quadratic regression analysis of the Box-Behnken design. 
 

Source DF SS MS F p(Pr > F) 
U1 1 3135738 3135738 4.0811 0.0663 
U2 1 39181924 39181924 50.9941 0.0001 
U3 1 38484447 38484447 50.0863 0.0001 
U4 1 3070479 3070479 3.9961 0.0688 
U1U1 1 13720188 13720188 17.8564 0.0012 
U1U2 1 1836134 1836134 2.3897 0.1481 
U1U3 1 8894825 8894825 11.5763 0.0052 
U1U4 1 699186.1 699186.1 0.9100 0.3589 
U2U2 1 8140014 8140014 10.5940 0.0069 
U2U3 1 795025 795025 1.0347 0.3291 
U2U4 1 5472713 5472713 7.1226 0.0205 
U3U3 1 11309770 11309770 14.7193 0.0024 
U3U4 1 502410.7 502410.7 0.6539 0.4345 
U4U4 1 36629387 36629387 47.6720 0.0001 
Model 14 1.4299E8 10213769 13.2929 0.0001 
Linear 4 83872587 20968147 27.2894 0.0001 
Quadratic 4 40919888 10229972 13.3140 0.0002 
Cross Product 6 18200294 3033382 3.9479 0.0206 
Error 12 9220348 768362.3   
Lack of fit 10 9220348 922034.8 5.849E12 0.0001 
Pure Error 2 2 3.153E-7   
Total 26 1.5221E8    

 
 
 
IU/ml. The verified experiments of each GA-optimized 
solution were implemented in triplicate and the average 
NTs were: 13536, 13428 and 13529 IU/ml. The relative 
error between the expected values and experiments was 
lower than 0.25%, which was also lower than that obtai-
ned by the RSM model. The maximum NT obtained by 
ANN-GA increased 34.0% from that obtained by the RSM 
model. 
 
 
The further Box-Behnken design experiments and 
ANN-GA optimization results 
 
The optimized concentration of YEP obtained by ANN-GA 
was 27.20 g/l which is the same as the highest level in 
the test region. It indicated the possibility that the opti-
mum solution was beyond the test regions. Therefore, a 
further Box-Behnken design was developed based on the 
statistical results of RSM model. According to the 
statistical results, the effect of NaCl on NT was non-
significant and its optimized concentration was located at 
the center of the test regions. The concentration of NaCl 
was set at 5.25 g/l, which was obtained by the first ANN-
GA model in the second Box-Behnken design. As the 
linear statistical results of RSM model indicated, the 
effect of GLU on NT was negative, while the effects of 
PEP and YEP were positive. Therefore, the optimized 
concentration of GLU from the first ANN model was set at 

the highest level and the optimized concentration of PEP 
and YEP was set at the lowest levels. The step changes 
of real values of the variables were set based on the 
coefficients of the linear terms in the RSM model. The low 
(-1), middle (0) and high level (1) of the GLU (Z1), PEP 
(Z2) and YEP (Z3) for further Box-Behnken design were 
11.17, 13.99 and 16.81 g/l; 18.59, 28.59 and 38.59 g/l; 
27.20, 37.11 and 47.02 g/l, respectively, and the results 
are shown in Table 5. The ANN was applied to model the 
correlation of the test factor and NT. The process of 
establishing and optimizing ANN model is similar to that 
of the first ANN model. The fourteen sets of Box-Behnken 
design experimental data were randomly divided into 
three categories: Ten of them as calibration set; two as 
prediction set and two as test set. The ANN model was 
trained with Levenberg-Marquardt algorithm and the 
number of interations was 1000. The most suitable 
number of hidden nodes selected by Da was 12. GA was 
employed to search for the optimum solutions in the new 
tested regions. The parameters of GA were the same as 
those used in the first ANN model. 

The optimum solution obtained by ANN-GA was: GLU 
15.920, PEP 30.572, and YEP 39.074 g/l. The optimum 
solution was expected to result in NT of 22216 IU/ml. 
Three validation experiments with the optimum solution 
were carried out and the average NT was 21423 IU/ml. 
The relative error between experimental and expected 
value was 3.6%.  
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Table 5. The further Box-Behnken design matrix and experimental results. 
 

Run Z1 Z2 Z3 Experimental NT (IU/ml) NTANN model (IU/ml) 
1 -1 -1 0 15280 14672 
2 -1 1 0 12361 12355 
3 1 -1 0 14238 14241 
4 1 1 0 20270 18654 
5 0 -1 -1 5295 5746 
6 0 -1 1 16398 16396 
7 0 1 -1 18887 17325 
8 0 1 1 18887 18879 
9 -1 0 -1 4934 4938 
10 1 0 -1 15280 15278 
11 -1 0 1 10733 10732 
12 1 0 1 15280 15292 
13 0 0 0 16398 15837 
14 0 0 0 15280 15837 

 
 
 
DISCUSSION 
 
L. lactis subsp. lactis is a well-known nutritionally fastidious 
microorganism requiring an abundance of nutrients for 
cell growth and metabolism (Kim et al., 1997). The results 
of the PBD data shows that the effect of GLU, PEP and 
YEP was significant (namely, the carbon sour-ces and the 
nitrogen sources in the fermentation medium are the key 
components). The effect of carbon sources and nitrogen 
sources is positive, indicating that the initial concen-
trations were too low. Appropriately increasing the con-
centrations of carbon and nitrogen sources will elevate 
the biomass and enhance nisin production. It was 
reported that the abundant amino acids such as serine, 
threonine and cysteine in PEP and YEP highly stimulated 
nisin production (De Vuyst, 1995), which explains why 
nisin production can be elevated by increasing the 
concentrations of PEP and YEP. PSA was employed to 
search appropriate concentrations of the significant 
components.  

The R2 of the RSM model and ANN model were 0.9394 
and 0.9829 respectively, indicating that the fits of the 
RSM model and ANN model were satisfied. The fit of 
ANN model were much better than those of the RSM 
model. The relative error between the expected value 
obtained by RSM model and the verified was 4.3%. The 
relative error between the expected value obtained by 
ANN-GA and the verified was 0.25%. These results 
demonstrated that the predictive capability of ANN model 
was much better than that of the RSM model. These 
results agreed with the conclusion of several literatures 
(Desai et al., 2008; Kasiri et al., 2008; Pal and Vaidya, 
2009). The maximum NT obtained by ANN-GA increased  
by 34.0% from that obtained by RSM model. These 
results demonstrated that the true optimum fermentation 
medium would not be obtained without ANN-GA. The 
response surface and contours of RSM  model  and  ANN  

model, respectively, are shown in Figure 1. As can be 
seen, the response surface obtained by RSM model was 
convex and their contours were regular. However, the 
response surface and contours obtained by ANN model 
seem to be much more nonlinear and complex. The shapes 
of contours indicated the mutual interaction effects 
between the test factors. If the shape of the contour is 
elliptical, the mutual interaction between the two factors is 
significant; otherwise, if it is circular, the mutual interac-
tion effect is non-significant. From the elliptical contour in 
Figure 1a, the mutual interaction effect between GLU and 
YEP was significant. It can also be concluded that the 
effect of the YEP with low GLU was much more signifi-
cant than that with high GLU (namely, GLU inhibit YEP 
for stimulating nisin product). This phenomenon may be 
caused by the concentration of GLU being excessive 
than that needed for cell growth which could lead to the 
accumulation of the excessive acid metabolites such as 
lactate which inhibit nisin production (Wardani, et al., 
2006). As Figure 1b shows, the optimum regions in the 
response surface and contours of the ANN model were 
located at the verge of the test regions. It is possible that 
the optimum fermentation medium for nisin production 
was beyond the test regions. A further Box-Behnken design 
experiments were implemented based on the statistical 
results of RSM and ANN-GA model, and then a new ANN 
model was developed. GA was employed to search for 
the optimum solution. The obtained optimum solution 
was:   GLU 15.92,   PEP 30.57,   YEP 39.07,   NaCl 5.25, 
K2HPO4 10, and MgSO4·7H2O 0.2 g/l with predicted NT of 
22216 IU/ml. When compared to the optimum fermen-
tation medium obtained by the first ANN model, the 
concentrations of PEP and YEP in this fermentation 
medium increased to 7.95 and 43.62%, respectively. The 
predicted NT increased to 823%. These results indicated 
that PEP and YEP can highly stimulate nisin production 
and dramatically enhance the yield of nisin when the GLU 
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Figure 1. Response surface and contours of the GLU and YEP obtained by RSM model and ANN model (a: 
RSM model; b: ANN model). 

 
 
 
was appropriate. The validation experiments with the 
optimum solution were implemented in triplicate and the 
average NT was 21423 IU/ml, which was 8.34 times 
higher than that without optimization. The relative error 
between the experimental and expected value was 3.6%, 
which indicated that the proposed method is feasible. 
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RSM, Response surface methodology; ANN, artificial 
neural network; GA, genetic algorithm; PBD, Plackett-
Burman design; PSA, path of steepest ascent method; 
NT, nisin titer; GLU, glucose; PEP, peptone; YEP, yeast 
extraction powder; EDTA, ethylenediaminetetraacetic 
acid; DES, diethyl sulfate; MLP, multilayer perceptron. 
 
 
REFERENCES 
 
Cheigh CI, Pyun YR (2005). Nisin biosynthesis and its properties. 

Biotechnol. Lett. 27: 1641-1648. 
Chen LZ, Nguang SK, Chen XD, Li XM (2004). Modeling and 

optimization of fed-batch fermentation processes using dynamic 
neural networks and genetic algorithm. Biochem. Eng. J. 22: 51-61. 

Choudhari S, Singhal R (2008). Media optimization for production of �-
carotene by Blakeslea trispora: A statistical approach. Bioresour. 
Technol. 99: 722-730. 

Delves-Broughton J, Blackburn RJ, Hugenholtz J (1996). Applications of 
the bacteriocin, nisin, Anton. Leeuw. Int. J. G. 69: 193-202. 

Desai KM, Akolkar SK, Badhe YP, Tambe SS, Lele SS (2006). 
Optimization of fermentation media for exopolysaccharide production 
from Lactobacillus plantarum using artificial intelligence-based 
techniques. Proc. Biochem. 41: 1842-1848. 

Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008). 
Comparison of artificial neural network (ANN) and response surface 
methodology (RSM) in fermentation media optimization: Case study 
of fermentative production of scleroglucan. Biochem. Eng. J. 41: 266-
273. 

De Vuyst L (1995). Nutritional factors affecting nisin production by 
Lactococcus lactis subsp. Lactis NIZO 22186 in a  synthetic  medium.  
J. Appl. Bacteriol. 78: 28-33 

De Vuyst L, Vandamme EJ (1993). Influence of the phosphorus and 
nitrogen source on nisin production in Lactococcus lactis subsp. 
Lactis batch fermentations using a complex medium. Appl. Microbiol. 
Biot. 40: 17-22.  

Economou T, Pournis N, Ntzimani A, Savvaidis IN (2009). Nisin-EDTA 
treatments and modified atmosphere packaging to increase fresh 
chicken meat shelf-life. Food Chem. 25: 1407-1476.  

Ghosalkar A, Sahai V, Srivastava A (2008). Optimization of chemically 
defined medium for recombinant Pichia pastoris for biomass 
production. Bioresour. Technol. 99: 7906-7910. 

Guo WL, Meng QF, Lu JH, Jiang CJ, Liang YC, Teng LR (2006). Rapid 
determination of compound rifampicin tablets using near infrared 
spectroscopy with artificial neural network. ICCSA, LNCS, 3980: 938-
945. 

Kasiri MB, Aleboyeh H, Aleboyeh A (2008). Modeling and optimization of 
heterogeneous photo-fenton process with response surface 
methodology and artificial neural networks. Environ. Sci. Technol. 42: 
7970-7975. 

Kim WS, Hall RJ, Dunn NW (1997). The effect of nisin concentration 
and nutrient depletion on nisin production of Lactococcus lactis. Appl. 
Microbiol. Biotechnol. 48: 449-453.  

Liu CB, Liu Y, Chen SL (2005). Effects of nutrient supplements on 
simultaneous fermentation of Nisin and lactic acid from cull potatoes. 
Appl. Biochem. Biotechnol. 99(16): 457-484.  

Lv WH, Cong W, Cai ZL (2004). Nisin production by Lactococcus lactis 
subsp. Lactis under nutritional limitation in fed-batch culture. 
Biotechnol. Lett. 26: 235-238. 

Lv WH, Zhang XY, Cong W (2005). Modeling the production of nisin by 
Lactococcus lactis in fed-batch culture. Appl. Microbiol. Biot. 68: 322-
326. 

Mannan S, Fakhrul-Razi A, Alam MZ (2007). Optimization of process 
parameters for the bioconversion of activated sludge by Penicillium 
corylophilum using response methodology. J. Environ. Sci. Health. A, 
19: 23-28. 

Mirdamadi S, Tafresh i SH, Norouzian D, Khatami S, Sardari S, 
Ghazvini SA (2008). Optimization of fermentation parameters affect 
on nisin production. J. Biotechnol. 1365: 5290-5344. 

Moreira GA, Micheloud GA, Beccaria AJ, Goicoechea HC (2007). 
Optimization of the Bacillus thuringiensis var. kurstaki HD-1�-
endotoxins production by using experimental mixture design and 
artifical neural networks. Biochem. Eng. J. 35: 45-55. 



6272         Afr. J. Biotechnol. 
 
 
 
Nagy ZK (2007). Model based control of a yeast fermentation bioreactor  

using optimally designed artificial neural networks. Chem. Eng. J. 
127: 95-109. 

Pal MP, Vaidya BK (2009). Media optimization for biosurfactant 
production by Rhodococcus erythropolis MTCC 2794: artificial 
intelligence versus a statistical approach. J. Ind. Microbiol. 
Biotechnol. 36: 747-756. 

Penna TCV, Moraes DA (2002). Optimization of nisin production by 
Lactococcus lactis. Appl. Biochem. Biotechnol. 98: 775-790. 

Singh A, Majumder A, Goyal A (2008). Artificial intelligence based 
optimization of exocellular glucansucrase production from 
leuconostoc dextranicum NRRL B-1146. Bioresour. Technol. 99: 
8201-8206. 

Soriano A, Ulmer HM, Scannell AGM,. Ross RP, Hill C, Garcia-Ruiz A, 
Arendt EK (2004). Control of food spoiling bacteria in cooked meat 
products with nisin lacticin 3147, and a lacticin 3147-producing starter 
culture. Eur. Food Res. Technol. 219: 6-13. 

Tramer J, Fowler GG (1964). Estimation of nisin in foods. J. Sci. Food 
Agric. 15: 522-528. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Vazquez JA, Murado MA (2008) Mathematical tools for objective 

comparison of microbial cultures application to evaluation of 15 
peptones for lactic acid bacteria productions. Biochem. Eng. J. 39: 
276-287. 

Wang ZW, Liu XL (2008). Medium optimization for antifungal active 
substances production from a newly isolated Paenibacillus sp. using 
response surface methodology. Bioresour. Technol. 99: 8245-8251. 

Wardani AK, Egawa S, Nagahisa K, Shimizu H, Shioya S (2006). 
Computational prediction of impact of rerouting the carbon flux in 
metabolic pathway on cell growth and nisin production by lactococcus 
lactis. Biochem. Eng. J. 28: 220-230. 

Wu QL, Chen T, Gan Y, Chen X, Zhao XM (2007). Optimization of 
riboflavin production by recombinant Bacillus subtilis RH44 using 
statistical designs. Appl. Microbiol. Biot. 76: 783-794. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  


