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The cultivation of genetically modified crops is becoming increasingly important; more traits are 
emerging and more acres than ever before are being planted with GM varieties. The release of GM crops 
and products in the markets worldwide has increased the regulatory need to monitor and verify the 
presence and the amount of GM varieties in crops and products.  Labeling legislation and trade 
requirements differ from one country to another, leading to the necessity for the development of reliable 
and sensitive analytical methods for detection, identification and quantification of GM varieties in crops 
and their products. GM crops and their products can be identified by detecting either the inserted 
genetic material at DNA level, the resulting protein or phenotype. Several analytical methods such as 
methods based on the polymerase chain reaction (PCR) for detecting the inserted DNA, immunological 
assays for detecting the resulting protein, or using bioassays to detect the resultant phenotype have 
been developed. So far only PCR has found broad application in GMO detection as a generally accepted 
method for regulatory purposes. Presently, real-time PCR can be considered as the most powerful tool 
for the detection and quantification of GM crops and products. 
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INTRODUCTION 
 
A genetically modified (GM) crop is a plant into which one 
or more genes have been artificially inserted instead of 
the plant acquiring them under natural conditions of 
cross-breeding or natural recombination. The inserted 
gene sequence, known as the transgene, may be from 
same species, a different species with in the same 
kingdom or even from a different kingdom (e.g. 
genetically modified Bt corn, which produces the natural 
insecticide, contains a gene from a bacterium). The world 
of biotechnology is moving very fast, more traits are 
emerging and more acres than ever before are being 
planted with genetically modified varieties of an ever-
expanding number of crops. The biotechnology sector is 
investing billions of dollars in consolidations to ensure 
access to these rapidly growing markets, while investing 
billions more in research and development. The public 
debate about the future of agricultural biotechnology is 
more mature as the public becomes better informed and 
sees more clearly the benefits associated with 
biotechnology.  

The regulatory need to monitor and verify the presence 
and the amount of GM varieties in crops and products 
has increased with the expansion of the cultivation of the 

GM crops. Labeling legislation and trade requirements 
differ from one country to another, leading to the 
necessity for the development of reliable and sensitive 
methods for detection of GM varieties. However, GM 
samples vary from raw commodities to highly processed 
foods and testing requirements extend from a general 
GM screen to a method capable of identifying and 
quantifying a specific GM crop. This review summarizes 
the technologies for production of GM crops, their global 
status, potential benefits; and description of technologies 
capable of detecting, identifying and quantifying either the 
DNA introduced or the protein(s) expressed in GM crops 
and products.  
 
 
GENETIC TRANSFORMATION FOR PRODUCTION OF 
GM CROPS 
 
Genetic transformation has become an important tool for 
crop improvement. The successful genetic transformation 
in plants requires the production of normal, fertile plants 
expressing the newly inserted gene(s). The process of 
genetic transformation involves several distinct steps, 
namely identification of  useful  gene,  the  cloning  of  the  
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gene into a suitable plasmid vector, delivery of the vector 
into plant cell (insertion and integration) followed by 
expression and inheritance of the foreign DNA encoding 
a polypeptide. A gene construct consists typically of three 
elements: 1) The promoter functions as an on/off switch 
for when and where the inserted/modified gene is active 
in the recipient plant; 2) The transgene encodes a 
specifically selected trait, 3) The terminator functions as a 
stop signal for transcribing the inserted/altered gene. In 
addition marker genes for distinguishing GM from non-
GM varieties during crop development may be present. 

Methods of gene insertion in plants can be achieved 
by direct gene transfer like microprojectile bombardment 
or through biological vectors like a disarmed Ti (tumour 
inducing)-plasmid of A. tumefaciens.  
 
 
Direct gene transfer to plant cells 
 
Methods of direct gene transfer are used especially for 
the transformation of plant species, which are recalcitrant 
and not susceptible to agroinfection. The methods of 
DNA delivery into plant cells are fundamentally different 
from agroinfection since the foreign DNA is introduced 
through physical means and no biological carriers are 
involved. Therefore, these techniques are not limited to 
the constraints characteristic of Agrobacterium-mediated 
transformation. The direct gene transfer methods include 
microprojectile bombardment, liposome fusion, microin-
jection, PEG-mediated DNA uptake and electroporation. 
Microprojectile bombardment is a process by which 
transforming DNA is coated onto metal microcarriers of 
tungsten or gold that is accelerated to high velocity either 
by a gunpowder device or through compressed gases. 
DNA carried on the microprojectiles remains biologically 
active inside the cell and can be expressed transiently or 
by integration into the chromosomal DNA of the host 
resulting in stable transformation. 

Microprojectile bombardment has become one of the 
major techniques for the transformation of plant cells 
where the cell wall need not be considered as an 
obstacle (Hamilton et al., 1992). It has become the most 
convenient means of introducing DNA for stable 
transformation in number of agricultural and horticultural 
crop plants including rice, wheat, soybean, maize, 
papaya, banana and sugarcane (Becker et al., 2000; 
Bower and Birch, 1992; Christou et al., 1989; Fitch et al., 
1990; Gordon-Kamm et al., 1990; Vasil et al., 1992; 
Wang et al., 1988). This method is not limited by the 
species or the type of tissues bombarded and frequently 
used for transformation of monocotyledonous species.  
 
 
Agrobacterium-mediated transformation 
 
Plant transformation mediated by the soil plant pathogen 
Agrobacterium   tumefaciens   has   become    the    most  
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commonly used method for plant transformation. A. 
tumefaciens, a gram-negative phytopathogen, naturally 
infects the wounded sites in dicotyledonous plant causing 
the formation of the crown gall tumours. 

The basis of the crown gall formation is a transfer of a 
segment of bacterial tumour inducing plasmid (Ti) DNA, 
the T-DNA, into the nuclear genome of the infected plant 
cells. The T-DNA contains two types of genes: the 
oncogenic genes, encoding for enzymes involved in the 
synthesis of auxins and cytokinins and responsible for 
tumour formation; and the genes encoding for the 
synthesis of opines. Outside the T-DNA are located the 
genes for the opine catabolism, the genes involved in the 
process of T-DNA transfer from the bacterium to the plant 
cell and for the bacterium-bacterium plasmid conjugative 
transfer genes (Hooykaas and Shilperoort, 1992; Zupan 
and Zambryski, 1995). The T-DNA fragment is flanked by 
25-bp direct repeats, which act as cis element signals for 
the T-DNA transfer.  A. tumefaciens infects only 
wounded, actively dividing plant cells, which excrete 
phenolic compounds, such as acetosyringone and 
hydroxy-acetosyringone. These phenolics act both as 
chemo-attractants for Agrobacterium and inducers of the 
virulence genes (Stachel et al., 1985). 

For the development of plant transformation systems 
using A. tumefaciens, T-DNA genes can be replaced by 
other defined gene(s) of interest, which can be 
transferred to the plant genome. As a consequence of the 
removal of the plant hormone biosynthetic T-DNA genes, 
the transformed plant cells do not proliferate into 
tumorous tissues, but can regenerate into normal plants.  

Protocols have been developed for efficient 
Agrobacterium-mediated transformation in both 
dicotyledonous and monocotyledonous plants, including 
a large number of crop species. Compared to direct gene 
transfer methodologies, Agrobacterium-mediated trans-
formation offers several advantages such as the 
possibility to transfer only one or few copies of DNA 
fragments carrying the genes of interest at higher 
efficiencies with lower cost and the transfer of very large 
DNA fragments with minimal rearrangement (Gheysen et 
al., 1998; Shibata and Liu, 2000). The most important 
advantage however is the possibility of producing GM 
plants, which is free of marker genes (Mathews et al., 
2001). This will continue to have enormous implications 
with regards to approval by regulatory agencies, public 
acceptance and market availability of GM crops. 
 
 
GLOBAL STATUS OF GENETICALLY MODIFIED 
PLANTS 
 
The global area of GM crops increased 47 fold, from 1.7 
million hectares in 1996 to 81 million hectares in 2004, 
with an increasing proportion grown by developing 
countries (James, 2004). Almost one-third (30%) of the 
global  transgenic  crop  area,  was  grown  in  developing  
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countries where growth continued to be strong. The main 
GM crops which are being commercialized include 
soybean (60%), corn (23%), cotton (12%), canola (5%) 
and potato (~1%). The traits for which GM varieties have 
been produced are herbicide tolerance (71%), insect 
resistance (28%) and quality traits (1%). However, 
research efforts are being made to genetically modify 
most plants with a high economic value such as cereals, 
fruits, vegetables, floriculture and horticulture species. 
Recently, it has been reported that there are fourteen 
countries growing about 50,000 hectares or more of GM 
crops (James, 2004). These includes 9 developing 
countries and 5 developed countries; they are, in order of 
hectarage, USA, Argentina, Canada, Brazil, China, 
Paraguay, India, South Africa, Uruguay, Australia, 
Romania, Mexico, Spain and the Philippines. Thus, 
despite the continuing controversy about GM crops, the 
hectarage and number of farmers growing GM crops 
have continued to grow at a double digit rate or more, 
every year since their introduction in 1996. More than 8 
million farmers are benefiting from this technology 
(James, 2004). About 90% of the beneficiary farmers are 
resource-poor farmers from developing countries, whose 
increased incomes from biotech crops contributed to the 
alleviation of poverty. 
 
 
THE POTENTIAL CONTRIBUTION OF GM CROPS 
 
World population is growing very fast. Estimates of 
population growth suggest that food requirements are 
likely to rise substantially in the next 20 years. More than 
800 million people in developing countries, including one 
third of the population of sub-Saharan Africa, are 
undernourished. More than 90 percent of these are 
suffering long-term malnourishment and micronutrient 
deficiency. More than one billion people in the world live 
on less than one dollar a day. Genetic engineering has 
tremendous potential to solve these problems. 
Researchers from the Swiss Federal Institute of 
Technology’s Institute for Plant Sciences inserted genes 
from a daffodil and a bacterium into rice plants to produce 
“golden rice,” which has sufficient beta-carotene to meet 
total vitamin A requirements in developing countries with 
rice-based diets. Vitamin A deficiency leads to blindness 
in millions of children every year in the developing 
countries. This crop has potential to significantly improve 
vitamin uptake in poverty-stricken areas where vitamin 
supplements are costly and difficult to distribute. The GM 
crops can offer a range of benefits by contributing to: 
1. Increasing crop productivity by production of GM crop  

resistant to biotic (disease and pest) and abiotic (like  
drought, frost, acid or salty soil) stresses, and thus  
contribute to global food security. 

2. Conserving biodiversity, as a land-saving technology  
    for higher productivity. 
3. Improving the nutritional quality of foods through GM  
     crop varieties containing  additional  nutrients  that   

     
 
 
 
are lacking from the diets of many people in develop 
developing countries, thus contributing to human  
health. 
4. More sustainable agriculture and environment,  
    reduction in use of pesticides and other chemicals; and 
5. Improvement of economy and poverty alleviation in  

developing countries through increasing income of  
farmers. 

 
 
DETECTION OF GM CROPS AND PRODUCTS 
 
GM crops and their products can be identified by 
detecting either the inserted genetic material at DNA 
level, the mRNA transcribed from the newly introduced 
gene, the resulting protein, metabolite or phenotype. The 
analytical tests are generally carried out with the 
polymerase chain reaction (PCR method) detecting the 
inserted DNA, immunological assays detecting the 
resulting protein, or using bioassays to detect the 
resultant phenotype. Although much progress has been 
achieved in the development of genetic analysis 
methods, such as those based on the use of PCR, 
several other analytical technologies that can provide 
solutions to current technical issues in GM sample 
analysis are emerging. These methods include mass 
spectrometry, chromatography, near infrared 
spectroscopy, micro fabricated devices and, in particular, 
DNA chip technology (microarrays). So far only PCR has 
found broad application in GMO detection as a generally 
accepted method for regulatory purposes.  
In general the procedure consists of three distinct steps:  
  
1) Detection: The objective is to determine whether a 
product is GM or not. For this purpose, a general 
screening method can be used. The result is a 
positive/negative statement. The screening methods are 
usually based on the PCR, immunoassays or bioassays. 
Analytical methods for detection must be sensitive and 
reliable enough to obtain accurate and precise results. 
 
2) Identification: The purpose of identification is to find 
out which GM crop or product are present and whether 
they are authorized or not in the country.  
 
3) Quantification: If a crop or its product has been shown 
to contain GM varieties, then it become necessary to 
assess compliance with the threshold regulation by the 
determination of the amount of each of the GM variety 
present. Normally, quantification is performed using Real-
time PCR. 
 
 
METHODS FOR DETECTING GM CROPS AND 
PRODUCTS 
 
The analytical methods differ in many levels. The 
methods are DNA-based, protein-based or trait-based. 
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Figure 1. Primer selection for detection of GM crop by PCR analysis: A. primer selection for general 
screening purposes; B. primer selection for identification of GM crop, 1-event specific, 2-construct specific; 
and C. primer selection for detecting a specific transformation event. 

 
 
 
DNA-based methods 
 
DNA based methods are based on detection of the 
specific genes, or DNA genetically engineered into the 
crop. Although, there are several DNA based 
methodologies, the most commercial testing is conducted 
using PCR technology. The PCR technique is based on 
multiplying a specific target DNA allowing the million or 
billion fold amplification by two synthetic oligonucleotide 
primers. In PCR, the first step in a cycle involves 
separation of the two strands of the original DNA 
molecule.  The second step involves binding of the two 
primers to their oligonucleotide primers.  The third step 
involves making two perfect copies of the original double 
stranded DNA molecule by adding the right nucleotides to 
the end of each primer, using the strands as templates.  
Once the cycle is completed, it can be repeated, and for 
each cycle the number of copies is doubled, resulting in 
an exponential amplification.  The amplified fragment can 
be detected by gel electrophoresis or hybridization 
techniques. 

The process consists of extraction and purification of 
DNA, amplification of the inserted DNA by PCR and 
confirmation of the amplified PCR product. In principle, 
PCR can detect a single target molecule in a complex 
DNA mixture.  

I. Qualitative PCR analysis 
 
The most critical parameter for successful PCR is the 
design of primers. A poorly designed primer can result in 
little or no product due to non-specific amplification 
and/or primer-dimer formation, which can become 
competitive enough to suppress product formation. It is 
essential that care should be taken in the design of 
primers for PCR. Several parameters including the length 
of the primer, %GC content and the 3' sequence need to 
be optimized for successful PCR. Certain of these 
parameters can be manually optimized while others are 
best done with computer programs. The selection of 
primers is the most important component for detection of 
GM crop by PCR and it depends upon the choice of 
target gene. The strategies for choosing an appropriate 
target are as follows:  

The detection of GM crops: For general screening 
purposes the focus should be on target sequences that 
are characteristic for the group to be screened (Figure 
1A). Genetic control elements such as the cauliflower 
mosaic virus 35S promoter (P-35S) and the 
Agrobacterium tumefaciens nos terminator (nos3’) are 
present in many GM crops currently on the market.   The  
general screening  PCR  detects  the  presence  of  
GMO, which then need to be identified.  
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The identification of GM crop: Primer selection has to 
be based on target sequences that are characteristic for 
the individual GM variety. The junction sequences 
between two adjoining DNA segments can be the target 
for a specific detection of the genetic construct like the 
cross-border regions between integration site and 
transformed genetic element of a specific GM variety, or 
specific sequence alterations (Figure 1B). Only a 
continuous survey of all data available on GM crops - 
especially the introduced genetic elements and their 
integration sites, can be a guaranteed comprehensive 
detection of GM crops. 

To detect a particular event: The junction sequences in 
the integration site (plant-construct junction fragment) can 
be used to detect a specific transformation event (Figure 
1C). When the GM crop is the result of a non-
homologous recombination, the integration site is unique. 
When the same gene construct is used to produce 
different GM crops, this will be the only strategy to 
distinguish between GM crops containing the same gene 
construct.  

The sequential test scheme for GM crop detection is to 
initially screen samples for species-specific DNA, known 
as housekeeping genes as e.g. lectin gene (soybean 
samples) or invertase gene (maize samples) to determine 
whether DNA from that species can be detected. If DNA 
is detectable, samples are then screened using the 
general genetic elements for the detection of GM 
varieties. Positive results from this initial screening are 
further confirmed using tests, which screen for the 
specific genes or constructs used in the most common 
GM crops. Then identification tests used depends on the 
DNA sample (e.g. Cry genes, EPSPS gene, Pat gene), 
or, more ideally, for the plant-construct junction 
fragments. 
 
 
II. Multiplex PCR-based detection methods  
 
With multiplex PCR-based methods, several target DNA 
sequences can be screened and detected in a single 
reaction. The advantage of multiplex methods is evidently 
that fewer reactions are needed to test a sample for 
potential presence of GMO-derived DNA. Development of 
multiplex assays requires careful testing and validation. 
After the PCR the resulting pool of amplified fragments 
needs to be further analysed to distinguish between the 
various amplicons. Several research groups are currently 
developing a number of multiplex assays, but only one 
paper has been published presenting a multiplex assay 
for detection of five GM-maize (Bt11, Bt176, Mon810, 
T25 and GA21; Matsuoka et al., 2001).  
 
 
III. Quantitative PCR 
 
In principle, PCR based quantitation can be performed 
either after completion of the PCR (end-point analysis), or 
during the PCR (real-time analysis). 

 
 
 
 

Quantification using conventional PCR: Conventional 
PCR measures the products of the PCR reaction at the 
end point in the reaction profile. End-point analyses are 
based on comparison of the final amount of amplified 
DNA of two DNA targets, the one to be quantified and a 
competitor (an artificially constructed DNA that is added 
in a small and known quantity prior to the PCR 
amplification and that is co-amplified with the target, 
which is to be quantified).  The competitor has the same 
binding sites for the same primer pair but is different in 
size. This is called competitive quantitative PCR, and the 
two DNA targets are amplified with equal efficiency. A 
dilution series of the DNA to be analysed is prepared, 
and a constant amount of the competitor is added.  After 
completion of the PCR the resulting amplification 
products are visualized through gel electrophoresis and 
when both DNA targets yield the same amount of product 
it is assumed that the starting amount was also the 
same.  By setting up two competitive PCRs, one for the 
GM crop (e.g. Bt Corn) and one for the species of interest 
(e.g. maize), and including competitors in both, the 
quantity of GM crop relative to the species can be 
estimated by extrapolation from the degree of dilution and 
concentration of the competitors.  The competitive PCR 
methods are semi-quantitative. 

Quantification using Real-time PCR: Real-time PCR is 
a system based on the continuous monitoring of PCR 
products. This is done via fluorometric measurement of 
an internal probe during the reaction. In real-time 
analyses the amount of product synthesized during PCR 
is estimated directly by measurement of fluorescence in 
the PCR reaction.  Several types of hybridisation probes 
are available that will emit fluorescent light corresponding 
to the amount of synthesized DNA.  However, the amount 
of synthesised product can also be estimated with 
fluorescent dyes, e.g. SYBR Green I that intercalates 
double-stranded DNA. With the latter, it is not possible to 
distinguish between the specific product and non-specific 
products, and consequently the use of specific 
hybridisation probes is normally preferred. The 
quantitative estimate is based on extrapolation by 
comparison of the GM crop sequence relative to the 
reference of interest (e.g. gene sequence from Roundup 
Ready soybean and lectin gene from soybean).  The idea 
is that with the use of fluorescence it becomes possible to 
measure exactly the number of cycles that are needed to 
produce a certain amount of PCR product. This amount 
corresponds to the amount producing a fluorescence 
signal clearly distinguishable from the background signal 
and measured well before the plateau effect becomes a 
problem.  The number is called the Ct-value. Then by 
comparison of Ct-values for the GM crop target 
sequence, e.g. Roundup Ready soybean 3' integration 
junction, and the reference gene, e.g. soybean lectin, it 
becomes possible to estimate the ratio of the GM target 
sequence to the reference sequence in terms of 
difference in  number  of  cycles  needed  to  produce  the  



 
 
 
 
same quantity of product. Since one cycle corresponds to 
a doubling of the amount of product, a simple formula can 
be presented to estimate the ratio in percent.  While real-
time PCR requires more sophisticated and expensive 
equipment than competitive PCR, it is faster, automated 
and more specific.  Presently, real-time PCR can be  
considered as the most powerful tool for the detection 
and quantification of GM crops and products. 
 
 
Protein based methods 
 
Immunoassay is the current method for detection and 
quantification of new (foreign) proteins introduced 
through genetic transformation of plants. Immunoassay is 
based on the specific binding between an antigen and an 
antibody. Thus, the availability of antibodies with the 
desired affinity and specificity is the most important factor 
for setting up immunoassay systems. Immunoassays can 
be highly specific and samples often need only a simple 
preparation before being analysed. Moreover, immunoas-
says can be used qualitatively or quantitatively over a 
wide range of concentrations. Western blot, ELISA 
(Enzyme-Linked Immunosorbent Assay) and lateral flow 
sticks are typical protein-based test methods. 

The antibodies can be polyclonal, raised in animals, or 
monoclonal, produced by cell cultures. Commercially 
available polyclonal antiserum is often produced in 
rabbits, goats or sheep. Monoclonal antibodies offer 
some advantages over polyclonal antibodies because 
they express uniform affinity and specificity against a 
single epitope or antigenic determinant and can be 
produced in vast quantities. Both polyclonal and 
monoclonal antibodies may require further purification 
steps to enhance the sensitivity and reduce backgrounds 
in assays. The specificity of the antibodies must be 
checked carefully to elucidate any cross-reactivity with 
similar substances, which might cause false positive 
results. 
 
 
I. ELISA (Enzyme Linked Immunosorbent Assay) 
 
In ELISA the antigen-antibody reaction takes place on a 
solid phase (microtiter plates). Antigen and antibody react 
and produce a stable complex, which can be visualised 
by addition of a second antibody linked to an enzyme. 
Addition of a substrate for that enzyme results in a colour 
formation, which can be measured photometrically or 
recognised by naked eye. 

ELISA test kits provide the quantitative results in hours 
with detection limits less than 0.1%. However, some 
companies operate with slightly higher quantification 
levels as e.g. 0.3%. ELISAs have been designed to 
detect a novel GM protein or trait. There are the reports 
that some ELISA detected the novel protein  such  as  the  
CP4 EPSPS protein  from  A.  tumefaciens  expressed  in 
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CP4 EPSPS protein from A. tumefaciens expressed in 
Roundup Ready Soybeans. 
 
 

II. Lateral flow sticks 
 

The lateral flow test (dipstick format) uses a membrane-
based detection system. The membrane contains two 
capture zones, one captures the bound GM protein, the 
other captures color reagent. Paper strips or plastic 
paddles are used as support for the capture antibody that 
is immobilized onto a test strip in specific zone. Most 
tests are provided usually in kit form. The lateral flow test 
strip is dipped into the prepared sample in extraction 
solution and the sample migrates up the strip by capillary 
action. 

As the sample flows through the detection antibody 
strip and the capture antibody strip, the protein of interest 
will accumulate and thus give a high intensity band, but 
the volume is not as well controlled. These tests 
generally provide qualitative or semi-quantitative results 
using antibodies and color reagents incorporated into a 
lateral flow strip. 

Lateral flow techniques are qualitative or semi-
quantitative. By following appropriate sampling proce-
dures, it is possible to obtain a 99% confidence level of 
less than 0.15% GMO for a given lot. 
 
 
Phenotypic characterisation (herbicide bioassays) 
 

Phenotypic characterisation allows detection of the 
presence or absence of a specific trait. So far only tests 
for traits as herbicides tolerance are available. Such 
methods can be used to test for presence or absence of 
herbicide resistant GM varieties and is termed herbicide 
bioassays. They consist of conducting germination tests 
on solid germination media in the presence of a specific 
herbicide, where non-GM and GM seeds show distinct 
characteristics. The detection level is dependent on 
germination of the seed and the germination methods 
should ensure that all viable seeds of the tested sample 
germinate. Seeds tested positive should be exposed to 
subsequent tests for confirmation. 

The herbicide bioassay tests are claimed to be 
accurate, inexpensive, and useful as a preventative test 
primarily for seed companies. Companies are using the 
herbicide bioassays to check individual shipments as a 
quality assurance program. Negative trait and positive 
trait seeds should be included as controls with every 
sample testing. At the moment herbicide bioassays are 
available for Roundup Ready soybean, maize, cotton and 
oilseed rape, and Liberty Link maize. In the future 
bioassays for insect-resistant or other GM varieties may 
be developed. 
 
 

Comparison of the different methods 
 

 The comparison of various detection methods is 
summarized  in  Table 1. At  present,  only  PCR  offers a  
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         Table 1. Comparison of the different methods. 
 

Methods Suitability Duration Advantage Disadvantage 
PCR Detection, identification, 

quantification 
5-7 days Very sensitive and most 

precise in terms of 
detection limits, 
qualitative and 

quantitative 
measurement of levels 

of target DNA sequence 

Expensive and require 
specialized equipment 
and trained personnel 

 

ELISA 
 

Trait identification 2-4 days Faster, less expensive, 
quantitative 

measurement of protein 
levels 

Cannot detect 
denatured protein, 

require some 
specialized equipment 
and trained personnel, 
cannot identify a GM 

sample where several 
varieties may have the 
same trait incorporated 

 
Lateral flow stick Trait identification 10-20 min Quick, Qualitative 

measurement of 
presence or absence of 

target protein 
 

No quantification of 
protein, cannot identify 

a GM sample where 
several varieties may 
have the same trait 

incorporated 
Herbicide bioassays Trait identification 7-10 days Inexpensive, very 

accurate, identifying GM 
crops with the particular 
trait in samples of viable 

seed/grain 

Only viable seeds can 
be tested, no processed 
products can be tested, 

bioassays require 
separate tests for each 
trait in question and at 
present the tests will 
detect only herbicide 

tolerance traits 
 
 
 
way for performing a general screening for GM varieties 
and detection of particular "events". Phenotypic 
characterisation and immunoassays detect particular 
traits that may be present in several GM crops (e.g. the  
Cry1a protein and genes, conferring insecticide 
resistance, are present in a range of different GM Maize: 
MON80100, MON801, MON802, MON809, 176, BT11).  

One of the major considerations in analytical testing of 
almost any GM crop or its product is the sampling 
procedure. The sample analysed must be representative 
of the material from which it is taken otherwise the testing 
regime is flawed. Sample preparation for both DNA-
based and protein-based methods is critical for detection 
and/or quantification. It is important to know the 
limitations of each procedure as well as the purpose of 
detection. Both the sample size and sampling procedures 
dramatically impact the conclusions that may be drawn 
from any of these testing methods. 
 
 

CONCLUSIONS 
 
The release of GM crop and products in environment and 
markets worldwide has resulted in public debate in many 

part of the world. Despite the continuing controversy 
about GM crops, the hectarage and number of farmers 
growing GM crops have continued to grow at a double 
digit rate or more, every year. Currently, there are 
fourteen countries, 9 developing countries and 5 
developed countries, growing GM crops.  The need for 
identification and detection of GM crops and products has 
increased with the rapid expansion in the cultivation of 
GM crops.  Labeling and traceability of GM material is 
way forward to address the concerns of consumers and 
regulators. The establishment of relevant, reliable and 
economical methodology for detection, identification and 
quantification of GM crops continues to be a challenge at 
international level. A great number of different strategies 
and methods are available for testing of GM material and 
the quality of these results depends not only on the 
methodology and the equipment but also the sampling, 
the theoretical expertise and the practical skills of the 
regulatory officers handling the testing of the sample. 
Therefore, it is important to understand the methods and 
their applications for detection of GM crops and their 
products. This paper describes the technologies capable 
of detecting,  identifying and  quantifying  either  the  DNA  



 
 
 
 
introduced or the protein(s) expressed in GM crops and 
products. Currently, available methods for detecting GM 
crops and products are almost exclusively based on 
PCR, because of their high sensitivity, specificity and 
need for only a small amount of DNA. Especially, real-
time PCR has been regarded as the most powerful tool 
for the detection and quantification of GMO despite its 
high expense.  
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