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Abstract 

Purpose: To design and screen for potential anti-malaria agents based on a series of 4-aminoquinolinyl 
analogues. 
Methods: Molecular fingerprint analysis was used for molecular partitioning of training and test sets. 
Acquired training sets were used for CoMFA and CoMSIA model construction after good alignment was 
achieved. Partial least squares analysis combined with external validation were used for model 
evaluation. Deep analysis of acquired contour maps was performed to summarize the substituent 
property requirements for further rational molecular design. Using the chosen models, activity prediction 
and subsequent ADMET investigation were performed to discover novel designed compounds with the 
desired properties. 
Results: Three different set partitions for model establishment were obtained using fingerprint-based 
selection. Partition 02 offered an optimal CoMFA model (r2 = 0.964, q2 = 0.605 and r2pred = 0.6362) and 
the best CoMSIA model (r2 = 0.955, q2 = 0.585 and r2

pred = 0.6403). Based on contour map analysis, a 
series of compounds were designed for activity prediction. Two of the compounds (wmx09, wmx25) 
were chosen for their ideal predicted biological activities. Subsequent ADMET investigation indicated 
that these compoundss have acceptable drug-like characteristics.  
Conclusion: The screening reveals that compounds wmx09 and wmx25 have strong potential as anti-
malaria agents. 
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INTRODUCTION 
 
Malaria is widely distributed from latitude 60 
degrees north to 30 degrees south. It is generally 

recognized as a fatal parasitic disease threat. 
Three billion two hundred million people in more 
than 90 countries of Africa, Southeast Asia, 
South Asia, Arabian peninsula, Central and 
South America. Malaria kills approximately 
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400,000 people each year and children under the 
age of 5 years are a significant proportion of 
these deaths [1]. Plasmodium falciparum and 
Plasmodium vivax are associated with most 
malaria epidemics worldwide. However, most 
infections are caused by Plasmodium falciparum, 
which is responsible for more than 95 % of 
reported malaria-related cases [2]. 
 
Due to fact that progress on malaria vaccine 
development has been insufficient, 
chemotherapy is the only option for malaria 
treatment [3]. Due to its efficacy, safety and drug-
accessibility, chloroquine has been the most 
widely used malaria therapy since its firstly 
clinical application in 1944 [4]. However, the 
increasingly serious problem of chloroquine 
resistance has gradually become a primary 
reason for failures of malaria prevention and 
control. Hence, studies of structural modifications 
based on chloroquine analogs have found these 
anti-malarial candidates to have considerable 
scientific value, and they have received 
significant research attention in recent years. 
[5,6]. 
 
Chemoinformatics-based computational 
approaches (e.g., molecular docking, dynamics, 
and quantitative structure-activity relationships 
[QSARs]) have resulted in numerous successful 
examples of novel candidate drug discovery 
[7,8]. Using appropriate statistical methods, 
quantitative structure–activity relationship 
analysis has been found to be an effective 
approach to generate physicochemical, 
structural, steric and electrostatic information for 
rational molecular design based on a series of 
analogs. Widely used during the last two 
decades, three-dimensional QSAR study 
analyzes relationship between structural features 
of compounds and their target properties in 
three-dimensional coordinates, Using this 
approach, researchers obtain visual interaction 
contour images and predict outcomes [9,10].  
 
In the present study, we performed a carefully 
designed QSAR study based on a series of 4-
aminoquinolinyl analogs. We aimed to discover 
potential anti-Plasmodium falciparum agents and 
new candidates for further molecular design for 
malaria therapy based on chloroquine 
substructure. 
 
EXPERIMENTAL 
 
Datasets 
 
A totally of 48 different 4-aminoquinolinyl analogs 
were derived during previous studies performed 

by the Prem M. S. Chauhan research team [11-
13]. To simplify the data format, all reported 
biological activity (IC50 values) were translated to 
a negative logarithmic format (pIC50 = - lgIC50) 
and added into an attribute spreadsheet (Table 1 
– Table 4). 
 
Molecule preparation  
 
All molecules were carefully sketched using 
software of ChemDraw Professional 15.0 
(CambridgeSoft Corporation, USA; 
www.cambridgesoft.com). Each molecule was 
recorded as isolated model definition language 
(MDL) Molfile files. Discovery Studio 4.5 software 
(Biovea Inc, USA: www.biovea.com.) was used 
to generate molecular three-dimensional 
structures. The “Minimize ligands” protocol in 
Discovery Studio 4.5 was used for molecule 
minimization. The “Smart Minimizer” calculation 
algorithm was used to perform 1,000 steps of 
steepest descent with a root mean square (RMS) 
gradient tolerance of 3, followed by conjugate 
gradient minimization [14]. The “Max steps” was 
set at 2,000, the “RMS Gradient” was set at 
0.001 kcal/mol Å and Merck Molecular Force 
Field was selected as input forcefield. All 
acquired molecular conformations were saved as 
Sybyl MOL2 files for further study. 
 
Clustering analysis 
 
To develop more robust QSAR models, a cluster 
analysis based on molecular fingerprint was 
performed [15]. Fingerprint of “MDL public keys” 
was used as the calculation precept to divide all 
48 molecules into seven clusters [16]. One 
molecule was selected from each cluster for the 
test sets (i.e., seven molecules, or 15% of the 
total molecules). After a selection from each 
cluster based on a principle of sufficient 
structural diversity and gradient biological 
activity, three different test sets were built. 
 
QSAR studies 
 
Molecule alignment  
 
All minimized molecular conformations were 
delivered to software of Sybyl X-2.1 (Tripos Inc. 
USA) for CoMFA and CoMSIA QSAR studies. 
Following the cluster analysis results, three 
training-test molecule divisions were manually 
performed and saved as Sybyl databases. Due 
to its best reported biological activity, molecule 
35 was selected as reference for molecular 
alignment. Each set was aligned using Sybyl 
“Align Database” function following maximum 
common substructure method [17]. 
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Table 1: 4-Aminoquinolinyl analogs with reported activities (Comp01 – Comp13) 
 

 
 

Comp. R IC50 (nM) pIC50 

01 

 
 

38.77 7.412 

02 

 

23.13 7.636 

03 
 

 

18.53 7.732 

04 
 

38.34 7.416 

05 
 

37.07 7.431 

06 

 

40.88 7.388 

07 N
H

N
O

O  
 

19.69 7.706 

08 
 

 
291.06 6.536 

09 
 

 

43.94 7.357 

10 
 

20.78 7.682 

11 
 

 

25.38 7.596 

12 
 

 

91.75 7.037 

13 

 

47.74 7.321 
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Table 2: 4-aminoquinolinyl analogs with reported activities (Comp14 – Comp27) 
 

Comp. R IC50 (nM) pIC50 

14 
 

 

33.65 7.473 

15 N
H

N

S
O

O  
43.81 7.358 

16 
 

152.35 6.817 

17 
 

 
81.47 7.089 

18 

 

41.5 7.382 

19 

 

19.03 7.721 

20 

 

31.52 7.501 

21 

 

26.05 7.584 

22 
 

 

27.78 7.556 

23 
 

 

29.65 7.528 

24 

 

37.63 7.424 

25 

 
 

12.44 7.905 

26 
 

 

44.49 7.352 

27 

 

82.85 7.082 
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Table 3: 4-aminoquinolinyl analogs with reported activities (Comp28 – Comp38) 
 

Comp. R IC50 (nM) pIC50 

28 

      
 

63.5 7.197 

29 

 

11.88 7.925 

30 
 

 

6.41 8.193 

31 

 

16.13 7.792 

32 

 

19.49 7.710 

33 
 

 

16.74 7.776 

34 

 
 

4.21 8.376 

35 

 

3.6 8.444 

36 
 

 

50.79 7.294 

37 

 
 

13.62 7.866 

38 

 

7.06 8.151 
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Table 4: 4-aminoquinolinyl analogs with reported activities (Comp39 – Comp48) 
 

Comp. R IC50 (nM) pIC50 

39 

 

4.87 8.312 

40 

 

6.22 8.206 

41 

 

21.86 7.660 

42 

 

35.19 7.454 

43 

 

28.52 7.545 

44 

 

23.63 7.627 

45 

 

48.64 7.313 

46 

 

20.67 7.685 

47 

 

74.34 7.129 

48 

 

32.66 7.486 

 
CoMFA and CoMSIA field calculation 
 
Sybyl was used to calculate CoMFA and 
CoMSIA fields for each aligned training set: An 
sp3 carbon atom with charge of + 1 was 
launched to probe steric and electrostatic fields 

data, 4 Å beyond every direction for each 
molecule was calculated and then a region file 
was created. When performing CoMSIA 
calculations, an accessional hydrophobicity 
property of + 1 and a hydrogen bond property of 
+ 1 were added to the probe atom to calculate 
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the hydrophobic, hydrogen bond acceptor and 
hydrogen bond donor fields energies. We used 
30.0 kcal/mol as the steric and electrostatic 
cutoffs for the CoMFA field calculations and 0.3 
as the attenuation factor for the CoMSIA field 
calculations [18]. The biological activity values 
were merged into the spreadsheets after they 
were recorded into a text document file. 
 
Partial least squares analysis 
 
Partial least squares regression analysis was 
performed to calculate correlation between 
molecular activities and created CoMFA and 
CoMSIA fields. The statistical analysis was 
performed according to a classical two-stage 
scheme. The first stage was a leave-one-out 
cross-validation analysis, which used the 
remaining model to predict one separated 
molecule. Based on the results of the leave-one-
out analysis, a squared cross-validation 
coefficient (q2) value and an optimum number of 
components (N) were acquired. Using the 
optimum number of components value, the 
second stage of no validation analysis was 
performed. No validation analysis assisted us to 
acquire regression values for r squared (r2), the 
standard error of estimate (SEE) and the F 
values, which are important indicators for model 
evaluation. Based on the results for different 
training sets, every possible CoMFA and 
CoMSIA model was built and evaluated [19,20]. 
 
External validation analysis 
 
As prediction ability contributes majority of a 
QSAR model’s validity, external validation must 
be performed [21]. Calculation of predictive r2 
(r2

pred) values was used as an indicator for model 
external validation:  
 
r2

pred = (SD-PRESS)/SD 
 
Where SD was the sum of the squared 
deviations between the mean activities of the 
training set compounds and the reported 
activities of the test set compounds, and PRESS 
is the sum of squared deviations between 
reported and predicted activities of the test set 
compounds [22]. Test set molecules were 
delivered for external validation after alignment 
with molecule 35. 
 
Molecule design, applicability domain 
analysis, and activity prediction 
 
Molecule design 
 
Contour maps are visual three-dimensional 
images created using QSAR models that display 

the interactions and correlations between 
molecular structural features with a certain field. 
Based on acquired contour maps, we performed 
a deep analysis to summarize the structural 
requirements for molecule design and acquire an 
in-house library consisting of a series of rationally 
designed compounds. 
 
Applicability domain analysis 
 
As the inherent “closed system” characteristic of 
every QSAR model limits its applicability, the 
applicability domains for created models should 
be calculated [23].  We performed optimum 
prediction space analysis to define the 
applicability domains for the models. We used 
the “optimum prediction space” function in the 
Discovery Studio software to automatically 
discriminate whether the designed molecules 
were located inside the applicability domains, 
based on Mahalanobis distance. 
 
Activity prediction 
 
Each designed molecule was optimized 
according to the method mentioned in Molecule 
Preparation section. Before prediction, each 
molecule was equally aligned using molecule 35 
as the template. Molecules with better predicted 
biological activities were used for further study. 
 
ADMET prediction 
 
ADMET prediction studies were performed for 
screened molecules using “ADMET Descriptors” 
and “Toxicity Prediction” functions in Discovery 
Studio software. Comprehensive consideration of 
all these data was used to select more precise 
potential compounds [24,25].   
 
RESULTS 
 
Clustering analysis 
 
The results for the cluster partition outcomes are 
presented in Table 5. We abided by the principle 
of sufficient structural diversity and gradient 
biological activity to carefully pick molecules for 
three different test sets. 
 
QSAR 
 
Statistical data  
 
All molecules from the datasets were well-
aligned when molecule 35 was used as a 
reference (Figure 1). Three overlapping training 
databases were then sent for statistical analysis. 
The evaluation criteria for the indicators were: 1. 
high values of r2, q2, r2

pred and F; 2. low value for 
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SEE; and 3. an optimum number of components 
staying within reasonable limits. 
 
Table 5: Serial numbers for compounds from each 
cluster using model definition language public keys as 
analysis precepts 
 
Cluster 
number Serial number of molecules 

1 04③,05①,06,07②,15 
2 02,33②,36①,39,40,43,44,47③,48 
3 14,18,19,22,23③,24,28①,29,30② 
4 03③,20①,26② 
5 01,21,25,27,31,32,34③,35,37,38,

41①,42,45②,46 
6 12②,13①③ 
7 08,09①,10,11③,16,17② ① molecules for test set 01; ② molecules for test set 02; ③ molecules for test set 03 
 
For the CoMFA model selection, among the 
three candidates model 02 had most optimum 
outcomes (r2 = 0.964, q2 = 0.605, F = 153.831 
and SEE = 0.078), which indicated the 
robustness of the chosen model. External 
validation results also reinforced the selection of 
model 02: Model 02 was calculated to possess 
the best prediction ability in terms of the highest 
r2

pred = 0.6362. The optimum number of six 
components also met the “within reasonable 
limits” requirement. For CoMSIA model selection, 
model 02 was also the relative best statistical 
model.  
 
Amongst all generated CoMSIA models, model 
CoMSIA_EHA was selected not only for its best 
internal validation values (r2 = 0.955, q2 = 0.585, 
F = 184.54 and SEE = 0.091), but also for its 

acceptable external validation value of r2
pred = 

0.6403 and a reasonable optimum number of 
eight components (Table 6). Because model 
CoMSIA_EHA consisted of the three 
electrostatic, hydrophobic, and hydrogen bond 
acceptor descriptor fields, it may also provide 
more information for further study. All molecules 
were aligned and predicted by both selected 
models. As presented in Table 7, Table 8, and 
Figure 2, the close proximities of predicted and 
reported activities proved the quality of selected 
models. Consequently, CoMFA and 
CoMSIA_EHA models generated using dataset 
02 were chosen for further study.  
 

 
 
Figure 1: Molecular alignment based on the common 
substructure using molecule 35 as a reference 

 
Table 6: Statistical values for evaluation of the quality of created CoMFA and CoMSIA models 
 

Model name 
Statistical parameter 

n q2 r2 SEE F r2
pred 

Training set 01       
CoMFA 4 0.461 0.840 0.135 87.599 0.4821 
CoMSIA_SHA 6 0.338 0.784 0.154 67.126 0.3241 
CoMSIA_SEA 6 0.422 0.821 0.217 92.221 0.4195 
CoMSIA_SEHDA 4 0.382 0.790 0.281 52.198 0.3356 
Training set 02       
CoMFA 6 0.605 0.964 0.078 153.831 0.6362 
CoMSIA_EHA 8 0.585 0.955 0.091 184.54 0.6403 
CoMSIA_SHA 6 0.542 0.926 0.103 132.528 0.5185 
CoMSIA_SEHA 8 0.522 0.912 0.155 143.851 0.5853 
Training set 03       
CoMFA 6 0.558 0.924 0.101 133.423 0.5779 
CoMSIA_SA 4 0.509 0.826 0.150 85.675 0.5102 
CoMSIA_EH 9 0.533 0.901 0.089 112.980 0.5412 
CoMSIA_EHA 4 0.467 0.881 0.115 109.645 0.4732 
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Table 7: Comparison of reported and predicted activities based on selected CoMFA and CoMSIA models 
(Comp01 – Comp24) 
 

Compound Reported pIC50 CoMFA 
Predicted pIC50 Residual CoMSIA 

Predicted pIC50 Residual 

01 7.412 7.429 0.017 7.423 0.011 
02 7.636 7.705 0.069 7.644 0.008 
03 7.732 7.653 -0.079 7.626 -0.106 
04 7.416 7.426 0.010 7.429 0.013 
05 7.431 7.465 0.034 7.445 0.014 
06 7.388 7.407 0.019 7.460 0.072 
07 7.706 7.480 -0.226 7.553 -0.153 
08 6.536 6.520 -0.016 6.563 0.027 
09 7.357 7.335 -0.022 7.339 -0.018 
10 7.682 7.627 -0.055 7.597 -0.085 
11 7.596 7.580 -0.016 7.576 -0.020 
12 7.037 7.383 0.346 7.386 0.349 
13 7.321 7.344 0.023 7.336 0.015 
14 7.473 7.466 -0.007 7.403 -0.070 
15 7.358 7.385 0.027 7.402 0.044 
16 6.817 6.788 -0.029 6.773 -0.044 
17 7.089 6.766 -0.323 6.674 -0.115 
18 7.382 7.582 0.200 7.645 0.263 
19 7.721 7.586 -0.135 7.652 -0.069 
20 7.501 7.526 0.025 7.668 0.167 
21 7.584 7.611 0.027 7.580 -0.004 
22 7.556 7.524 -0.032 7.435 -0.121 
23 7.528 7.509 -0.019 7.457 -0.071 
24 7.424 7.504 0.080 7.506 0.082 
 
Table 8: Comparison of reported and predicted activities based on selected CoMFA and CoMSIA models 
(Comp25 – Comp48). 
 

Comp. Reported pIC50 CoMFA 
Predicted pIC50 Residual CoMSIA 

Predicted pIC50 Residual 

25 7.905 7.868 -0.037 7.857 -0.048 
26 7.352 7.648 0.296 7.766 0.314 
27 7.082 7.057 -0.025 6.970 -0.112 
28 7.197 7.294 0.097 7.333 0.136 
29 7.925 7.703 -0.222 7.783 -0.142 
30 8.193 8.076 -0.117 7.826 -0.267 
31 7.792 7.808 0.016 7.840 0.048 
32 7.710 7.822 0.112 7.797 0.087 
33 7.776 7.709 -0.067 7.608 -0.168 
34 8.376 8.424 0.048 8.391 0.015 
35 8.444 8.379 -0.065 8.371 -0.073 
36 7.294 7.291 -0.003 7.293 -0.001 
37 7.866 7.818 -0.048 7.867 0.001 
38 8.151 8.121 -0.030 8.064 -0.087 
39 8.312 8.343 0.031 8.358 0.046 
40 8.206 8.201 -0.005 8.185 -0.021 
41 7.660 7.512 -0.148 7.580 -0.080 
42 7.454 7.502 0.048 7.569 0.115 
43 7.545 7.496 -0.049 7.566 0.021 
44 7.627 7.640 0.013 7.621 -0.006 
45 7.313 7.435 0.122 7.699 0.186 
46 7.685 7.765 0.080 7.664 -0.021 
47 7.129 7.139 0.010 7.116 -0.013 
48 7.486 7.530 0.044 7.516 0.030 
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Figure 2: Scatter plots of reported activities versus 
predicted activities for all molecules based on created 
CoMFA and CoMSIA models. 
 
Contour map analysis 
 
To implement rational molecular designs, we 
performed a deep analysis focusing on the 
acquired contour maps. Overlap of molecule 35 
with each contour map using three-dimensional 
coordinate to display the relationships between 
the most active compound and each target 
property. Figure 3 A presents the overlap figure 
for electrostatic contour map: Blue regions 
(positive electrostatic favored), located around 
nitrogen atom on arylamine group, indicated 
nitrogen atom is required at this position. Several 
red modules (negative electrostatic favored) 
associated with substituent groups at position 
two and position three on the aromatic ring. If 
electron-withdrawing groups are placed at these 
positions, this change may enhance the 
molecular activity. The terminal of aliphatic chain 
of the 4 - ethylpiperazine group was also 
associated with red modules. This result 
suggested that electron-withdrawing groups are 
required at these positions.  
 
The overlapping figure for the steric contour map 
is presented in Figure 3B. Position two on the 
aromatic ring of the anilino group is sieged by 
yellow regions (negative steric favored) while 
green (positive steric favored) modules were 
located near position three. This result suggested 
that any substitutions with bulky properties 
should occur at position three. The piperazine 
group was conglutinated with green regions, 
which indicated that placement of a hexatomic 
ring at this site is a rational decision.  
 
Figure 3C depicts the results for hydrophobic 
contour map: Hydrophilic favored regions (white 
regions) covered the arylamine group. This result 
indicated that increasing the hydrophilic 
properties of substituent groups is beneficial at 
this location. Figure 3D presents the results for 
hydrogen bond acceptor contour map: It 
suggests that groups with hydrogen bonding 
ability can be added to the piperazine ring 
because a large purple module (hydrogen bond 
acceptor favored) was located nearby. The 

aliphatic chain terminal also possesses the ability 
to form hydrogen bonds. 
 

 
 
Figure 3: Contour maps overlapped with molecule 35: 
A. Electrostatic contour map for selected CoMFA 
model; B. Steric contour map for selected CoMFA 
model; C. Hydrophobic contour map for model 
CoMSIA_EHA; D. Hydrogen bond acceptor contour 
map for model CoMSIA_EHA 
 
Molecule design, applicability domain 
analysis, and activity prediction 
     
Based on the findings from QSAR studies, We 
successfully acquired robust and highly 
predictive models and summarized the overall 
requirements of substituent properties for rational 
molecular design: 1. arylamine group on triazines 
should be reserved and any substitution on 
aromatic ring should be executed on position 
three or position four; 2. It is beneficial to keep 
the piperazine group, or potential benefits may 
be realized if piperazine is replaced with any 
bulky ring group with hydrogen bond forming 
characteristics; 3. The aliphatic chain portion on 
the piperazine should be reserved and addition 
of a negative electrostatic favored chain terminal 
with hydrogen bond forming ability may achieve 
drug development objectives.  
 
Development of the models and molecular 
design requirements were followed by 
examination of 89 molecules to discover potential 
anti-malaria agents. Each designed molecule 
was processed using the same structural 
optimization approach used for the dataset 
compounds. Optimum prediction space analysis 
(Discovery Studio software) was performed to 
build the applicability domain for the created 
models. Thirty-seven of all the designed 
compounds were evaluated as being unreliable 
for use in the created models. The remaining 
molecules were aligned with the molecule 35 
reference for activity prediction, and compounds 
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wmx09 and wmx25 were predicted to have better 
activity than molecule 35 (Table 9). We then 
examined these two compounds. A 
superimposed mapping analysis was performed 
to reveal the correlations for the contour maps 
and the designed molecules and then certify if 
the two compounds were rationally predicted. As 
presented in Figure 4A and Figure 4B, the 
modified cyano group of compound wmx09 
orients to the green and red mixed region. Its 
bulky and electron-withdrawing properties met 
the requirements. The results presented in 
Figure 4E and Figure 4F indicate that substituent 

group of the amide on phenylamino of compound 
wmx25 was assigned to an interlaced region with 
red and green modules. Electron-withdrawing 
oxygen atoms directly orients to a negative 
electrostatic favored region, indicating that a 
rational placement for the amide group was 
position four on the aromatic ring. Modification of 
the amide group at the aliphatic chain terminal 
satisfactorily met the negative electrostatic 
favored and hydrogen bond forming 
requirements (red and purple modules) (Figure 4 
B, D, F and H).  
 

 
Table 9: Molecular structures and predicted activities of the screened compounds of wmx09 and wmx25 
 

Comp. Molecular structure Predicted activity 

wmx09 

 

8.504 

wmx25 
NCl

HN

H
N

N N

N

N

N

NH2

O

H
N

O

NH2

 

8.501 

 

 
Figure 4: A – D. Contour maps overlapped with compound wmx09: A. Electrostatic contour map of selected 
CoMFA model; B. Steric contour map of selected CoMFA model; C. Hydrophobic contour map of model 
CoMSIA_EHA; D. Hydrogen bond acceptor contour map of model CoMSIA_EHA; E – F. Contour maps 
overlapped with compound wmx25: A. Electrostatic contour map of selected CoMFA model; B. Steric contour 
map of selected CoMFA model; C. Hydrophobic contour map of model CoMSIA_EHA; D. Hydrogen bond 
acceptor contour map of model CoMSIA_EHA 
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Table 10: ADMET prediction outcomes for both designed compounds 
 

Comp. 
ADMET descriptor 

Intestinal 
absorption level 

Aqueous solubility 
level 

BBB penetration 
level 

CYP2D6 
binding Hepatotoxicity 

wmx09 2 2 3 True True 
wmx25 1 2 3 False True 
 
ADMET prediction 
 
ADMET investigation was performed for further 
molecular verification using “ADMET Descriptors” 
in the Discovery Studio software. The prediction 
outcomes for compound wmx09 and wmx25 are 
presented in Table 10. Both compounds were 
predicted to have acceptable solubility at level of 
2 (-6.0 < log(Sw) < -4.1) and weak blood-brain 
barrier penetration abilities. Compound wmx25 
was predicted to have relatively better outcomes 
of CYP2D6 inhibition and intestinal absorption. 
However, both compounds were evaluated to 
have potential hepatotoxicity, so additional 
changes should be made to reduce this toxicity. 
The “toxicity prediction” function in the Discovery 
Studio software was used for the molecular 
toxicity investigation. The results indicated that 
both compounds had acceptable toxicity 
characteristics. Compound wmx09 was predicted 
to have female rodent carcinogenicity based on 
National Toxicology Program criteria. Compound 
wmx25 was predicted to have skin sensitization 
characteristics. In general, acceptable ADMET 
investigation results were acquired for both 
designed compounds. However, more work is 
necessary to improve their drug-like 
characteristics before they can qualify as lead 
compounds for further study. 
 
DISCUSSION 
 
The present study was designed and performed 
to screen for potential anti-malaria agents based 
on 4-anilinoquinoline analogs. After a systematic 
model selection approach, CoMFA and 
CoMSIA_EHA QSAR models built using 
molecular partition approach 02 were chosen 
depending on their relatively optimal statistical 
values. Carefully analysis of created contour 
maps provided informative clues leading to 
overall requirements for a molecular design. 
Subsequent activity prediction based on the 
chosen models assisted us to discover two 
potential compounds (i.e., wmx09 and wmx25). 
The results of the superimposed mapping 
analysis reinforced the prediction outcomes by 
displaying several favorable interactions between 
the designed compounds and different contour 
regions. The evaluation using the AMDET 
approach also found that compound wmx09 and 
wmx25 with acceptable results. 

 
CONCLUSION 
 
Based on a series of 4-aminoquinolinyl analogs, 
we built robust QSAR predictive models. The 
results of subsequent molecular screening 
studies indicated that compounds wmx09 and 
wmx25 have high potential as anti-malaria 
agents. Further research on these two 
compounds would have considerable scientific 
value. 
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