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Abstract 

Although clinical trials have not been completed, it has already been confirmed that mebendazole, a 
well-known anti-parasitic drug widely used in the tropical areas, inhibits cancer cell growth. Preclinical 
studies show that mebendazole notably impedes the growth of malignant and metastatic tumors such 
as osteosarcoma and soft tissue sarcoma, melanoma, carcinoma (lung, colorectal, breast, ovarian, 
hepatocellular and adrenocortical), acute myeloid leukaemia, glioblastoma multiforme and 
meduloblastoma. Mebendazole can induce the depolymerization of microtubules in neoplasms and 
newly formed vasculature, stopping tumor growth and neoangiogenesis, along with other proposed 
mechanisms of action. 
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INTRODUCTION 
 
Numerous early-stage laboratory experiments, 
clinical studies and epidemiological research 
have documented promising anticancer 
properties of many existing medications that 
millions of people take safely every day for other 
indications [1-3]. The Repurposing Drugs in 
Oncology (ReDO) Project [4], coordinated by the 
Anticancer Fund, has identified 70 agents for 
which there is evidence of anticancer properties. 
These include the de-worming drug 
mebendazole [5], the common analgesic aspirin 
[6], the diabetes drug metformin [7-9], 
cholesterol-lowering statins [10], the common 
antibiotic doxycycline [11], the antacid cimetidine 
[12], the anti-fungal itraconazole [13], the ACE 
inhibitor perindopril [14,15], the vasodilatator 

nitroglycerin [16] and the immunotherapeutic 
agent levamisole [17,18]. These medications 
need to be tested and applied in oncology. 
Clinical trials are essential for determining 
whether repurposed drugs are applicable and 
better than the regular care, and for which patient 
groups. The goal is to find the best, safest and 
most reasonably priced forms of anticancer 
treatment [1-4]. 
 
Mebendazole is a benzimidazole anthelmintic 
with the chemical formula C16H13N3O3, molecular 
mass 295.293 g/mol and systematic (IUPAC) 
name methyl (5-benzoyl-1H-benzimidazol-2-yl) 
carbamate. It was introduced in the 1970s as an 
equivalent of formerly registered thiabendazole, 
but with the advantage of meaningfully abridged 
toxicity. The WHO listed mebendazole, 
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administered orally as an essential drug against 
roundworms, hookworms, pinworms, tapeworms 
and whipworms. Mebendazole paralyzes 
parasites in the alimentary canal. Mebendazole's 
low toxicity is ascribed to the small amount of the 
drug absorbed (5 - 10 % in all species, 17 - 22 % 
in humans) [19].  
 
Fatty food improves the absorption of 
mebendazole [19]. The first-pass metabolism of 
almost all absorbed mebendazole occurs in the 
bowels and liver [19]. It is eliminated via urine 
and bile, mostly as metabolites. A large amount 
of it is eliminated unchanged via the feces, 
without absorption. In human circulation, 
mebendazole is 95 % protein bound [19]. Due to 
lipofility, mebendazole passes the blood-brain 
barrier [19]. The safety of mebendazole is not 
fully investigated in pregnancy (C category) and 
breastfeeding. Gastrointestinal pain, diarrhea 
and higher levels of liver enzymes are common 
side effects of mebendazole therapy. In rare 
cases, leukopenia, agranulocytosis and 
trombocitopenia may occur. 
 
The combination with metronidazole may rarely 
cause Stevens–Johnson syndrome. 
Antiepileptics phenytoin and carbamazepine 
lower mebendazole plasma concentrations [20]. 
Interactions with cimetidine elevate the 
concentrations of mebendazole [20]. 
 
There are numerous findings that mebendazole, 
widely used to treat parasitic worm infestations, 
especially in endemic tropical regions, may 
prevent cancer cell proliferation and secondary 
tumours, although no clinical trials have been 
completed. In laboratory conditions, 
mebendazole has a good outcome for antitumor 
activity against various types of cancer: 
melanoma [21,22], lung [23], adrenocortical 
[24,25], colorectal [26-28], breast [29], ovarian 
[30] and hepatocellular [31] carcinoma; 
osteosarcoma and soft tissue sarcoma [26]; 
acute myeloid leukaemia [32,33]; glioblastoma 
multiforme [34] and meduloblastoma [35,36]. 
 
ANTICANCER ACTION OF MEBENDAZOLE IN 
PRECLINICAL STUDIES 
 
Inhibition of microtubule synthesis 
 
Mebendazole selectively inhibits microtubule 
synthesis in intestinal cells of parasitic worms, 
which blocks their uptake of sugar and other 
sustenance, producing paralysis and elimination 
of helminthes from the human body [19]. 
Mebendazole has been shown to induce the 
depolymerization of tubulin in various cancer 
models [21-36]. 

Microtubules are commonly accepted anticancer 
targets, because of their vital role in the cell life 
cycle. Drugs that target microtubules, such as 
Vinca alkaloids and taxanes, inhibit cell division, 
encouraging apoptosis. Microtubules in the lung 
cancer culture were effective targets for 
anticancer therapy with mebendazole. This 
therapy blocked mitosis, induced apoptosis of 
lung cancer cells, activated caspase and 
released cytochrome c [23]. 
 
Bcl-2, Bax and p53 proteins modulation 
 
Bcl-2 and related proteins, encoded by the Bcl-2 
oncogene, suppress or promote apoptosis [37]. 
The final apoptotic effect is dependent of the 
quantity of pro- and anti-apoptotic Bcl-2 proteins 
[37]. The impairment of the Bcl-2 gene induces 
cancers and resistance to oncological therapy 
[38]. 
 
Like other Bcl-2 proteins, Bax protein, coded by 
the Bax oncogene, suppresses or promotes 
apoptosis [37]. Bax protein forms a Bax-Bax 
homodimer that acts as an apoptosis inducer, 
while the heterodimer with Bcl-2 (Bcl-2-Bax) 
functions as an antiapoptotic regulator [37]. Bax 
opens the anion channel of mitochondria and 
liberates cytochrome c by decreasing the 
membrane potential [39]. The influence of Bax 
gene on apoptosis is dependent on tumor 
suppressor p53 [37]. Protein p53 and the related 
genes protect multicellular organisms from 
cancer appearance. This cancer suppressor is 
called the “genome guardian” because it 
prevents mutations. Bax can be activated due to 
the influence of Bcl-2, and also p53 [37] or Bif-1 
proteins [40]. Contrariwise, Bax can be 
inactivated through interaction with mitochondrial 
outer-membrane protein VDAC2 (voltage-
dependent anion channels) [41], Pin1 enzyme 
and IBRDC2, an IBR-type E3 ubiquitin ligase [42] 
(Figure 1).  
 
Publications about mebendazole’s effect on 
melanoma cells (via Bcl-2 inactivation plus other 
mechanisms) and melanocytes give more insight 
into the mebendazole’s anticancer mechanism of 
action [21,22]. These studies have shown that 
mebendazole’s anticancer effect on 
chemoresistant melanoma cells involves Bcl-2 
regulated microtubular impairment. Bcl-2 protein, 
which is commonly expressed in human 
melanoma, enables the proliferation of mutated 
cells. It has been related to melanoma 
chemoresistance, through its antiapoptotic role 
[21,22]. 
 
In many cases, melanoma with metastases is 
resistant to standard microtubule-focused  
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Figure 1: Schematic presentation of proposed mebendazole anticancer mechanisms of action in 
various preclinical investigations 
 
chemotherapeutics vinblastine and paclitaxel 
[21]. The mechanism of mebendazole’s action 
involves a colchicine-binding site, which is 
different from vinblastine or paclitaxel binding 
sites [21,43]. Furthermore, mebendazole has a 
nucleotide-like structure [21], which permits 
interactions with wide range of biomolecules. 
Accordingly, mebendazole’s anticancer actions 
encompass other effects, different from the 
microtubule damage, such as decreased 
fumarate and reduced uptake of glucose [21]. 
 
Oblimersen, a Bcl-2 antisense 
oligodeoxynucleotide, selectively aims at Bcl-2 
mRNA, decreasing the production of Bcl-2 
protein, which enables cancer cell proliferation 
and cancer development [44]. The use of 
oblimersen as a targeted anti Bcl-2 therapy 
against malignant melanoma has been examined 
[45].  
 
The combination of oblimersen and dacarbazine 
gives significantly better clinical results in the 
treatment of advanced melanoma than 
dacabarzine alone [45]. It is important that 
mebendazole, like oblimersen, also causes 
melanoma cell apoptosis through Bcl-2 [21]. 
Oblimersen is administered by intravenous 
infusion, and is therefore difficult to manage. By 
contrast, mebendazole is easy for dosage, since 
it can be given orally. In melanocyte cultures and 

melanoma cell lines, Bcl-2 small interfering RNA 
(siRNA) preparations show a moderate effect on 
mitoses [46]. 
 
Previous studies recognize the post-
translationally phosphorylated Bcl-2 protein as a 
regulator of cell reaction to mebendazole in 
melanoma cells and melanocytes [21]. It was 
only in melanoma cells that mebendazole caused 
rapid phosphorylation of Bcl-2 protein [21]. Bcl-2 
phosphorylation blocks its interaction with the 
mediator for apoptosis Bax (prevention of Bcl-2-
Bax antiapoptotic heterodimer formation), 
thereby promoting selective apoptosis in 
melanoma cells [21]. There is also evidence that 
the treatment of mebendazole-resistant 
melanocytes with Bcl-2 siRNA decreases the 
levels of Bcl-2 and increases cell sensitivity to 
mebendazole’s antiproliferative effects [21]. The 
second work on melanoma xenografts [22] 
confirmed mebendazole’s inhibition of melanoma 
growth by the phosphorilation of Bcl-2 and 
documented that mebendazole diminished the 
concentrations of the X-linked apoptosis inhibitor. 
 
In non–small cell lung carcinoma cells Bcl-2 
phosphorylation was not a necessary event for 
mebendazole-induced apoptosis, based on the 
observation that Bcl-2 phosphorylation occurred 
in proapoptotic response to mebendazole 
treatment in H460 cells, but not in A549 cells 
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[23]. In two examined non–small cell lung 
carcinoma cell lines, A549 and H460, the 
phosphorylation of Bcl-2 protein caused by 
mebendazole supports apoptosis only in the 
H460 culture [23]. 
 
Hedgehog signalling pathway inhibition  
 
The Hedgehog (Hh) signalling track is 
extensively stimulated in the brain tumor, 
medulloblastoma and some other aggressive 
human cancers. The Hh signaling blocker, 
vismodegib, has shown encouraging anticancer 
effects. Therefore, the Hh signalling pathway has 
become a new inviting and fascinating target for 
the investigation of potentially oncologic drugs. 
Mebendazole strongly suppressed Hh signalling 
and decreased the proliferation of Hh-controlled 
medulloblastoma human cell lines at 
concentrations achievable in clinical conditions 
[47]. The mutational status of Hh signalling 
genes in the tumor after disease progression, 
such as the mutated serpentine receptor 
Smoothened, caused resistance to vismodegib 
anticancer therapy. Protein Smoothened, a 
receptor connected with G protein, is a part of 
the Hedgehog signalling pathway and is 
conserved from flies to humans. Smoothened is 
encoded by the SMO gene and forms a 
serpentine protein involved in Hh-track. 
Mebendazole in human cell lines inhibits the 
genesis of the primary cilium, a microtubular cell 
organelle that has a role of a signalling junction 
for Hh pathway stimulation [47]. Mebendazole 
effectively inhibited Hh signalling, even in cell 
clones that became resistant to vismodegib due 
to the mutated gene which encodes Smoothened 
protein [47]. The mebendazole and vismodegib 
combination has an additive inhibitory effect on 
Hh signalling [47]. 
 
Inhibition of neoangiogenesis and immune-
modulation 
 
Some antimicrotubular drugs, such as 
mebendazole, can induce the depolymerization 
of microtubules in tumor blood vessels and as 
such target vasculature to decrease 
neoangiogenesis and the nutrient provision of 
neoplasms [35]. Bai et al [35] recently 
demonstrated preclinical evidence for using 
mebendazole for the treatment of various forms 
of medulloblastoma. Mebendazole inhibits 
VEGFR2 (Vascular Endothelial Growth Factor 
Receptor 2), the main receptor controlling the 
action of VEGF [35]. In a preclinical experiment 
on mice with medulloblastoma, it was shown that 
mebendazole blocks neoangiogenesis, which is 
necessary for tumor growth [35]. The 

microvascular density was greatly reduced within 
treated tumors in mice, compared with the 
untreated tumors. The immunohistochemistry of 
tumors treated with mebendazole implies the 
inhibition of VEGFR2 kinase. Therefore, 
mebendazole is an antiangiogenic agent which 
decreases the development of tumor 
neovasculature by blocking the activity of 
VEGFR2 [35]. 
 
The effect of mebendazole on the immune 
system of organisms with cancer is still unknown. 
Nevertheless, it has been shown that 
albendazole can stimulate cellular immunity in 
mice with echinococcosis [5]. There is evidence 
that enhanced immune mechanisms can be 
connected with the dynamics of microtubules, 
and that this may also contribute to antitumor 
actions of medications which impair microtubules 
[5]. 
 
VERIFICATION OF MEBENDAZOLE’S ANTI-
CANCER EFFECT IN CLINICAL STUDIES 
 
Investigations of mebendazole’s anticancer 
effects in clinical conditions are not yet finalized 
[4]. Not more than two papers presenting case 
reports with completed research results have 
been published so far: treatment of a patient with 
metastatic adrenocortical cancer [25] and 
treatment of a patient with metastatic colon 
cancer [28]. 
 
Ideal cancer medications are ‘target’ cures, 
directed at specific targets exclusive to cancer 
cells. However, a lot of available anticancer 
medications known as “dirty” aim at several 
targets, distressing more than one protein or 
signalling pathway in cancer and normal cells at 
a time. The use of nontoxic repurposed drugs in 
arrangement with other medication should be 
effective against cancer, with decreased toxicity. 
A good course of action would be to experiment 
with combinations of low-toxic anticancer 
treatments (Table 1.) [5-16,21-36]. Mebendazole 
treatment could provide the following 
advantages: oral treatment (no need for 
infusion), lower toxicity (no special equipment for 
toxicities required), less frequent visits, 
potentially fewer blood tests and a low cost - so 
less cost for the patient and better compliance. 
 
CONCLUSION 
 
Clinicians and patients can choose anticancer 
therapy from assorted registered and/or even 
unconventional medications for cancer. 
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Table 1: Possible combinations of mebendazole with other drugs for the clinical treatment of specific neoplasms 
based on published results of preclinical investigations 
 
Neoplasm Reasonable therapeutic 

combination with mebendazole 
Therapeutic strategies 

Malignant melanoma Hydroxychloroquine, 
Diclofenac or 

Celecoxib, 
Oral cyclophosphamide 

microtubule disruption, inhibition of 
authophagy, anti-angiogenic and 

immunomodulation 

Non-small cell lung cancer Metformin, 
Intraconazole, 

Diclofenac or Celecoxib 

microtubule disruption, 
AMPK activation, 
mTOR signalling, 
COX-2 inhibition, 

Hedgehog signalling 
Adrenocortical carcinoma Intraconazole, 

Oral cyclophosphamide 
microtubule disruption, 

anti-angiogenic, 
Hedgehog signalling 

Colorectal carcinoma Metformin, 
Cimetidine, 
Diclofenac 

Oral vinorelbine 

microtubule disruption, 
AMPK activation, 
mTOR signalling, 

immunomodulation, 
anti- histamine, 

COX -2 
Breast cancer Metformin, 

Oral cyclophosphamide, 
or Oral vinorelbine 

microtubule disruption, 
AMPK activation, 
mTOR signalling, 
anti-angiogenic 

Ovarian carcinoma Metformin, 
Diclofenac, 

Intraconazole 

microtubule disruption, 
AMPK activation, 
mTOR signalling, 
anti-angiogenic 

Hepatocellular carcinoma 
 

Albendazole microtubule disruption, 
anti-angiogenic, 

Hedgehog pathway inhibition 
Osteosarcoma Metformin, 

Losartan, 
Oral cyclophosphamide 

microtubule disruption, 
Hedgehog pathway inhibition, 

AMPK activation, 
mTOR signalling, 

IGF-I, 
anti-angiogenic 

Soft tissue sarcoma Metformin, 
Losartan, 

Oral cyclophosphamide 

microtubule disruption, 
Hedgehog pathway inhibition, 

AMPK activation, 
mTOR signalling, 

IGF-I, 
anti-angiogenic 

Fibrosarcoma Hydroxychloroquine, 
Intraconazole 

microtubule disruption, 
anti-angiogenic, 

Hedgehog pathway inhibition 
Acute Myeloid Leukaemia Albendazole or oral vinorelbine, 

Diclofenac 
microtubule disruption, 
induction of apoptosis 

COX -2 
Glioblastoma multiforme Hydroxychloroquine, 

Intraconazole 
inhibition of authophagy, 
microtubule disruption, 

anti-angiogenic, 
Hedgehog pathway inhibition 

Meduloblastoma Hydroxychloroquine, 
Intraconazole 

microtubule disruption, 
anti-angiogenic, 

Hedgehog pathway inhibition 
 
As a result, experiments and clinical studies must 
always be recommended in order to find and 
provide, by any means necessary, the attainable, 
adequate, physically most endurable and least 
expensive cure. Based on the existing preclinical 
studies, mebendazole is a good example. 

Nonetheless, mebendazole deserves clinical 
investigation as an antineoplastic agent since it 
has potentials for enriched anticancer 
effectiveness and an outstanding safety profile. 
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