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Abstract 

Purpose: To investigate the lipid-lowering activity of two metabolites of galangin, namely, galangin-3-O-
β-D-glucuronic acid (GG-1) and galangin-7-O-β-D-glucuronic acid (GG-2).  
Methods: Female Sprague-Dawley rats were orally administered with galangin. The two metabolites of 
galangin were isolated from urine sample and purified using Sephadex LH-20 and semi-preparative high 
performance liquid chromatography (HPLC). The structures of the metabolites were identified by 
analyzing spectroscopic data. Hypolipidemic activity was evaluated in HepG2 cells. The down- or up-
regulation of lipogenic genes was detected using real-time quantitative polymerase chain reaction 
(qPCR). 
Results: Both metabolites of galangin showed hypolipidemic activity. These activities are closely 
associated with the down-regulation of lipogenic genes such as SREBP-1a, SREBP-1c, and SREBP-2 
transcription factors, and the downstream genes such as FAS, ACC, and HMGR were revealed by real-
time qPCR data.   
Conclusion: The results show that both metabolites possess better lipid-lowering activities than 
galangin. These hypolipidemic activities are closely associated with inhibiting key genes or proteins that 
regulated the biosynthesis of both cholesterol and triglycerides.  
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INTRODUCTION 
 
Obesity is becoming a serious threat to human 
beings [1]. More accumulation of lipids in liver is 
a key cause for insulin resistance [2]. Therefore, 
decreasing lipid deposition in liver through 
inhibition of lipogenesis or stimulation of lipolysis 
is an effective way for the prevention and 
treatment of obesity and diabetes [3-4]. Natural 
products such as cordycepin [5], resveratrol [6], 

and berberine [7] have showed ability in 
suppressing lipogenesis and accumulation of fat, 
and are considered to be the potential 
candidates in developing new therapeutic 
agents. 
 
Galangin, a natural flavonoid obtained from 
Alpinia officinarum, has been found to possess 
various biological activities [8,9]. Specifically, this 
compound showed a significant decrease in 
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serum lipids, liver weight, peroxidation of lipids, 
and accumulation of hepatic triglycerides, which 
suggested that galangin has the potential for 
controlling obesity [10]. Interestingly, previous 
pharmacokinetic studies have found two 
metabolites of galangin, and are considered as 
the effective in vivo components [11-12]. 
However, the limitations in developing new 
therapeutic agent from galangin are mainly due 
to its low bioavailability. Therefore, the 
metabolites obtained from urine samples may be 
considered as the better candidates. From this 
approach, two metabolites namely galangin-3-O-
β-D-glucuronic acid (GG-1) and galangin-7-O-β-
D-glucuronic acid (GG-2) were obtained from the 
rat urine. In addition, the effects of these two 
metabolites on lipid accumulation in HepG2 cells 
and its hypolipidemic mechanisms were 
investigated to find potential utility in the 
prevention and treatment of obesity.  
 
EXPERIMENTAL  
 
General experimental procedures 
 
HepG2 cells were obtained from the American 
Type Culture Collection (Manassas, Virginia, 
USA) and China Union Medical University. 1H, 
13C-nuclear magnetic resonance (NMR) 
experiments were performed on Bruker 
spectrometer operating at 400 MHz for 1H and 
100 MHz for 13C (ietramethylsilane was used as 
an internal standard). Chemical shifts were 
expressed in δ ppm referenced to solvent peaks 
at δH 2.50 and δC 39.6 in dimethyl sulfoxide 
(DMSO)-d6, and coupling constants were in Hz. 
Electrospray ionization-mass spectrometry (ESI-
MS) was obtained from a Thermo Scientific LTQ-
Orbitrap XL instrument (Bremen, Germany). 
Sephadex LH-20 (GE Health care) was used for 
column chromatography. High performance liquid 
chromatography (HPLC) was performed on LC-
6AD equipped with an ultra violet (UV) detector 
of SPD-10A (Shimadzu), and a column of Zorbax 
SB-phenyl (250 × 9.4mm, 5 µm, Agilent 
Technologies Co., Ltd). Mixtures of methanol 
(CH3OH)/water (H2O) were used as an eluent. All 
solvents used were of analytical grade.  
 
Reagents 
 
Galangin was extracted from Alpinia officinarum 
in laboratory previously. The chemical structure 
of galangin was established by analyzing NMR 
data and compared with literature. The purity of 
galangin (> 95 %) was determined using HPLC 
equipped with a UV detector with an Agilent 
eclipse XDB-C18 column (5µm, 4.6×250 mm). 
Then, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide (MTT) was obtained 
from Sigma-Aldrich (Saint Louis, Missouri, USA). 
 
Animals 
 
All animal experiments were performed per 
International Guidelines for Care and Use of 
Laboratory Animals [20] and approved by the 
animal ethics committee of Hainan Medical 
University (reg. no. 201506017/HMU). Female 
Sprague-Dawley rats (240 to 300 g) were 
purchased from DongChuang Laboratory Animal 
Service Department (Changsha, China). 
Commercial rat chow was available ad libitum 
except for an overnight fasting period before 
dosing. All rats were provided with free access to 
H2O.  
 
Urine collection  
 
Rats were housed separately in rat metabolic 
cages. Urine samples were collected before and 
after 0-24 h oral dose of galangin (90 mg/kg). For 
the oral administration, 30 mg/mL of galangin 
solution was dissolved in distilled H2O containing 
2 % (w/v) tween-80. 
 
Extraction and isolation of two galangin 
metabolites 
 
The collected urine samples were pooled. Then, 
300 mL of pooled urine samples was diluted with 
700 mL of distilled H2O to give 1000 mL of 
solvent. Then, the solvent was partitioned twice 
with 300 mL of ethyl acetate and n-butanol to 
give two extracts, respectively. These extracts 
were concentrated successively under reduced 
pressure to obtain the ethyl acetate (2.0 g) and 
n-butanol (5.0 g). The n-butanol extract was 
separated with Sephadex LH-20 using CH3OH 
as an eluent to yield six fractions (Fr.1 to Fr.6). 
Fr.5 (800 mg) was further purified by semi-
preparative HPLC with CH3OH:H2O (40:60) as 
an eluent to give compounds 1 (6.0 mg), and 2 
(8.0 mg). 
 
Cell-based lipid accumulation assay 
 
HepG2 cells were maintained in a Dulbecco’s 
modified eagles medium (DMEM, Gibco, Grand 
Island, New York, USA) supplemented with 10 % 
fetal bovine serum (Gibco) and 100 μg/mL of 
penicillin/streptomycin (Gibco). After reaching 70-
80 % confluence, the cells were incubated in 
DMEM and 100 μM of oleic acid (OA, Sigma-
Aldrich, Shanghai, China) for 12 h, then the cells 
were treated with 10 μM of indicated compounds 
or marketed antihyperlidemic drug simvastatin 
(Sigma-Aldrich) in DMEM and 100 μM of OA or 
with DMEM and 100 μM of OA alone for another 
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6 h. Subsequently, the cells were subjected to 
oil-red O staining, total cholesterol and 
triglycerides were determined as described 
previously [19]. Each experiment was repeated 
for three times. 
 
MTT assay 
 
HepG2 cells were cultured in a 24-well plate. 
After reaching confluence, the cells were 
incubated for 48 h in presence of GG-1, GG-2, 
and galangin. Subsequently, the culture medium 
was removed and replaced with 500 μL of fresh 
culture medium containing 10 % sterile filtered 
MTT. After 3 h, the formed insoluble formazan 
crystals were dissolved in 500 μL of isopropanol 
per well and absorbance was measured at 570 
nm using the 630 nm reading as a reference. 
The inhibition of growth due to tested compounds 
was expressed as a percentage of viable cells in 
experimental wells than in control wells. 
 
Real-time quantitative polymerase chain 
reaction (qPCR) 
 
The mRNA levels of lipid metabolism-related 
genes were determined using real-time qPCR. 
Total RNA extraction, cDNA synthesis, and 
quantitative PCR assays were all performed as 
described previously [20]. Samples were cycled 
40 times using a fast applied biosystems (ABI)-
7500 sequence detector (Foster City, USA). ABI-
7500 cycle conditions were as follows: 
denaturation at 95 °C for 5 min followed by 40 
cycles at 95 ºC for 15 s, annealing at 60 ºC for 
30 s, and holding at 72 ºC for 30 s. Cycle 
threshold was calculated under default settings 
of real-time sequence detection software 
(Applied Biosystems). Three independent 
biological replicates were analyzed to check the 
reproducibility of the data.  
 
Statistical analysis  
 
Data are presented as mean ± standard 
deviation. One-way analysis of variance was 
used to determine the significant difference 
between both groups. Modified Student’s t-test 
with the Bonferroni correction was used to 
compare the difference between individual 
groups. P < 0.05 was considered as statistically 
significant. 
 
RESULTS 
 
Spectral data for GG-1, GG-2, and galangin 
 
GG-1: ESI-MS m/z 444.9 [M-H]-; 1H-NMR (400 
MHz, DMSO-d6) δ: 12.38 (1H, br.s, 5-OH), 8.13 
(2H, d, J=7.5 Hz, H-2', 6'), 7.52 (3H, m, H-3', 4', 

5'), 6.26 (1H, br.s, H-8), 6.08 (1H, br.s, H-6), and 
5.54 (1H, d, J=7.2 Hz, H-1"); and 13C-NMR (100 
MHz, DMSO-d6) δ: 178.1 (C-4), 172.2 (C-6"), 
163.0 (C-7), 162.6 (C-5), 157.0 (C-9), 156.3 (C-
2), 134.5 (C-3), 131.1 (C-1'), 130.9 (C-4'), 129.6 
(C-2', 6'), 128.6 (C-3', 5'), 104.3 (C-10), 99.2 (C-
6), 94.3 (C-8), 76.7 (C-3"), 74.8 (C-5"), 74.3 (C-
2"), and 72.5 (C-4"). 
 
GG-2: ESI-MS m/z 444.9 [M-H]-; 1H-NMR (400 
MHz, DMSO-d6) δ: 12.38 (1H, br.s, 5-OH), 8.10 
(2H, d, J=7.5 Hz, H-2', 6'), 7.52 (3H, m, H-3', 4', 
5'), 6.85 (1H, br.s, H-8'), 6.44 (1H, br.s, H-6'), 
and 5.13 (1H, d, J=7.2 Hz, H-1"); and 13C-NMR 
(100 MHz, DMSO-d6) δ: 178.1 (C-4), 172.1 (C-
6"), 162.6 (C-5), 160.8 (C-7), 156.5 (C-9), 146.8 
(C-2), 132.1 (C-3), 131.4 (C-1'), 130.6 (C-4'), 
129.0 (C-2', 6'), 128.1 (C-3', 5'), 105.3 (C-10), 
99.4 (C-6), 94.8 (C-8), 76.7 (C-3"), 74.7 (C-5"), 
73.3 (C-2"), and 72.3 (C-4"). 
 
Galangin: ESI-MS m/z 268.9 [M-H]-; 1H-NMR 
(400 MHz, DMSO-d6) δ: 12.36 (1H, br.s, 5-OH), 
8.14 (2H, m, J=7.5 Hz, H-4'), 7.50-7.55 (3H, m, 
H-3', 4', 5'), 6.45 (1H, br.s, H-8'), and 6.20 (1H, 
br.s, H-6'); and 13C-NMR (100 MHz, DMSO-d6) δ: 
176.3 (C-4), 164.3 (C-7), 160.8 (C-5), 156.5 (C-
9), 145.8 (C-2), 137.1 (C-3), 131.4 (C-1'), 130.0 
(C-4'), 128.6 (C-2', 6'), 127.6 (C-3', 5'), 103.3 (C-
10), 98.4 (C-6), and 93.6 (C-8).  
 
Characteristic features of the two galangin 
metabolites  
 
Compound 1 was obtained as a brown powder. 
The spectral data of 1H-NMR were resonated at 
δ: 12.38 (1H, br.s, 5-OH), 8.13 (2H, d, J=7.5 Hz, 
H-2', 6'), 7.52 (3H, m, H-3', 4', 5'), 6.26 (1H, br.s, 
H-8), and 6.08 (1H, br.s, H-6) indicated 
compound 1 as a flavonoid. The NMR spectral 
data of compound 1 were similar to that of 
galangin. Further analysis of NMR data showed 
that a glucuronic acid group existed in compound 
1. Comparing the 13C-NMR data of compound 1 
with galangin revealed the downfield shifts of C-2 
and C-4 were +10.6 and 1.8, respectively, 
whereas the upfield shift of C-3 (-1.6 ppm) 
indicating the glucuronic acid group was located 
at C-3. Therefore, compound 1 was identified as 
GG-1. 
 
Compound 2 was also obtained as a brown 
powder. The spectral data of NMR and MS were 
identical to compound 1. The connection of 
glucuronic acid group to the agylcone was also 
determined in a same manner. Comparing the 
13C-NMR data of compound 2 with galangin 
revealed the downfield shifts of C-6 and C-8 
were +1.2 and 1.1, respectively, whereas the 
upfield shift of C-7 (-3.4 ppm) indicating the 
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glucuronic acid group was located at C-7. 
Therefore, compound 2 was identified as GG-2. 
 
GG-1 and GG-2 inhibit lipid accumulation in 
HepG2 cells 
 
To evaluate the effect of GG-1 and GG-2 on lipid 
metabolism, OA-elicited neutral lipid 
accumulation in HepG2 cells was used. The 
intracellular lipid content was determined by oil-
red O staining and specific kits for accumulation 
of lipid, total cholesterol, and triglycerides. 

Supplementation with OA significantly increased 
accumulation of lipid in HepG2 cells (Figure 2). 
Treatment with GG-1 and GG-2 decreased OA-
elicited neutral lipid accumulation (Figure 2A) as 
well as intracellular contents of triglyceride 
(Figure 2B) and total cholesterol (Figure 2C) in a 
dose-dependent manner. The inhibitory 
efficiency of both compounds was higher than 
that of galangin. The MTT assay showed that the 
inhibitory effect of GG-1 and GG-2 on lipid 
metabolism was independent of its cytotoxic 
effects on HepG2 cells (Figure 3). 

 
Figure 1: Chemical structures of galangin, 1 (GG-1), and 2 (GG-2) 
 

 
Figure 2: Effects of GG-1 and GG-2 on lipid accumulation. HepG2 cells were treated with galangin, GG-1, and 
GG-2 (μM as indicated) or simvastatin (10 μM) in DMEM containing 100 μM of oleic acid or with serum-free 
DMEM alone (blank) for 24 h. The optical density of 358 nm was obtained after oil-red O staining (A), intracellular 
levels of triglyceride (B), and total cholesterol (C) were determined. Values are represented as mean±SD. 
Results are represented in three independent experiments. ###P<0.001 vs blank group; *P<0.05, **P<0.01, and 
***P<0.001 vs oleic acid group 
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Figure 3. Effect of GG-1 and GG-2 on cell viability was determined by MTT assay. The inhibition of cell viability 
was expressed as a percentage of viable cells in experimental wells than in control wells. Values are represented 
as mean ± SD. Results are represented in three independent experiments 
 

 
Figure 4: Effects of GG-1 and GG-2 on expression of SREBP-1a, SERBP-1c, and SREBP-2, and mRNA levels 
of FAS, ACC, and HMGR were analyzed using real-time qPCR. The expression level of genes was normalized to 
β-actin mRNA levels. Values are apresented as mean ± SD. Results are represented in three independent 
experiments; *p < 0.05, **p < 0.01 vs control group 
 
GG-1 and GG-2 decreased transcription of 
lipogenesis-related transcription factors and 
its targeted genes 
 
Real-time qPCR showed that treatment with 10 
μM of GG-1 and GG-2 significantly decreased 
the expression of lipogenic genes such as 
SREBP-1a, SREBP-1c, and SREBP-2 
transcription factors and its downstream genes 
such as FAS, ACC, and HMGR. GG-1 is more 
potent in regulation of these lipogenic genes than 
GG-2 (Figure 4). 
 
DISCUSSION 
 
Herbal medicines have been used in the 
treatment of obesity for past 100 decades 
[21,22]. Natural compounds with interesting 
structures and lipid regulating activities have 
attracted numerous attentions from chemists and 
pharmacologists [23]. Statins are the 

representative compound originated from natural 
sources with antihyperlipidemic activity [24]. 
Other compounds such as cordycepin, 
resveratrol, and berberine are deemed as the 
effective regulators of lipid metabolism. Galangin 
has also been proved to have the ability in 
lowering the lipid levels in liver and blood [10].  
 
However, most natural products are not used as 
a drug when isolated from natural sources [25]. 
There are many factors influencing the drug 
ability. Among all, low biological availability is 
considered to be the most important factor [26]. 
Many methods are used to resolve this problem. 
Finding metabolites from natural products of 
biological samples have proved to be an effective 
process in drug discovery [27,28].   
 
Previous studies have found that GG-1 and GG-
2 are the main metabolites of blood and urine 
samples when rats were orally administered with 
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galangin. Therefore, GG-1 and GG-2 are 
considered to be the active in vivo constituents. 
To verify this hypothesis, the lipid lowering 
activity of these metabolites has been 
investigated. The results have demonstrated that 
GG-1 and GG-2 possess lipid lowering activity. 
Significantly, these two metabolites showed 
better hypolipidemic activities than galangin. This 
may be attributed to the presence of glucuronic 
acid group in the carbon skeleton. The potential 
mechanisms have also been investigated and 
are found to be closely associated with inhibiting 
key genes or proteins that regulated the 
biosynthesis of both cholesterol and triglycerides. 
 
CONCLUSION 
 
The findings of this study indicate that both 
metabolites possess better lipid-lowering 
activities than galangin. These hypolipidemic 
activities are closely associated with inhibiting 
key genes or proteins that regulate the 
biosynthesis of both cholesterol and triglycerides. 
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