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Abstract 

Purpose: To determine whether an ethanol extract from Callophyllis japonica (C. japonica) could 
attenuate indices of airway inflammation in a murine model of ovalbumin (OVA)-induced asthma.  
Methods: The free radical scavenging activity of the C. japonica ethanol extracts (CJE) were 
investigated using an electron spin resonance (ESR) system. To make develop animal model of 
asthma, mice were sensitized and challenged with OVA.                                                                                     
Results: CJE exhibited considerable scavenging activity of 71.08 ± 0.73, 79.11 ± 6.04%, 75.95 ± 
7.01%, and 48.56 ± 5.96% of DPPH, alkyl, superoxide, and hydroxyl radicals, respectively. The 
successive intraperitoneal administration of CJE reduced the number of eosinophils in bronchoalveolar 
lavage (BAL) fluid, development of airway hyperresponsiveness (AHR), an increase in pulmonary Th2 
cytokines, and allergen-specific immunoglobulin E (IgE). 
Conclusion: Administration of CJE markedly alleviates all indices of airway inflammation. This study 
provides evidence that CJE plays a critical role in the amelioration of the pathogenetic process of 
allergic asthma in mice.  
 
Keywords: Asthma, Phenolic contents, Free radical scavenging, Airway hyper-responsiveness, 
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INTRODUCTION 
 
Asthma is a chronic respiratory disease 
characterized by airway hyperresponsiveness 
(AHR), intermittent pulmonary obstruction, and 
pulmonary and airway inflammation [1]. The 
inflammatory response in the asthmatic is 
associated with the infiltration of mast cells, 
lymphocytes, and eosinophils into the bronchial 

lumen and lung tissue. There is accompanying 
increase in the expression of several 
inflammatory proteins including cytokines, 
enzymes, and adhesion molecules [2-4]. T-
helper 2 (Th2) cells are the predominant 
lymphocyte population that infiltrates the airways 
in animal models of asthma [5]. The Th2 cell 
derived cytokines, including interleukins (IL)-4 
and IL-5 are produced by activated CD4+ T cells 
and play central roles in the pathophysiological 
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features of allergic inflammation in asthma. They 
control the key processes of immunoglobulin E 
(IgE) production, and the differentiation and 
activation of mast cells and eosinophils [6,7].  
 
Marine algae have been traditionally used for 
medicinal and dietary purposes in Asia. These 
algae are rich in vitamins, minerals, dietary 
fibers, essential fatty acids, enzymes, 
polysaccharides, and various functional 
polyphenols. Almost all the algae species had 
good ability to scavenge free radicals [8].  
 
The red seaweed Callophyllis japonica 
(C. japonica) has been traditionally eaten in 
oriental regions for as dietary component. 
Previous studies have shown that C. japonica 
extracts have antioxidant activities and 
radioprotective effects [9,10]. However, their role 
in asthma and other airway diseases has not 
been reported. Therefore, we investigated 
whether C. japonica ethanol extracts (CJE) have 
anti-inflammatory properties against allergic 
airway reactions in a murine model of ovalbumin 
(OVA)-induced asthma.  

 
EXPERIMENTAL 
 
Preparation of C. japonica ethanol extract 
(CJE) 
 
The red seaweed C. japonica was collected 
along the Coast of Jeju Island in Korea between 
October 2005 and February 2006. It was 
authenticated by Dr. Jongchul Lee (Jeju 
Technopark, Jeju, Korea), and a voucher 
specimen (no: JBRI 20365) was preserved in the 
herbarium of Jeju Technopark, Jeju, Republic of 
Korea. Fresh C. japonica was washed three 
times with tap water and was stored at −20°C. 
Before extraction, the frozen samples were 
lyophilized, and homogenized using a grinder. 
The dried C. japonica powder (1 kg) was 
extracted with 95% ethanol (EtOH) (1:10 w/v) 
and was evaporated in vacuo. The concentrated 
CJE was freshly dissolved in 10% EtOH (10 
mg/ml) before use. Prior to extraction, lyophilized 
C. japonica was ground into powder by 
homogenized using a grinder. The dried C. 
japonica powder (1 kg) was extracted with 95% 
ethanol (EtOH) (1:10 w/v). After 8 h of 
extractions at room temperature, the supernatant 
and the sediment were separated by vacuum 
filtration. The residue was re-extracted as the 
first extraction the obtained extraction solutions 
were combined and concentrated to dryness by 
vacuum-evaporator at 40°C. The dried extract 
was weighed and the yield was calculated. The 
dry extract was kept in dark at 4°C until further 
analyses.  

Determination of phenolic and carbohydrate 
contents 
 
The phenolic contents of C. japonica were 
determined by the method described by Shetty 
et al. [11]. Each 1 ml of the algal extract was 
mixed with 1 ml of 95% EtOH, 5 ml of distilled 
water, and 0.5 ml of 50% Folin–Ciocalteu 
reagent (Sigma Chemical, St. Louis, MO). The 
mixtures were allowed to react for 5 min before 
1 ml of 5 % Na2CO3 was added. Thereafter the 
mixtures were placed in the dark for 1 h. 
Absorbance was measured at 725 nm, and a 
gallic acid standard curve was obtained for the 
calibration of phenolic content. The total 
carbohydrate content was measured by the 
phenol–sulfuric acid method described by 
Dubois et al. [12], using a mixture of galactose 
and fucose (1:1 weight ratio) as a standard. The 
sulfate content in the total carbohydrate of 
C. japonica was measured by the BaCl2/gelation 
method [13]. 

 
Measurement of free radical scavenging 
activity by electron spin resonance 
spectroscopy 
 
Diverse radicals were generated according to the 
procedures described below and spin adducts 
were recorded using a JES-FA electron spin 
resonance (ESR) spectrometer (JEOL 
Ltd.,Tokyo, Japan). Radical scavenging activity 
(RSA) was calculated as in Eq 1, in which H and 
H0 are the relative peak heights of the radical 
signals with and without sample, respectively. 
RSA (%) = {(1 H)/(Ho)} x 100 ………………… (1) 
 
2,2-diphenyl-1-picrylhydrazyl radical 
scavenging activity  
 
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 
scavenging activity was measured using the 
method described by Nanjo et al. [14].  

 
Alkyl radical scavenging assay 
 
Alkyl radicals were generated according to the 
method described by Hiramoto et al [15]. 
 
Superoxide anion radical scavenging activity 
 

Superoxide anion radicals were generated by a 
UV-irradiated riboflavin/EDTA system [16]. 
 
Hydroxyl radical scavenging activity 
 
Hydroxyl radicals were generated by the iron-
catalyzed Fenton Haber-Weiss reaction, and the 
generated hydroxyl radicals were rapidly reacted 
with nitrone spin traps (5,5-dimethyl-1-pyrroline-
N-oxide, DMPO) [17].  
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Animals 
 
Female BALB/c mice, 25–30 g, were purchased 
from Orient Biotech Inc. (Seoul, Korea) and were 
allowed to acclimatize to our animal facility for at 
least 1 week. All experimental animals used in 
this study were maintained under a protocol 
approved by the Institutional Animal Care and 
Use Committee of Inje University Medical 
School, Busan, Republic of Korea (approval ref 
no. 2009-017). The procedures involving animals 
and their care conformed to the standard 
guideline for the use of laboratory animals [18]. 
National Institutes of Health, USA. Public health 
service policy on human care and use of 
laboratory animals. 2002. 
 
Sensitization and challenge 
 

Mice were sensitized by intraperitoneal (i.p.) 
injection of 20 μg of OVA and 1.0 mg of 
aluminum hydroxide adjuvant on days 1 and 15. 
Mice were injected i.p. with 20 mg/kg CJE 
dissolved in 200 μl saline of on consecutive days 
from days 16 to 20. The animals were 
challenged via the airway with OVA (50 mg/ml of 
saline) each day from days 22 to 24 [19]. The 
control mice were exposed to aerosolized saline. 
Aerosolization was performed for 20 min by 
placing the mice in a chamber (15 × 25 × 15 cm) 
connected to an ultrasonic nebulizer (NE-U12, 
Omron, Tokyo, Japan).  
 

Bronchoalveolar lavage (BAL) and cell 
counting 
 

Mice were anesthetized, and the trachea was 
cannulated while gently massaging the thorax. 
The lungs were lavaged with 0.7 ml of phosphate 
buffered saline (PBS). The bronchoalveolar 
lavage (BAL) fluid samples were collected and 
the number of cells in a 50 μl aliquot was 
determined using a hemocytometer. The pellet 
was resuspended in PBS, and cytospin 
preparations of BAL cells were stained with Diff-
Quik (International Reagents Corp., Kobe, 
Japan). Approximately 400 cells were counted in 
each of 4 different random locations [20].  
 
Histological studies 
 
Two days after the last ovalbumin challenge, the 
mice were sacrificed, and their lungs were 
removed. Lung tissues were fixed with 10% (v/v) 
paraformaldehyde. The specimens were 
dehydrated and embedded in paraffin. Sections 
(4 μm) of fixed embedded tissues were cut on a 
Leica model 2165 rotary microtome (Leica, 
Nussloch, Germany), placed on glass slides, 
deparaffinized, and sequentially stained with 
hematoxylin-2 and eosin-Y for histological 
examination.  

Assay of Interleukins  
 
The levels of cytokines in BAL fluid were 
determined by an enzyme-linked immunosorbent 
assay (ELISA). Levels of IL-4 and IL-5 were 
measured by ELISA kits (BioLegend, San Diego, 
CA) [20].  
 
Measurement of OVA-specific serum levels of 
IgE  
 
The OVA-specific serum IgE levels were 
determined by ELISA using samples collected 12 
h after the last OVA challenge. In brief, a 96-well 
microtitre plate was coated with OVA (10 mg/ml) 
and was then treated with mouse sera, followed 
by biotin-conjugated rat anti-mouse IgE 
(Pharmingen, San Diego, CA). Then avidin-
horseradish peroxidase (HRP) solution was 
added to each well. The optical density of these 
units was measured at 405 nm [21].  

 
Determination of airway hyper-responsive-
ness 
 
Airway hyper-responsiveness (AHR) was 
measured 3 days after the last OVA challenge in 
mice in an unrestrained, conscious state, 
according to the method of Hamelmann et al 
[22]. Mice were placed in a barometric 
plethysmographic chamber (All Medicus Co., 
Seoul, Korea), and baseline readings were taken 
and averaged for 3 min. Aerosolized 
methacholine (Mch) was then nebulized in 
increasing concentrations (from 2.5 to 50 mg/ml) 
through an inlet of the main chamber for 3 min. 
Readings were taken and were averaged for 
3 min after each nebulization. Bronchopulmonary 
resistance is expressed as an enhanced pause 
(Penh) and were calculated as follows: Penh = 
(Te/RT-1) x (PEF/PIF), where Te is expiratory 
time, RT is relaxation time, PEF is peak 
expiratory flow, and PIF is peak inspiratory flow, 
according to the manufacturer's protocol. The 
results are expressed as the percentage 
increase of Penh following challenge with each 
concentration of Mch, where the baseline Penh 
(after saline challenge) is expressed as 100%.  
 
Statistical analysis 
 
Data values are presented as mean ± SEM. 
Significant differences among the groups were 
determined using an unpaired Student's t-test. A 
value of p < 0.05 was considered statistically 
significant. Statistical analysis was performed 
using Prism 5 for Windows software (GraphPad 
Software, Inc., La Jolla, CA, USA). 
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RESULTS 
 
Phenolic and Carbohydrate Contents of 
C. japonica extract  
 

The yield of C. japonica EtOH extract was 9.3 % 
(% dry wt. of alga). In the chemical analysis, the 
total phenolic content of C. japonica EtOH 
extract was determined to be 39.8 ± 0.7 mg/g 
(n = 3). However, low amounts of carbohydrate 
(2.1 ± 0.3 mg/g, n = 3) were detected in 
C. japonica. The sulfate content of C. japonica 
was determined to be 0.11 mg/g (sulfate/total 
sugar).  

 
Antioxidant activity of ethanol extract of 
C. japonica  
 
Figure 1 shows the free radical scavenging 
activities of the extract on DPPH, alkyl, 
superoxide, and hydroxyl radicals. At 200 g/ml, 
exhibited considerable scavenging activity of 
71.08 ± 0.73, 79.11 ± 6.04, 75.95 ± 7.01, and 
48.56 ± 5.96 % of DPPH, alkyl, superoxide, and 
hydroxyl radicals, respectively. The values were 
compared with those of vitamin C (Vit C, 200 

g/ml) used as the standard. 
 

  
Fig 1: Free radical scavenging activity of CJE using 
an ESR spectrometer. Free radical scavenging 
activities: DPPH radical scavenging activity, alkyl 
radical scavenging activity, superoxide radical 
scavenging activity, hydroxyl radical scavenging 
activity. Each value is expressed as mean ± SEM (n = 
3). 
 
CJE decrease the number of inflammatory 
cells in BAL fluids of OVA-sensitized and -
challenged mice  
 
Compared with those in the control group, the 
total cell numbers in the BAL fluids were 
significantly increased (p < 0.05) by 
approximately 10-fold 2 days after the last OVA 
challenge (Fig 2). The numbers of eosinophils in 
the BAL fluid increased significantly (p < 0.05). In 
the CJE-treated group, the numbers were 

reduced significantly in comparison with the 
OVA-exposed group.  

 
 

Fig 2: Effects of CJE on the recruitment of 
inflammatory cells in OVA-induced allergic asthmatic 
mice. Groups of mice were treated with saline, OVA-
inhaled mice administered saline (OVA), and OVA-
inhaled mice administered 20 mg/kg of CJE, 
respectively. The BAL cells were collected 2 days after 
the last OVA-challenge. Each value indicates the 
mean ± SEM from five separate experiments (n = 6 
per group). *p < 0.05 vs. saline; #p < 0.05 vs. OVA.  
 
Effects of CJE on lung tissue in OVA-induced 
asthma 
 
Marked influxes of inflammatory cells into the 
airway and around the blood vessels were 
detected in the OVA-sensitized/challenged mice 
(Fig 3B, OVA) but not in the saline-treated 
control mice (Fig 3, Saline). Mice treated with the 
CJE evidenced marked reductions in the 
infiltration of inflammatory cells within the 
peribronchiolar and perivascular regions (Fig 3, 
OVA+CJE). Mucus hypersecretion and airway 
occlusion were the prominent histopathological 
features of the murine asthmatic lung. Mucus cell 
hypertrophy and airway luminal narrowing 
caused by the secreted mucus were observed in 
the OVA-sensitized/challenged mice (Fig 3, 
OVA). The administration of CJE induced a 
marked improvement in luminal narrowing in the 
airway (Fig 3, OVA+CJE).  
 

 
 

Fig 3: CJE inhibit pathological changes in lung tissue 
of OVA-sensitized and -challenged mice. Lungs were 
removed 2 days after the last airway challenge. 
Sections were stained by hematoxylin and eosin 
staining (×200). Six animals were assigned to each 
group. 
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Effect of CJE on the regulation of levels of 
bronchoalveolar lavage fluid cytokines in 
OVA-sensitized and OVA-challenged mice 
 
Four hours after the last airway challenge, BAL 
fluids were obtained. The levels of IL-4 and IL-5 
in the BAL fluids were significantly increased (p < 
0.05) by airway challenge with OVA, when 
compared with that of the control. The 
administration of CJE reduced the 
concentrations of IL-4 and IL-5 (p < 0.05) (Fig 
4A).  

 
 

Fig 4: The effect of CJE (20 mg/kg) on IL-4 and IL-5 
cytokine levels. The IL-4 and IL-5 cytokine levels in 
the BAL fluids were measured by an ELISA kit. B) 
Effects of CJE on serum OVA-specific IgE antibody 
levels. Each value indicates the mean ± SEM from five 
separate experiments (n = 6 per group). *p < 0.05 vs. 
saline; #p < 0.05 vs. OVA. 
 
Effect of CJE on OVA-specific serum IgE 
levels 
 

Serum levels of OVA-specific immunoglobulins 
were measured 12 h after the final airway 
challenge. We found that sensitization and 
challenge with OVA resulted in increased (p < 
0.05) serum levels of OVA-specific IgE when 
compared with saline-treated mice. Treatment of 
sensitized mice with CJE resulted in a 72% 
reduction (p < 0.05) in OVA-specific IgE (Fig 4B).  
 
Effect of CJE on airway hyper-responsive-
ness 
 
In OVA-sensitized and -challenged mice, the 
dose-response curve of percent Penh was 
shifted to the left compared with that of control 

mice (Fig 5). In addition, the percent Penh 
produced by methacholine administration (at 
concentrations from 2.5 mg/ml to 50 mg/ml) 
increased significantly (p < 0.05) in the OVA-
sensitized and -challenged mice compared with 
controls. Moreover, OVA-sensitized and -
challenged mice that were treated with CJE 
showed a concentration-response curve that 
shifted (p < 0.05) to the right compared with that 
of untreated mice.  

 
Fig 5: Effects of CJE on airway responsiveness in 
OVA-sensitized and -challenged mice. Each value 
indicates the mean ± SEM from five separate 
experiments (n = 6 per group). *p < 0.05 vs. saline; #p 
< 0.05 vs. OVA. 
 
DISCUSSION  
 
Airways are unique in both their exposure to high 
levels of environmental oxidants and their 
unusually high concentration of extracellular 
oxidants [23]. Therefore, the role of oxidative 
stress in asthma is gaining increasing scientific 
attention. In recent years, many marine algae 
extracts have been demonstrated to have strong 
antioxidant properties [24,25]. On the basis of 
the information, before investigating the effects 
of a CJE in a murine model of OVA-induced 
asthma, we assessed the polyphenolic contents 
of the CJE. Polyphenols from marine algae, 
called phlorotannins, have received the greatest 
attention and have been investigated extensively 
because they have high capacity for scavenging 
free radicals and have few side effects [26]. Our 
study has shown that the total phenolic content 
was high in the EtOH extract of C. japonica. This 
finding of high phenolic and low carbohydrate 
content in red algae is consistent with previously 
published results for brown algae [27].  
 
As shown in Figure 1, we found that the ethanol 
fraction from the CJE exhibited strong free 
radical scavenging activity. This suggests that 
CJE should be considered as a drug for the 
prevention or treatment of ROS-related 
diseases.  
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Airway allergen challenge causes a significant 
tissue infiltration of eosinophils in both humans 
and mice [28]. In the present study, CJE 
treatment noticeably suppressed infiltration of 
eosinophils in BAL fluids of mice (Fig 2). The 
results of histological examination of the lung 
section are in agreement with the cell numbers in 
BAL fluids (Fig 3). CJE remarkably reduced the 
infiltration of inflammatory cells in the 
peribronchiolar and perivascular areas of the 
mice. Administration of the CJE also resulted in 
a marked improvement of occlusion of airway 
diameter [29].  
 
Th2 lymphocytes play essential roles in the 
initiation and development of asthma by 
releasing Th2 cytokines [30,31]. Of these, IL-4 
especially induces isotype switching in B cells, 
from IgG to IgE production, regulation of the 
chemokines required for eosinophil migration, 
and might increase mucus secretion in allergic 
airways [32-34]. In this study, treatment with CJE 
attenuated the increase in IgE (Fig. 4B). The 
CJE-induced reduction in IgE could be attributed 
to a decrease in IL-4 levels. IL-5 is most specific 
to eosinophils and is the major hematopoetin 
responsible for eosinophil growth, differentiation, 
mobilization, recruitment, activation, and 
survival, which induces the release of pro-
inflammatory mediators [35]. It has been 
reported that the infiltration of eosinophils into 
the asthmatic lung leads to degranulation, 
resulting in airway epithelial damage and the 
development of AHR [36]. Therefore, our results 
indicate that the CJE inhibits eosinophil influx, 
which might prevent oxidative burst.  
 
CONCLUSION 
 
Our results strongly indicate that administration 
of CJE markedly alleviates certain asthmatic 
features, including the Th2 cytokine production 
that leads to pulmonary eosinophilia, AHR, and 
increased IgE levels in an experimental mouse 
model. Our results support the hypothesis that 
CJE might prove to be a useful therapeutic 
approach to allergic airway diseases. 
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