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PEAK RATES OF DIURESIS IN 

HEALTHY HUMANS DURING ORAL 

FLUID OVERLOAD 

Timothy D Noakes, Gary Wilson, David A Gray, 
Michael I Lambert, Steven C Dennis 

Objective. To determine whether rates of intestinal fluid 
absorption and renal diuresis can match high rates of fluid 
ingestion in healthy humans exposed to oral fluid overload, 
thereby preventing the development of hyponatraemia 
either by reverse sodium movement across the intestine (the 
Priestley-Haldane effect) or by expansion of the 
extracellular fluid volume. 

Methods. Changes in renal function and in plasma chemical 
measurements in response to an oral fluid overload 
(0.9 - 1.8 1/ h x 3 h) were investigated in 6 healthy control 
subjects at rest, and in a subject with a history of exercise

induced symptomatic hyponatraemia, during both 
prolonged (160-minute) exercise and at rest. 

Findings. All control subjects gained weight (2.7 ± 0.2 kg, 

mean ± standard error of mean (SEM)) because the rate of 
oral fluid intake exceeded the peak rate of urine production 
(778 ± 39 rnl / h). Blood volume rose by 7.1 (± 0.5)% and 

plasma sodium concentrations fell progressively from 144 ± 

2.6 to 136 ± 1.1 mmol / 1 (P < 0.05) in the control subjects. 
Plasma potassium and angiotensin II concentrations were 
tmchanged and creatinine clearance was normal ( -125 

rnl/min). Free water clearance reached a maximum of 11.2 ± 

0.9 rnl/min after 2 hours. The increase in body mass could 
be accounted for by calculated or measured changes in 

extra- and intracellular fluid volumes. Similar changes were 
measured in the subject with a previous history of 
symptomatic hyponatraernia. 

Conclusion. The rate of intestinal fluid absorption appeared 
to match the rate of oral fluid ingestion and there was no 
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evidence of fluid accumulation in the intestine with reverse 
sodium movement from the extracellular space into intestinal 
fluid. The results of this study are therefore at variance with 
the Priestley-Haldane hypothesis and suggest that reverse 

sodium movement did not contribute to the hyponatraernia 
induced by oral fluid overload in these subjects. Rather it 
appears that humans may have a limited capacity to excrete 

fluid at rates in excess of -900 rnl/ h in response to higher 
rates of oral fluid intake. When the rate of intestinal fluid 
absorption matches the rate of fluid ingestion and exceeds 

the kidneys' maximum capacity for fluid excretion, the excess 
fluid accumulates in the extra- and intracellular fluid 

compartments, inducing the dilutional hyponatraemia of 
water intoxication . These findings may have relevance to 
other clinical conditions in which hyponatraemia develops in 

response to high rates of oral or intravenous fluid provision. 

S Afr Med] 2001; 91: 85Hl57. 

Since it was first reported in 1981,' symptomatic 
hyponatraernia of exercise induced by oral fluid overloadu ha 

been increasingly recognised in athletes competing in ultra
endurance events including 90 km'-'-' and 160 km/ 24 

footraces/' and the 226 km Ironman Triathlon.• More recently 
the condition has been described in 42.2 km marathon rurmers, 

in military personnel'0 and even in recreational hikers."·" 

There are two potential mechanisms by which oral fluid 

overload can induce hyponatraernia. If the rate of fluid 
absorption from the intestine exceeds the maximum rate of 

renal diuresis, then the total body water will increase causing 
dilution of the serum sodium concentration. 

Alternatively, as proposed by Priestley13 in 1916, 'Pari passu 
with absorption of water from the intestine, sal ts at first pass 

out of the blood into the water in the intestine. As a 

consequence of this Joss of salts the conductivity of the blood 
plasma is diminished, and its proportion of salts to water is 

similarly diminished.' If it is of a sufficient magnitude, this 

reverse sodium movement into the unabsorbed intestinal fluid 

could induce hyponatraernia by a third space effect. It is now 
well established that, when hypotonic solutions with low 

(<50 mmol/1) sodium content are ingested, sodium is rapidly 

transferred from the extracellular space into the ingested fluid 
as it enters the duodenum.'<-16 

Accordingly, the principal aim of this study was to determine 

whether normal humans have a limited capacity for diuresis 
when they ingest fluid at high rates and whether this causes 

hyponatraemia either due to rapid fluid absorption with 

dilution of the serum sodium concentration, or as the result of 
a probable third space effect if the rate of intestinal fluid 
absorption is less than the rate of oral fluid ingestion. 
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To evaluate this, we compared the changes in renal function 
md in plasma chemical measurements in response to oral fluid 
)Verload in 6 healthy control subjects under resting conditions 
md in 1 experimental subject who had developed severe 

.ymptomatic hyponatraemia during the 1992 90 km Comrades 
v1arathon, the ultramarathon race where hyponatraemia of 

xercise was first recognised. '-' 

AT ERIAL AND METHODS 

'he experiments on 6 healthy, athletic male controls with ages 

anging from 28 to 44 years (34 ± 2.6 years, mean ± standard 

rror of the mean (SEM) with masses of 64.9 - 90.3 kg (78.8 ± 

.77 kg) and 1 male ultramarathon runner aged 32 years, with a 

ody mass of 69.5 kg and a history of hyponatraemia during 

xercise, were carried out in accordance with the Declaration of 
[elsinki (1989) of the World Medical Association and approved 

y the Research and Ethics Committee of the Faculty of Health 

ciences of the University of Cape Town. All subjects signed an 
liormed consent before participating in the study and were 

'ee to withdraw at any time. 

The 6 control subjects were studied while each drank 
500 ml of fluid per hour. Fluid was ingested for 3 hours at a 

.1te of 250 ml every 10 minutes in order to maximise the rate of 

astric emptying. '7 Subjects then recovered for a further 
hours. Subjects remained at rest during the study. 

Body mass (Seca Balance, Germany) and urine volume were 
1easured at regular 15-minute intervals during the trial. Blood 

illlples were collected for subsequent determination of 

aemoglobin concentra tions. After centrifugation for 10 
tinutes a t 2 500 g the plasma was removed and stored frozen 
) f subsequent analyses. Total plasma protein content was 
etermined using the Biuret method. Plasma creatinine, 

odium and potassium, and urinary creatinine, odium and 
otas ium concentrations were determined on a Beckman 

stra Synchron AS8 multichannel analyser (Beckman 
• truments, California). Plasma angiotensin II concentrations 

\'ere determined by radio-immunoassay, as previously 
described.18.19 Haemoglobin was determined by the standard 

pectrophotometric cyanomet""taemoglobin techrtique. Changes 
in blood volume were calculated from the measured d ilution of 

the haemoglobin concentration. 

Plasm a and urine osmolalities were measured in an Osmerte 

A Automatic o mometer (Precision Systems Inc., ewton, 

'vtass., USA). 

The experimental subject was studied because he had been 

admitted to hospital with severe symptomatic hyponatraemia 

following his participation in the 90 km Comrades Marathon 
footrace. He es timated that he had ingested approximately 

lSOQ ml/ h during the 10 hours 28 minutes that he ran the race 

(average speed 8.6 km/ h). Following the race, he became 
confused and was referred to hospital where, on admission, he 

was found to be semi-comatose with a erum odium 
concentration of 123 mmol/1, a haemoglobin concentration of 
14 g/ dl and a haematocrit of 42%. Plasma vasopressin 

concentration was 7.6 pg/ ml (normal range 2- 10 pg/ ml), 

plasma renin activity was 9.8 ng/ ml/ h (normal range 
1.0-2.4 ng/ ml / h (erect), 0.5 - 2.6 ng/ ml / h (supine)) and 

plasma aldosterone concentration 632 ng/ 100 ml (normal range 
50 - 350 ng/ 100 ml). Urinary sodium concentra tion ranged 
from 10 to 21 mmol/1. He was treated with the diuretic, 

furosemide, and a slow intravenous infusion of normal saline 
(1 000 ml/ 12 h). 

During the next 36 hours he passed 6.1 litres of urine, 

indicating a fluid excess on admission of greater than 3litres . 
After 36 hours, serum sodium concentration stabilised at 141 

mmol/ 1, haemoglobin concentration was 12.6 g / dl and 
haematocrit 37%, plasma vasopressin concentration was 9.4 
pg/ ml, plasma renin activity was 1.6 ng/ ml / h and plasma 

aldosterone concentration was 169 ng/ 100 ml. Plasma volume 
increased 17% during recovery, as estimated from the equations 
of Dill and Costill."' Further recovery was uneventful. The 
athlete returned to running within a week of hospital 

discharge. 

Five months after this episode of hyponatraemia, the ubject 

consented to being tudied in the laboratory in order that his 
respon e to high rates of fluid ingestion both at re t and during 
exercise might be compared with those measured in the control 

subjects. 

In the fir t study, he ingested 900 ml / h (150 ml every 10 
minutes) of tap water for 3 hours while r sting in the supine 

position. This was followed by a 3-hour recovery period during 
which he did not ingest any additional fluid . 

On the following day he ran on a treadmill for 4 hours at the 

average pace he had sustained during the Comrades Marathon 
(8.6 km/ h). He began by ingesting tap water, a befo re, a t a 

rate of 900 ml / h for the fir t 0 minutes of the trial. Thereafter 
the ra te of fluid ingestion was doubled to 1 00 ml / h (300 ml 
every 10 minutes) while he continued to run for a further 

160 minutes. He then recovered for a fu rther 2 hours while 

lying upine on" bed. He did not drin.k any addi tional fluid 
d uring recovery. 

Attempt to contact and s tudy additional South African 

subjects who have developed hyponatraemia of exerci e, have 
yet to be successful. However, a collabora tive tudy of subjects 

who developed hyponatraemia during the Auckland lronman 

Triathlon ha been initiated (D peedy eta/.- completed 
manuscript in p ress). 

Calculations and statistical methods 

Creatinine and free water clearance were calculated according 
to con ventional equa tions''.n 

Extracellular fluid (ECF) volumes were calculated from 
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changes in blood volume (dBV) according to the following 
equation: dBV% 

ECF2 = ECF1 + (ECF1 x 100). 

Similarly, intracellular fluid (ICF) volumes were calculated 
from changes in plasma osmolality (dOSM) according to the 
following equation: ·dOSM% 

ICF = ICFI + (ICFI X 100). 

The initial ECF volume (I) was calculated as 0.375 (0.57 x 
body mass in kg) and the ICF volume (l) as 1.66667 x ECF 
volume.23 

Statistical methods 

Results from the control group are the mearJS (± SEMs) of 6 
subjects. The statistical significances of changes over time were 
assessed with a one-way analysis of variance ( OVA) for 
repeated measures and located using a Scheffe post hoc test. A 
value of P < 0.05 was regarded as significant. 

R ESU LTS 

Responses to high rates of fluid intake in the control subjects 
are shown in Fig. 1. Cumulative urine production was less than 

the rate of fluid ingestion, hence body mass rose progressively 

5000 Fluid 6 
ingested .... 

with fluid ingestion; the peak increase was in excess of 2.5 kg 

after 3 hours of fluid ingestion. Body mass was still elevated by 
more than 1 kg at the end of the experiment, 2 hours after the 
cessation of fluid ingestion. 

Plasma sodium concentrations and osmolality fell 

progressively for the first 2 hours of the experiment and were 
significantly below the starting value from 100 - 180 minu tes. 
Plasma sodium concentrations then rose during the final 

SO minutes of the experiment. 

· Blood volume rose progressively by up to 7.1 (± 0.5)% for the 

first 240 minutes of the experiment and was still elevated at 300 

minutes. either plasma potassium nor angiotensin II 
concentrations changed during the water ingestion experiment, 
whereas plasma protein and creatinine concentrations fell, 

albe.i t insignificantly. 

Measures of renal function in the control su bjects are shown 

in Fig. 2. Urinary sodium, potassium and creatinine 
concentrations and urine osmolality fell steeply in the first 
90 minutes of the experiment and remained low thereafter. 

Total urinary sodium and potassium losses during the first 3 
hours of the study were 120 ± 24 and 26 ± 8 mmol respectively. 

Creatinine clearance calculated from successive urine 
samples was in the normal range and did not change between 

60 and 300 minutes. The unphysiologically high initial values 
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Fig. 1. Serial changes in cu~ulative fluid ingest~d and urine produced, mass, p_lasma sodium (Na·), potassium (K·) and protein concentrations, 
blood volume, plasma creatmme (Cr) concentratwns, osmolalzty and angwtenszn II concentrations in 6 control subjects studied at rest for 5 
hours. 
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-ig. 2. Serial changes in· urine sodium (Na·) and potassium (K·) 
oncentrations, osmolality, urine creatinine (Cr) concentrations, and 
•ee water (H20 ) clearance in response to oral fluid overload in 6 
ontrol subjects studied at rest for 5 hours. 

•resumably result from the delay in the initial diuresis (Fig. 1) 

ausing unrepresentative urinary samples. 

Free water clearance increased for the first 150 minutes of the 
tudy, reaching a plateau thereafter. The peak rate of free water 

learance was 11.2 (± 0.9) ml/ min. 

Fig. 3 shows cumulative volumes of fluid ingested and urine 
·roduced, and the hourly changes in body masE, plasma 

odium, protein and angiotensin II concentrations in the 

ymptomatic subject at rest and during exercise. 

Under both experimental conditions, rest and exercise body 
. nass increased steadily while fluid was ingested. In both trials, 

he change in mass was similar and exceeded 2 kg at the end of 

150 

St45 

fluid ingestion. Plasma protein concentrations rose during 

exercise but fell progressively under resting conditions. Plasma 
sodium concentrations fell while fluid was ingested in both 

trials but began to rise when fluid ingestion ceased. The extent 
of the fall was similar in both trials. Plasma angiotensin II 
concentrations also fell progressively and equally in both trials. 
The rate of urine production lagged behind the rate of fluid 

ingestion but was similar in both trials. The greater evaporative 
sweat losses during exercise probably explains why the change 
in mass was the same in both trials even though considerably 

more fluid was ingested during the exercise trial. 

During both trials, the symptomatic subject first passed urine 

at 3 hours by which time there was already a large fluid excess 
(Fig. 3). Palpation of the bladder confirmed that retention of 

urine in the bladder did not explain this failu_re of urine 

production. Rates of urine production continued to rise and 
were highest (660 rnl / h) during the Ia t hour of the experiment, 

that is 4 hours after the initiation of drinking and 
1 - 2 hours after the cessation of drinking. 

When compared with the control subjects, the extent of the 

fall in the plasma sodium concentra tion wa similar in the 

symptomatic subject. Indeed, responses to ora l fluid loading in 
the symptomatic ubject and the control were es entially the 

arne except that the control ubjects began to pa s urine at 

higher maximum rates in excess of 799 ml/ h within 120 
minutes of initiation of fluid ingestion. In contrast the peak ra te 

of urine production tended to be lower (660 ml / h) but not 

significantly so in the symp tomatic subject and was reached 
only 4 hours after commencement of fluid ingestion. 

In addition, the onset of urine production wa significantly 

delayed in the symptoma tic subject (180 v. 20 minutes). Plasma 
angiotensin II concentrations declined over time in the 

symptomatic subject during both exerci e and control 

experiment but were maintained in the controls (compare Figs 
3 and 1) . 

Fig. 4 shows cumulative change in calcula ted intra- and 
extracellular fl uid volumes and mea ured changes in urine 
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Fig. 3. Serial changes in cumulative fluid ingested and urine pro~uced, mass, plasma sodi~m (N-),_ protein and angiotensin II concentrations in 
the symptomatic subject studied at rest for 5 hours (0), and dunng 4 hours of low-mtei!Slty exerme followed by 1 hour of rest (• ). 
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Fig. 4. Serial changes in absorbed fluid in 6 control subjects studied 
at rest for 5 hours. Cumulative urine production and fluid 
accumulation in the intracellular (ICF) and extracellular (ECF) 
spaces matched the rate of oral fluid ingestion suggesting that 
intestinal fluid absorption matched the rate of oral fluid ingestion. 

production. Summing these volumes at each time point 
indicates that these changes account for the measured changes 
in body mass. Thus the calculated rate of intestinal fluid 
absorption matched the rate of fluid ingestion in these subjects. 

D ISCUSSIO N 

The most striking finding of this study was that none of the 
control subjects nor the ultramarathon runner with a history of 
symptomatic hyponatraemia was able to increase his rate of 
urine output to equal the high rates of fluid irltake. As a result 
each subject gained weight during the trial. The maximum 
ra tes of urine production varied from 735 to 970 ml / h (Fig. 1) 
in the control subjects. In the symptomatic subject, the rate of 
urine production was somewhat lower (660 ml/h) and the 
onset of diuresis was delayed until 3 hours after the start of 
fluid ingestion (Fig. 3). 

Coincident with the increase in body mass, plasma sodium 
concentrations declined progressively in all subjects, recovering 
only after fluid ingestion had terminated. The extent of the fall 
was similar in both the symptomatic subject who drank 900 
ml / h at rest and in the control subjects who drank 1 500 ml/ h 
at rest, despite large differences in ingested volumes (Figs 1 
and3). 

There are two possible explanations for the lower rates of 
urine production than of fluid ingestion leading to fluid 
retention and the development of hyponatraemia in all these 

subjects. The first possibility is a limiting maximal rate of urine 
production of about 1 000 ml/ h.24 As a result subjects retained 
fluid and gained weight when they ingested fluid at faster 
rates. This hypothesis predicts that the maximum intestinal 
absorptive capacity exceeds the maximum capacity of the 
kidneys to excrete a fluid load, leading to fluid retention. This 
retained fluid would distribute to all body compartments 
leading to dilutional hyponatraemia. Figs 1 and 4 provide 
evidence to support this explanation in these subjects under 
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these experimental conditions. 

Fig. 1 shows that the calculated blood volume rose 
progressively for the first 240 minutes of the experiment as . 
plasma sodium concentrations fell significantly. The peak rise 
in the blood volume (7%) approximates the magnitude of the 
peak reduction in plasma sodium, protein and creatinine 
concentrations (Fig. 1). 

Fig. 4 shows the calculated distribution of the ingested fluid 
at the different time points during the experiment. It shows 
that, at each time point, all the ingested fluid can be accounted 
for either as urine produced or as an increase in intra- or 
extracellular fluid volume. 

Fig. 4 also shows that the time course of fluid distribution 
into the different compartments matched closely the rate at 
which the fluid was ingested. This suggests that the rate of 
intestinal fluid absorption closely matched the rate of fluid 
ingestion of 1.5 1/h . Hence this study suggests that the 
maximum rate of intestinal water absorption in these subjects 
exceeded 1.51/ h, at least at rest. If this is correct, the corollary 
must be that the maximum rate of renal free water clearance is 
somewhat less than that value. 

Other studies25
.26 have indeed calculated maximum rates of 

in•~stinal fluid absorption at rest and found rates of 0.82 and 
1.71/ h respectively. Inrestinal function may indeed be designel 
to provide 'enough but not too much'/ 7 but the results of this 
study suggest that sufficient capacity for intestinal fluid 
absorption exists to exceed the maximum capacity of the 
kidneys to excrete ti .: ingested fluid load. 

Hence this study would seem to confirm the belief that the 
maximum rate of urine production is less than 1 000 ml/h." 
Indeed, in keeping with the findings of Haldane and Priestley/ 
we found that the maximum rate of diuresis in the control 
subjects was around 900 ml/ h (Fig. 1). Fig. 5, redrawn from thE 
data of Haldane and Priestley/" shows the response of Priestle~ 

to high rates of fluid intake. The maximum rate of urine 
production was similar in both experiments despite different 
rates of fluid ingestion. 
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Fig. 5. Priestley's cumulative fluid intake and urine output d11ring 
two eparate experiments in which lze ingested fluid orally at high 
rates. Redrawn from Haldane and Priestley." 
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The contrasting explanation for the development of 
1yponatraemia in response to high rates of fluid ingestion, first 
;uggested by Priestley13 and Haldane and Priestley;28 is that the 
ow rates of urine production result from rates of intestinal 

Nater absorption that are lower than the rates of fluid 
ngestion, leading to fluid accumulation in the small bowel. 

\1ovement of sodium from the extracellular fluid space into the 
m absorbed fluid, which has been demonstrated 
experimentally,''"" therefore provides a possible mechanism for 
1yponatraemia according to the original postulate of Priestley. 13 

For the reasons already described, this study finds no 

vidence in support of this theory. All the fluid ingested can be 
•Ccounted for (Fig. 4), without postulation of delayed intestinal 
luid absorption with reverse sodium movement from the 
xtracellular fluid into the unabsorbed fluid in the small bowel. 

In summary, this study shows that hyponatraemia can be 

nduced in normal subjects at rest, simply by increasing the 
ates of fluid intake to greater than the maximum rates of 

trine production of about 900 rnl/ h in normal humans," and 
ustaining these rates for some hours. At such high rates, the 
ate of intestinal water absorption matched the rate of fluid 
ngestion with distribution of the retained water into the extra

nd intracellular fluid volumes. Movements of fluid into the 

ntracellular compartment occurred in proportion to changes in 

•Smolality and acted to buffer larger changes in ECF 
·smolality. Hence the conclusion is that the human has a 
Jnited capacity to maintain fluid and electrolyte homeostasis 

vhen challenged by a sustained high rate of fluid intake in 

·xcess of 1 l/h."'32 

The practical significance of this study is to show that 
1yponatraemia can occur in healthy subjects with normal renal 
unction when the rates of hypotonic fluid ingestion exceed 

neir maximum rates of urine production of about 1 000 ml/ h 
·ither at rest (this study) or during exercise.'·" Hence, at least at 

est, persons should not ingest fluid at rates > 1 000 ml/ h. 

Juring exercise, it would be possible to ingest fluid at higher 
' ates as another source of fluid loss, sweating induced by 
exercise, would assist in preventing an abnormal expansion of 

the ECF volume, leading to hyponatraemia. However, if 
exercise reduces the ra te of mine production, then 
hyponatraemia might still occur at these rates of oral fluid 

ingestion if sweat rates are relatively low, as seems likely in the 
typical athlete who develops hyponatraemia of exercise.' 

Persons with a reduced capacity for diuresis, for whatever 

reason, would be at greatest risk for the devel~pment of 
hyponatraemia; hence rates of water ingestion should probably 

be less in those subjects. Both the symptomatic subject reported 

in this study and that of Armstrong et a/.32 had maximal rates32 

of urine production somewhat lower than the maximal values 
measured in the healthy control subjects in this study (Fig. 1) or 

in Priestley (Fig. 5). 

Finally, these findings may be relevant to other clinical 
conditions in which hyponatraemia develops in response to 

high rates of fluid provision either orally""32 or intravenously.33
-" 
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