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Optimal outcomes require achieving appropriate 
pharmacokinetic (PK) targets relative to the 
minimum inhibitory concentration (MIC) of the 
organism for a specific antibiotic. Antibiotics may 
be classified as time dependent, where a specific 

time above the MIC (T>MIC) is required to ensure optimal efficacy, 
and as concentration dependent, where the ratio of the area under 
the curve (AUC) to the MIC, also known as the area under the 
inhibitory curve (AUIC) or the peak-to-MIC ratio, more accurately 
reflects efficacy (Fig. 1). The AUIC might also be the most accurate 
parameter for some time-dependent drugs, particularly those with 
longer half-lives, such as the glycopeptides and linezolid. The optimal 
T>MIC for the β-lactams is >50% for penicillins, >60% for the 
cephalosporins and >40% for the carbapenems. For concentration-
dependent agents the AUIC should generally be >120 or the peak-to-
MIC ratio >8 - 10.[1,2] For example, in a study of free antibiotic levels, 
248 patients with infection were examined to establish whether or not 
a target of 50% or 100% T>MIC was achieved. Those who did not 
achieve the 50% T>MIC target were significantly less likely to have 
a positive clinical outcome (odds ratio (OR) 0.68; p=0.009), and a 
positive clinical outcome was associated with increasing 50% T>MIC 
and 100% T>MIC ratios (OR 1.02 and 1.56, respectively; p<0.03).[3] 
Whereas these parameters primarily reflect efficacy, there is also the 
possibility that not achieving them may increase the potential for 
resistance, as selective pressure increases when there is a prolonged 
period below the MIC. Organisms that are more resistant have a 
lower AUIC and/or shorter T>MIC and an increased likelihood of 
survival.[4,5] Therefore, we might need to target drug concentrations 
that are significantly higher than those conventionally presumed 
to be adequate.[6] The mutant prevention concentration (MPC) is 

the concentration above which selective proliferation of mutants is 
unlikely to occur. Mutants are members of the microbial population 
with inherently higher MICs than the population average. Antibiotic 
concentrations that are targeted to the overall MIC would potentially 
be less than the MPC, thereby providing a competitive advantage to 
the mutant members of the microbial population.[7] Therefore, it is 
critical that the dose be optimised; some recommendations advise 
that concentrations should be >4 times the MIC for specific periods 
to prevent selection of resistant organisms – an essential component 
of antibiotic stewardship. Fig. 2 illustrates the concept of MPC and 
potential pitfalls of MIC-based dosing.[8]

Factors impacting on antibiotic 
exposure
Drug exposure varies according to molecular weight, degree of 
ionisation, protein binding and lipid solubility. Lipophilic antibiotics, 
e.g. the fluoroquinolones, have a large volume of distribution (Vd) 
owing to significant tissue and intracellular penetration. Hydrophilic 
agents, however, distribute into the extracellular space only and have 
a much lower Vd. The latter is influenced by a number of factors, 
such as serum albumin level, augmented renal clearance (ARC) and 
fluid losses as occurs with an open abdomen and major surgery with 
blood loss.[9] 

Albumin level is of particular relevance for highly protein-bound 
antibiotics such as teicoplanin (90 - 95% bound), especially in criti-
cally ill patients in whom hypoalbuminaemia frequently occurs. In 
this setting, the Vd and clearance (CL) of the unbound/free fraction 
are increased.[10,11] These PK changes could result in suboptimal drug 
exposure, which may necessitate dose adjustments to ensure that 
therapeutic exposures are achieved.[12] In this regard, Mimoz et al.,[13] 
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utilising a high-dose regimen of teicoplanin 
(12 mg/kg 12-hourly for 48 hours, followed by 
12 mg/kg once daily) in critically ill patients 
with ventilator-associated pneumonia (VAP) 
and severe hypoalbuminaemia (median 
albumin concentration 16.1 g/L), observed 
variations in the fraction of unbound 
teicoplanin of 8 - 42%.

ARC is defined as a creatinine clearance 
(CLcr) >130 mL/min/1.73 m2. The prevalence 
varies from 30% to 85% in critically ill and 
trauma patients and a normal or near-
normal creatinine level may represent a 
high glomerular filtration rate (GFR). 
At-risk populations are those with good 

physiological reserve, of a younger age and 
with lower illness severity scores. In this 
setting, dose increases are appropriate as 
the potential for subtherapeutic dosing 
is high. Increased β-lactam clearance in 
patients with sepsis, but without organ 
dysfunction, can lead to subtherapeutic 
levels for significant periods.[14-17] CLcr 
should be routinely measured if there is 
doubt about the GFR and evidence that an 
8-hour collection may be just as accurate as 
a 24-hour one. A recent prospective, single-
centre observational study of patients with 
VAP treated with doripenem or imipenem 
demonstrated a greater mortality and lower 

cure with CLcr >150  mL/min. Separate 
PK/pharmacodynamic (PD) modelling 
suggested that daily doripenem doses (up to 
2 g 8-hourly) might be required for adequate 
drug exposure, particularly with resistant 
organisms.[17-19] In 128 surgical and medical 
patients encompassing 599 antibiotic days, 
ARC, defined as more than one 24-hour 
CLcr >130  mL/min/1.73m2, was present 
in 51.6% of patients and in 12% it occurred 
throughout the hospital stay. The median 
CLcr was 144 mL/min/1.73m2 (interquartile 
range (IQR) 98 - 196), the ARC patients 
were significantly younger (p<0.001) and 
treatment failure occurred more frequently: 
27.3% v. 12.9%; p=0.04.[17] We investigated 
ertapenem PK in 8 patients with severe sepsis 
(all of whom had normal renal function) 
after the administration of the conventional 
dose of 1 g daily. These patients had a 
lower maximum concentration (Cmax), AUIC 
(0-∞), and higher Vd (26.8 L v. 5.7 L) than 
healthy volunteers, and in 4 patients time 
above 2  mg/L (the MIC breakpoint for 
Enterobacteriaceae) of the unbound fraction 
was <40% and in 2 it was <20%. These 
lower levels correlated negatively with low 
albumin, open abdomen and ARC.[20]

In summary, systemic inflammation 
increases the Vd of hydrophilic agents 
through capillary leak, large-volume 
crystalloid resuscitation and low albumin 
levels. Furthermore, altered organ per-
fusion and therapeutic use of inotropes 
and vasopressors increase the potential 
for ARC. The additive effects of obesity 
and extracorporeal circuits reduce drug 
exposure in an environment where MICs are 
increasing inexorably. The overall effect is to 
increase the potential for treatment failure 
and select for resistance.[21]

What should be done 
to limit the impact of 
reduced drug exposure?
There are two obvious approaches, firstly 
to increase the dose and secondly to alter 
the methods of administration (infusion for 
time-dependent agents and, where possible, 
larger single daily doses for concentration-
dependent drugs), both preferably guided by 
therapeutic drug monitoring (TDM). 

β-lactams
In the abovementioned study by Claus et al.,[17] 
doripenem was administered at four times the 
recommended dose – with good outcome. 
There have been many similar case studies 
of the outcomes when treating resistant 
organisms. In a patient with cystic fibrosis 
infected with multidrug-resistant Burkholderia 
cepacia, who was treated with meropenem 2 g 
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Fig. 1. The pharmacokinetics of antibiotics (MIC = minimum inhibitory concentration; T>MIC = time 
above the MIC; AUIC = area under the inhibitory curve).
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Fig. 2. Antimicrobial therapy rapidly reduces the total number of colony-forming units owing to 
a reduction in the number of susceptible organisms. Resistant organisms are afforded a competitive 
advantage and progressively constitute a bigger proportion of the microbial population.[8]
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8-hourly as a 3-hour infusion, concentrations >8 μg/mL were achieved 
for 52% of the dosing interval, with subsequent improvement.[22] In a 
study of 348 patients using β-lactam therapy (the Defining Antibiotic 
Levels in ICU (DALI) study – a PK point prevalence study using 
empirical therapy in the ‘worst case’ scenario), T>MIC was <50% 
of the dosing interval in 19.2% and <100% in 41.4% of patients. 
Intermittent infusion significantly increased the likelihood of reaching 
the target, whereas increased CLcr was independently associated with 
not reaching the 100% T>MIC target for free drug.[23] Similarly, using 
a Monte Carlo simulation, Nicasio et al.[24] determined that 3-hour 
infusions of cefepime or meropenem, both at 2 g three times daily, 
would be most likely to achieve optimal bactericidal Pseudomonas 
aeruginosa exposure. When this was implemented, infection-related 
mortality decreased by 69% (8.5% v. 21.6%; p=0.029), length of 
stay was reduced (11.7±1 v. 26.1±18.5; p<0.001), there were fewer 
superinfections, and many ‘non-susceptible’ P. aeruginosa infections 
were successfully treated.

Tigecycline
The efficacy of tigecycline (TGC) has often been questioned. Meta-
analyses of monotherapy v. comparators such as the meta-analysis by 
Yahav et al.[25] have been done. The latter included 15 trials (N=7 654) where 
overall mortality was higher (relative risk (RR) 1.29 (1.02 - 1.64)), regardless 
of infection type; clinical and microbiological failure were higher (RR 1.16 
(1.06 - 1.27) and 1.13 (0.99 - 1.30), respectively); and development of 
septic shock was significantly more frequent (RR 7.01 (1.27 - 38.66)). 
However, numerous recent studies using increased doses have shown 
improved outcomes. Patients with hospital-acquired pneumonia were 
randomised to a 150  mg bolus and 75  mg 12-hourly or a 200  mg 
bolus and 100  mg 12-hourly v. imipenem 1 g 8-hourly.[26]  Clinical 
cure with the larger dose (17/20; 85.0%) was numerically superior 
to that with the lower dose (16/23; 69.6%) and to imipenem (18/24; 
75.0%). Despite the increased dose, there were no new safety signals. 
Their conclusion was that higher AUIC ratios may be necessary 
to achieve clinical cure in hospital-acquired pneumonia. Similarly, 
in a retrospective study of patients with VAP, in which the main 
isolates were carbapenem-resistant Acinetobacter (blaOXA-58 and 
blaOXA-23) and Klebsiella pneumoniae (blaKPC-3), high-dose TGC 
was compared with standard dose TGC.[27] Organisms were said to 
be TGC sensitive if the MIC ≤2 mg/L and resistant if the MIC was 
≥8 mg/L. The single independent predictor of clinical cure was high-
dose TGC (OR 6.25 (1.59 - 24.57); p=0.009). 

Fluoroquinolones and aminoglycosides
With regard to the concentration-dependent antibiotics, optimising 
the AUIC of fluoroquinolones reduced the development of resistance 
and was more likely to eradicate the pathogen.[28,29] Aminoglycosides 
are generally used suboptimally. To achieve appropriate targets, a 
much larger dose based on age and weight must be administered once 
per day and the MIC should be low.[30] In general, aminoglycosides are 
administered for short periods as empirical therapy to decrease the 
likelihood of inappropriate therapy for hospital-acquired infections. 
Peak and trough levels and the MIC of the organism (where possible) 
should be documented and subsequent doses titrated accordingly.[31] 
As with other hydrophilic agents where the Vd is increased and in 
the presence of ARC, concentrations may be suboptimal. Amikacin 
15 mg/kg, for example, did not reach effective concentrations, with 
MICs of 8 mg/L, and it is possible that inconsistent concentrations 
may have contributed to the lack of effect in studies that investigated 
whether β-lactam-aminoglycoside combinations confer additional 
efficacy compared with β-lactams only.[32-35] Some reviewers have 
suggested that doses as high as 25 - 30  mg/kg for amikacin and 

7 - 9  mg/kg for gentamicin or tobramycin should be administered 
initially, and thereafter a Cmax/MIC ratio of 8 - 10 should be targeted.[36] Even 
then, levels might not be adequate; 33% of patients receiving 25 mg/kg total 
body weight amikacin load had a Cmax of 60 mg/L, with positive fluid 
balance being the major negative predictive factor. To complicate 
matters further, Monte Carlo simulation of conventional v. high-dose 
extended-interval administration found resistance to be higher against 
pathogens with high MICs if T>MIC was <60%, even if Cmax/MIC was 
high, and that treatment efficacy may not be guaranteed.[37] Illustrative 
dosing schedules for Gram-negative agents may be seen in Table 1.

Colistin
Colistin is a last-line drug and if used inappropriately resistance will 
develop rapidly. The form available in South Africa is a prodrug, 
colistimethate sodium or colistin methanesulfonate (CMS), which 
makes a bolus dose necessary to achieve therapeutic effect. It is effective 
against most Gram-negative bacilli, except Proteus spp., B. cepacia, 
Providencia spp., Serratia marcescens and Morganella spp.[38] The 
appropriate dose must exceed an MIC of 2  mg/L rapidly to prevent 
regrowth of more resistant organisms in heteroresistant populations, 
in which the PK target achieved would be insufficient for eradication.[39]

Consequently, a loading dose of 12 million units (MU) administered 
intravenously over 1 - 2 hours followed by 9 MU daily (4.5 MU twice 
daily or 3  MU three times daily) administered 12 hours after the 
loading dose is required.[38,40,41] Colistin is predominantly cleared 
by unknown non-renal mechanisms and undergoes extensive renal 
tubular reabsorption.[42] In renal dysfunction, elimination of CMS 
is decreased and a greater fraction of the administered dose is 
converted to colistin; however, a loading dose of 12  MU is still 
required, but maintenance doses are reduced according to CLcr 
(Table 2).[40] From murine AUC/MIC colistin data, it is estimated 
that an AUIC of total colistin of 60 is the average achieved without 
exceeding the dose recommended in the package insert (10 MU), 
particularly where CLcr is >70 mL/min.[40] Therefore, in an attempt to 

Table 1. Illustrative dosing and administration schedules for 
Gram-negative bacilli: Normal renal function
• Meropenem 2 g 8-hourly over 3 hours

• Imipenem 1 g 8-hourly over 3 hours

• Doripenem 1 g 8-hourly over 4 hours

• Ertapenem 1 g twice daily

• Cefepime 2 g bolus and 6 g daily over 24 hours*

• Ceftazidime 2 g bolus and 6 g over 24 hours*

• Piperacillin-tazobactam 4.5 g bolus and 18 g daily*
*Temperature ≤25°C.

Table 2. Dosing of colistin
Load with 12 MU

• 60 kg: 3 MU 8-hourly/4.5 MU 12-hourly

Renal impairment – load with 12 MU, then:

• CLCr 20 - 50: 1 - 2 MU 8-hourly

• CLCr 10 - 20: 1 MU every 12 - 18 hours

CRRT – full dose; intermittent HD 1 MU 12-hourly and 1 MU after 
dialysis 

• Never use colistin as monotherapy
MU = million units; CRRT = continuous renal replacement therapy; HD = haemodialysis.
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reduce resistance, colistin is not administered as monotherapy and 
options include the carbapenems (provided the MIC is ≤32 mg/L (for 
carbapenem-resistant Enterobacteriaceae)), tigecycline (Acinetobacter), 
fluoroquinolones, rifampicin and others, even if the organism is resis-
tant to these drugs.[43-45]

The glycopeptides, vancomycin and teicoplanin
These concepts regarding dosing are similar when using agents 
active against Gram-positive organisms. Vancomycin MICs have 
gradually been increasing, which appears to impact on outcome. 
In 158 patients with hospital-, ventilator- or healthcare-associated 
pneumonia caused by methicillin-resistant Staphylococcus aureus, 
72.8% had vancomycin MIC ≥1.5 μg/mL. All-cause mortality at day 28 was 
32.3%, but this increased as the MIC increased (p=0.001). Consequently, 
although controversial, it is recommended that other therapies be 
considered with MICs of 1 - 2 μg/mL.[46] Studies using higher troughs 
(15 - 20 mg/L), loading doses or continuous infusions differ with 
regard to improved clinical or microbiological outcome; however, it is 
hoped that higher dosing may delay resistance by not selecting those 
organisms with higher MICs.[47-50] In another study from the DALI 
group, 42 patients either received continuous infusions (CIs) (57%) 
or intermittent doses (43%) of vancomycin. The PK targets were a 
Cmin ≥15 mg/L or an AUIC >400 (assuming the MIC was 1 mg/L). 
The Cmin was highly variable and achieved in only 57% overall, and 
in 71% (CI) v. 39% (intermittent) (p=0.038). AUIC was achieved 
in 88% (CI) v. 50% (intermittent) (p=0.008). Whereas CI appeared 
to be superior, it was still not adequate in achieving targets, and 
multivariate analysis did not confirm CI as an independent predictor 
of either.[51]

Similarly, teicoplanin is unlikely to achieve therapeutic targets if 
administered in recommended doses as per the package insert. We 
performed a study in patients with normal renal function, in whom 
the standard dose of 400 mg twice daily × 1 day and 400 mg daily 
thereafter was compared with 400 mg twice daily.[52] With the latter, a 
Cmin of 15 mg/L was achieved only on day 3, whereas with the former 
it was never achieved. In another study of 10 patients with chronic 
bone sepsis, 800 mg twice daily was administered for 48 hours and 
then 800 mg daily. Samples were taken 15 minutes pre-, and 30 and 
120 minutes post-teicoplanin dose. The CL of the free fraction (ff) was 
33.5 L/hour (38.0 - 34.7) compared with the bound fraction 7.0  L/hour 
(6.8 -  9.8), and the major determinant of ff was albumin with an OR of 
0.120 (0.078 - 0.161; p<0.001), with a lesser effect of total dose. This 
emphasises that multiple factors impact on serum levels whether or 
not the patients are critically ill.[53] 

Linezolid
Linezolid is a time-dependent antibiotic and efficacy improves as 
the T>MIC increases. However, it is probably only with CI that 
this can this be achieved when MICs are higher.[54]  Boselli et al.[55] 
demonstrated that a loading dose followed by CI led to concentrations 
twice that of a linezolid MIC of 4 mg/L in serum and epithelial lining 
fluid for 100% of the time in critically ill patients with VAP. Why 
is this important? A recent prospective observational study of 30 
critically ill patients showed that levels were frequently inadequate 
with standard dosing of 600 mg twice daily. The range of the AUC24 was 
50.1 - 453.9 mg*h/L (median 143.3) and that of Cmin 0.13 - 14.49 mg/L 
(median 2.06). Similarly AUC24 <200 mg*h/L and Cmin <2 mg/L, both 
of which represent inadequate levels, were observed for 63% and 
50% of patients, respectively.[56] As the achievement of PK targets is 
essential, the dose and method of administration must be optimised, 
and it seems reasonable to utilise TDM where available; where not, 
CI might significantly improve AUIC.[57] This is not a review of TDM, 

but numerous other studies have proven its worth and it is probably 
the way of the future.[58] Illustrative dosing schedules for Gram-
positive agents may be seen in Table 3.

Conclusion
There is currently a crisis with regard to antibiotic resistance. Every 
day that we delay ensures that we are further from a solution. We have 
to use antibiotics in an appropriate manner, reduce inappropriate 
use by all possible means, and reduce the incidence of infection, 
particularly in hospital. We are at the end of the antibiotic era – 
perhaps we can make it last a few more years to allow the introduction 
of new agents, particularly β-lactam antibiotics combined with 
β-lactamase inhibitors, or until new strategies can be devised.
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