Review of Ethnobotanical and Ethnopharmacological Evidences of some Ethiopian Medicinal Plants traditionally used for the Treatment of Cancer

Solomon T Esubalew¹, Anteneh Belete¹, Ermias Lulekal², Tesfaye Gabriel¹, Ephrem Engidawork¹, Kaleab Asres^{1*}

Abstract

Background: Ethiopia is endowed with enormous diversity of plants. However, the majority of these plants have not been scientifically investigated. Traditional knowledge on the use of plants as medicinal agents has been transferred from generation to generation, as guarded secrets, through the word of mouth, and scientific studies on these herbs have not been properly compiled.

Objectives: The main objective of this study was to review published ethnobotanical and ethnopharmacological evidences of Ethiopian medicinal plants with anticancer potentials.

Material and methods: A total of 92 articles have been reviewed. They were obtained from search engines such as PubMed, Science Direct and Google Scholar. The following keywords were used to search for the literature inside the databases: plant extract, anticancer, Ethiopia, antioxidant compounds, cytotoxic compounds and *in vivo* toxicity.

Results: The current literature review revealed that about 136 anticancer plants belonging to 57 families have been identified in Ethiopia. Among these, 98 plant species were reported for their traditional use to treat different types of symptomatic cancers. However, only 29 species were scientifically studied for their *in vitro* cytotoxic or free radical scavenging activities. Plant parts commonly used for preparation of anticancer remedies were leaves (41.4%) and roots (32.8%). Among the reported plant species, whilst the crude extracts of *Artemisia annua*, *Acokanthera schimperi* and *Catha edulis* were found to be potent cytotoxic agents (IC₅₀<15 μ g/ml), the total extracts of *Cassia arereh*, *Rubus steudneri* and *Thymus schimperi* showed strong radical scavenging activity (IC₅₀ <15 μ g/ml). Chronic administration of *Syzygium guineense* hydroalcoholic leaf extract, on the other hand, induced pathological changes in liver and kidney of mice.

Conclusions: Although several Ethiopian plants traditionally used for the treatment of cancer were shown to possess cytotoxic and free radical scavenging activities, in most cases compounds responsible for such activities have not been identified. Therefore, activity-guided detailed phytochemical studies coupled with evaluation of the safety particularly on those plant extracts that demonstrated potent activities should be carried out as this may lead to the discovery of safe and cost effective anticancer agents. [*Ethiop. J. Health Dev.* 2017;31 (3):161-187] **Key words**: Ethiopian medicinal plants, Antioxidant, Anticancer, Ethnopharmacology, Traditional use

Introduction

Cancer is a complex disease that is variable at the cellular and molecular levels in its presentation, development and outcome. Modern managements of cancer, including surgery and radiation therapy, have been the methods of choice to control non-metastatic cancers (1). Metastatic cancers, on the other hand, are managed better by anticancer chemotherapeutic drugs (2) that usually lack specificity and tend to damage rapidly dividing normal tissues, causing side effects like immunosuppression, neurotoxicity and hair loss (3). Therefore, in view of the side effects and growing incidence of cancer both in developed and developing countries, it is only logical to look for novel compounds in order to treat it.

The use of bioactive compounds of plants as a source of anticancer leads has been a major focus in cancer research. These compounds are synthesized in plants by shikimic acid, salonic acid, mevalonic acid and nonmevalonate (MEP) pathways (4). Among these compounds, alkaloids (5), glycosides (6), flavonoids (7) and terpenoids (8) were reported to have anticancer properties. Between 1994 and 1997, out of 87 approved anticancer drugs, 54 were synthesized from natural products or based on the chemical structures of novel natural bioactive compounds (9). Moreover, there has been world-wide increase in the use of herbal and other natural products among cancer patients (10). This might be due to the lack of access to conventional anticancer drugs, financial difficulties, and ineffectiveness and side-effects of most conventional anticancer therapies (11-13).

Traditional knowledge, chemotaxonomic information and random screening have been the main approaches for selecting plant species in anticancer drug research (14). However, selection of plant species based on traditional knowledge relied on generations of empirical experiences with locally available natural

¹School of Pharmacy, College of Health Science, Addis Ababa University, P.O. box 1176, Addis Ababa Ethiopia, E-mail: <u>soltesfa2010@gmail.com</u>, <u>anteneh.belete@aau.edu.et</u>, <u>tesfaye.gabriel@aau.edu.et</u>, ephrem.engidawork@gmail.com, *Corresponding author kasres@gmail.com

²College of Natural and Computational Sciences, Department of Plant Biology and Biodiversity Management, The National Herbarium, Addis Ababa University, P.O. Box 3434, Addis Ababa, Ethopia,

E-mail: ermias.lulekalm@aau.edu.et

resources that can be used to suggest suitable extraction methods for individual plant species (15). In this review, an attempt has been made to summarize reported ethnobotanical and ethnopharmacological studies on Ethiopian medicinal plants that show promising potential for facilitating in-depth investigation of the active constituents, efficacy and safety thereby pave a way for the discovery of anticancer agents.

Methods

Data collection was carried out from November 2014 to December 2015 by analyzing published scientific materials retrieved from online bibliographical databases such as PubMed. Science Direct and Google Scholar; and the book Illustrated Checklist of Medicinal Plants and Other Useful Plants of Ethiopia by Dawit Abebe and his colleagues (22). The following keywords were used to search for the literature inside the databases: plant extract, anticancer, antitumor, antioxidant compounds, cytotoxic compounds and Ethiopia. The criteria followed for inclusion of plants which grow in Ethiopia in this review include reported (i) traditional use for treatment of symptoms described by the English word 'cancer' or 'tumor' (ii) in vitro and in vivo anticancer activities and (iii) pure active anticancer constituents isolated or classes of compounds identified.

Anticancer plants: Due to geographical diversity that favors the occurrence of different habitat and vegetation zones, Ethiopia is considered as the home to many of plant species. More than 60% of Ethiopia's indigenous plant species are believed to have healing potential (16). Among these indigenous species, about 1,000 plants have been used to treat different illnesses for centuries (17). However, ethnomedicinal use of these plants against different diseases was usually kept in Ethiopian Orthodox churches (written in Geez on parchments) or by individual healers and has been passed from generation to generation by word of mouth (18-19).

In this paper, a total of 136 plant species (belonging to 57 families) that grow in Ethiopia are documented (tables 1, 2 and 3). Among these, 98 plant species (belonging to 49 families), traditionally used for treatment of different type of symptomatic cancers in different parts of Ethiopia, only 29 were scientifically investigated for their in vitro and in vivo cytotoxic or radical scavenging activities (table 3). Similarly, only few plant extracts were evaluated for their in vivo toxicity (table 4). The major reason for the small number of pharmacological and toxicological studies may be attributed to the limited number of published ethnobotanical studies and lack of standard laboratory facilities. However, even the available pharmacological studies were seldom based on the traditional use of anticancer medicinal plants.

Medicinal plants used in traditional symptomatic cancer treatments: The etiology and description of cancer in Ethiopian traditional medicinal system is complex and usually tied with socio-cultural and

religious beliefs. Ethiopian traditional healers, being technologically challenged, usually find it difficult to accurately diagnose cancer by linking symptoms with underlying pathological changes. According to studies conducted in different parts of Ethiopia, wide range of symptoms like swelling, gland tuberculosis and skin ulcer are described by the same Amharic term 'Nakarsa/Nekersa'. Unfortunately, this term or its other local language equivalents are also used to describe symptomatic cancer/tumor in different parts of the country (35, 46). Among different local language equivalents of 'Nakarsa/Nekersa'; Keledo around Harla and Dengego, Eastern Ethiopia (47), Minshro nekersa around Northern Ethiopia (48) and Nagarsa around Bale Mountains National Park (49) were reported. To avoid possible confusion, in this review paper, medicinal plants that were only reported to be traditionally used to treat symptom described by the English word 'cancer' or 'tumor' are included.

Ethnobotanical studies considered in this paper were mainly reported from the northwestern (32.6%), southern (30.4%) and southwestern parts (15.2%) of Ethiopia. Asteraceae, Fabaceae and Lamiaceae were the dominant botanical families, containing over 6 plant species each used for traditional cancer treatment. Shrubs constituted the largest growth habit (40 species, 41%) followed by herbs (33 species, 34%) and trees (16 species, 17%) (Tables 1 and 2). Physical mass reduction methods like chopping, crushing and powdering were commonly applied, and the dominant plant parts used were leaves (41.4%) and roots (32.8%). Fresh plant parts were often extracted by water and sometimes their powder form was mixed with honey (7), butter (2) or other plant species extracts. Accessory additives in herbal recipes like honey and butter are important in improving the taste and decreasing adverse effects like vomiting (50). Bat's blood and hyena feces, though it is difficult to guess the rationale behind their use, were also used as additives to treat symptomatic cancer in some parts of the country (35).

Although they lack precision in determination of doses, traditional healers usually establish doses based on age, physical appearance and duration of the illness. Reported unit of measurement used to establish the dose of traditional herbal remedies in Ethiopia were finger length for roots and barks, pinch for powder, water cup for latex/liquid and numbers for leaves, seeds and fruits (35). However, to increase people's trust and compare the clinical effectiveness, pharmacological effects and side-effects with conventional anticancer drugs, therapeutic dose of herbal remedies should be standardized. According to reviewed studies, prepared remedies were commonly taken orally (53.85%), topically (33.85%) and nasally (1.54%). Usually remedies prepared in the form of decoction, infusions and tinctures were taken orally, while remedies in solid or powder form were inserted after incising external tumors (20).

Poly-herbal remedies are products with medicinal properties containing two or more herbal extracts. The

use of poly-herbal therapies might increase or decrease the effectiveness or toxicity of these medicines (51). Synergistic anticancer effect of poly-herbal therapies could be attributed to pharmacologic or biochemical interaction of various active principles of herbs included in the mix. For instance, the combination of curcumin (isolated from *Curcuma longa*) and genistein (isolated from *Glycine max*) was found to increase the potent antiangiogenic effect against human prostate cancer cell line than monotherapy (52). However, herbalists might also use poly-herbal treatment approach, either due to lack of confidence on the curative ability of single remedy or to keep the ingredients secret (46).

Pharmacology: Out of 68 plants reported for their pharmacological activities, 29 were used for symptomatic cancer treatment in Ethiopian folk medicine (table 3). However, ethnobotanical knowledge of the remaining 39 plants was not reported. Large numbers of cytotoxic and/or antioxidant plants were reported from the Asteraceae (9) and Fabaceae (9) families. Reviewed studies used more than 8 solvents to extract the plants and 13 cell lines for cytotoxicity assays. HL-60 cell line was the most commonly used cell line and cytotoxicity studies were conducted using MTT and Alamar Blue assays. For in vitro screenings of cytotoxic plant extracts, IC50 value of 30 μ g/ml represents a cutoff point to be considered for further purification (53). Among reported plant species, crude extracts of Artemisia annua, Acokanthera schimperi and Catha edulis were reported to have an IC₅₀ value of less than 15 μ g/ml.

Overproduction of free radicals, mainly due to oxidative stress, may cause oxidative damage to biomolecules like DNA, lipids, and proteins leading to many serious diseases, including cancer and diabetes in humans (54). Anticancer medicinal plants may exert their antioxidant effect due to compounds like flavonols that counteract free radicals (55). Bioactive flavonol glycosides such as quercetin-3,7-di-O- glycoside isolated from *Lepidium sativum* were reported to have free radical-scavenging and antioxidant properties (56). Similarly, studies on Ethiopian plants also revealed significant antioxidant activities of *Rubus steudneri*, *Cassia arereh*, *Rumex nepalensis*, *Thymus schimperi*, *Senna singueana*, *Plumbago zeylanica*, *Bersama abyssinica* and *Euclea racemosa* (Table 3).

Compounds with in vitro and in vivo studies: Although 136 Ethiopian medicinal plants are claimed to be used to treat cancer traditionally, a few were checked for their cytotoxic and antioxidant bioactive compounds. Among these compounds, potent cytotoxic activity of knipholone anthrone, a compound isolated from *Kniphofia foliosa*, was reported to have IC₅₀ value that ranges between 0.9 \pm 0.1 and 3.3 \pm 0.4 $\mu g/mL$ (60). Similarly, quercetin-3-O-diglucosylrhamnoside and rutin from Chelianthus farinosa, mangiferin from and myricetin-3-O-Bersama abyssinica arabinopyranoside, rutin and myricitrin from Euclea racemosa also showed potent radical-scavenging activity (67).

Plants produce biologically active Toxicity: compounds as chemical defense to repel, poison or kill other species. Studies proved the association of active pharmacological ingredients of some herbal remedies with adverse effects that might range from mild allergic reactions to death (75-78). Ethiopian anticancer such as Calotropis procera, Croton plants macrostachyus, Euphorbia abyssinica, Glinus lotoides, Phytolacca dodecandra, Plumbago zeylanica, Rumex abyssinicus and Thymus schimperi have been reported to cause different types of toxicity (23, 79-82). However, considering the same mechanism shared between toxicity and tumor-regression effects of anticancer plants, only a few toxicity studies have been conducted on these plants (Table 4).

Family	Botanical name	Vernacular name	Geographical location	Gf	Preparation	Parts used	Ro	Other Ailments treated	References
Acanthaceae	<i>Justicia</i> <i>schimperiana</i> (Hochst. ex Nees) T. Anderson	<i>Kitkit</i> (Bnc) or <i>Gulbana</i> (Kt)	North Bench and Doyo Gena (SNNPR), SE	Sh	Fresh roots are crashed, boiled and the cool decoction is drunk before meal. Fresh leaves are pounded and the juice is applied.	R or L	OR or DR	-	(19)
Aloaceae	Aloe sp.	<i>Gurta waqota</i> (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh roots are crashed and the sap is applied on the affected part.	L	DR	-	
Amaranthaceae	Achyranthes aspera L.	Koch ashite (Bnc)	Mizan Aman (SNNPR), SE	Н	Leaves are roasted on metal plate, pounded into powder, mixed with animal butter and smeared on affected part.	L	DR	-	
Amaryllidaceae	<i>Crinum</i> <i>abyssinicum</i> Hochst. ex A.Rich.	Shinkurta/boko lo werabessa (Or)	NA	Bu I	NA	NA	NA	Ear ache	(20)
Apiaceae	Centella asiatica (L.) Urb.	<i>Gorongoch</i> (Sh)	Sheko (SNNPR), SE	Н	Young leaves are crashed and the sap sniffed.	L	INS	-	(19)
	Ferula communis L.	<i>Dog</i> (Am)	Libo Kemkem, South Gondar, NWE	Sh	Fresh root crushed and drunk with water	R	OR	Impotency, erthroblastosis, evil spirit, aphrodisiac	(21)
	<i>Hydrocotyle mannii</i> Hook.f	Ye <i>'ti medhanit</i> (Am)	North Bench (SNNPR), SE	Н	Young leaves are crashed and applied.	L	DR	-	(19)
Apocynaceae	Acokanthera schimperi (A.DC.) Schweinf.	Merenz (Am)	Bahir Dar Zuria, NWE	Sh	Young leaves are crashed and applied.	L	DR	-	
	Carissa spinarum L.	Agam (Am), Hagamsa (Or)	Gondar and Bahir Dar Zuria, NWE	Sh	Fresh leaf pounded and mixed with honey	L	OR	Malaria, snake bite, aphrodisiac, epilepsy, wounds, impotence, gonorrhea, stomach ache, headache	(13, 19-20, 22-23)
	Catharanthus roseus (L.) G.Don	Wuluwusha (Da)	Dawro (SNNPR), SE	Н	Pound; cut	Aerial part	OR	Liver infection, wounds, rheumatism	(24)

Table 1: Traditionally used plant species for treatment of cancer/tumor in Ethiopia.

Asclepiadaceae	Calotropis procera (Aiton) Dryand.	Kobo (Am), Ginda (Ti)	Gewane, NEE	Sh	NA	FI, R, Ltx	NA	Rough skin, leprosy, venereal diseases, kidney stone, Haemorrhoids, Wart, Tuberculosis	(18-20, 26)
	Pentarrhinum insipidum E.Mey.	Barohula (Af)	Gewane, NEE	Sh	Fresh roots are crashed and the sap is applied.	R	DR	-	(19)
	Echidnopsis dammanniana Sprenger	Mureli (Af)	Gewane, NEE	Н	Stems are cut and the sap is applied.	Sm	DR	-	
Asparagaceae	Asparagus africanus Lam.	Seriti/Kestench a (Or & Am)	NA	CI	Powder	R	OR	Gonorrhea, measles, diarrhea, arthritis	(20)
Asphodelaceae	<i>Kniphofia foliosa</i> Hochst.	Shushube(Or)	Bale Goba, SEE	Sh	Dry roots are pounded and the powder is mixed with honey.	R	OR	-	(19)
Asteraceae	Acmella caulirhiza Delile	Kust asht (Bnc)	Mizan Aman (SNNPR), SE	Sh	Young leaves are chewed by the healer and spit on.	L	DR	-	
	Artemisia absinthium L.	Natrara (WI)	Sodo Zuria (SNNPR), SE	Н	Dried leaves are ground and macerated in coffee or tea.	L	OR	-	
	<i>Artemisia afra</i> Jacq. ex Willd.	Agufa (Kt)	Doyo Gena (SNNPR), SE	Н	Dried leaves are ground and macerated in coffee or tea.	L	OR	-	
	Artemisia annua L.	Artemisia (En)	Sodo Zuria (SNNPR), SE	Т	Dried leaves will be ground and decocted in hot water.	L	OR	-	
	<i>Bidens macroptera</i> (Sch.Bip. ex Chiov.) Mesfin	Adey Abeba (Am)	Libo Kemkem, South Gondar, NWE	Н	Dried and powdered	FI	Ns	-	(21)
	<i>Cineraria</i> <i>abyssinica</i> Sch.Bip. ex A.Rich.	Unknown	Bale Robe, SEE	Н	Fresh leaves are pounded and the sap is applied.	L	DR	-	(19)
	<i>Guizotia scabra</i> (Vis.) Chiov.	Sheshota (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh leaves are pounded and the sap is applied.	L	DR	-	
	Solanecio gigas (Vatke) C. Jeffrey	Arbaba (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh leaves are pounded and the sap is applied.	L	DR	-	
	Vernonia amygdalina Delile	<i>Girawa</i> (Am)	Bale, SEE	Sh	NA	L	NA	Wound dressing	(20, 26)

	Vernonia auriculifera Hiern	<i>Barawa</i> (Kt)	Doyo Gena and Wendo Genet (SNNPR), SE	Sh	Fresh leaves are pounded and the sap is applied.	L	DR	-	(19)
	Baccharoides filigera (Oliv. & Hiern) "Isawumi, El-Ghazaly & B.Nord."	<i>Qilxuu</i> (Or), <i>Weynagift</i> (Am)	Nekente, WE Jimma, SWE	Т	Decocted leaf is drunk	L	OR	Ear lesion, wounds	(26-28)
Capparidaceae	Cleome brachycarpa (Forssk.) Vahl ex DC.	Berbere (Af)	Gewane, NEE	Н	Fresh leaves are pounded and the sap is applied.	L	DR	-	(19)
Celastraceae	Gymnosporia buchananii Loes.	<i>Atat</i> (Am), <i>kambolcha</i> (Or)	Gondar, NWE	Sh	Leaves are minced to make paste and mixed with honey	L	OR	-	(23)
	Gymnosporia senegalensis (Lam.) Loes.	Atat (Am)	Denbi, NWE	Sh		L	OR	Snake repellent	(24, 29)
Colchicaceae	Gloriosa superba L.	NA	NA	н	Powdered	R	DR	-	(20)
Commelinaceae	Commelina benghalensis L.	Laluncha (Kt)	Doyo Gena (SNNPR), SE	Н	Fresh roots are pounded and the sap is applied.				(19)
Convolvulaceae	<i>Ipomoea</i> sp.	Filatsut (Am)	Zegie Peninsula, NWE		Making small opening and inserting	R	DR	-	(30)
Crassulaceae	Kalanchoe petitiana A. Rich.	<i>Endahula</i> (Am) <i>Anchura</i> (Or)	Bale, SEE	Η	Fresh leaves are roasted for 2 minutes and applied.	L	DR	Gonorrhea, syphilis, trachoma, tapeworm infection	(19-20)
	Kalanchoe lanceolata (Forssk.) Pers.	Bosoke (Or)	Nekemte, WE	Н	The juice of freshly squeezed roots and leaf is drunk	R/L	OR	-	(28)
Cucurbitaceae	Lagenaria siceraria (Molina) Standl.	<i>Qil</i> (Am), <i>Basu baqula</i> (Sid)	Hawassa city (SNNPR), SE	CI	Pounded, powdered, and drink	R	OR	Gonorrhea, haemorrhoids, ascaris, mental illness	(20, 31)

Euphorbiaceae	Croton macrostachyus Hochst. ex Delile	<i>Masincho</i> (Sid), <i>Bisana</i> (Am)	Hawassa city (SNNPR), SE	Т	Crushed and inserting to the wound	L/Sd	DR	Malaria, Wound, Gonorrhea, Diarrhea, stomach ache	(19-20, 24, 31-32)
	Euphorbia schimperiana Scheele	Gendalelata (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh roots are pounded and the sap is applied.	R	DR	-	(19)
	Euphorbia tirucalli L.	<i>Kinchib</i> (Am) <i>Anano</i> (Or)	Fiche, CE	Sh	Mixed with bean powder and eat; apply on the skin	Ltx/R	OR/DR	Wound	(33-34)
	Ricinus communis L.	Qenbo'o (Sid), Kobo (Or), Gulo (Am)	Hawassa city (SNNPR), SE	Sh	Chew and swallow/apply	R	OR/ DR	Constipation, as contraceptive	(20, 24, 31- 32)
	Jatropha curcas L.	Ayderke (Am)	NA	Sh	Honey paste of the seed powder	Sd	OR	Gonorrhea, hypertension, tape worm, clotting blood, wound healing	(20, 24)
	Acalypha acrogyna Pax	<i>Gullo</i> (Am)	Gondar, NWE	Sh	Leaves are grinded and mixed with honey	L	OR	-	(23)
Fabaceae	Acacia seyal Delile	Wacho (Sid)	Bensa (SNNPR), SE	Т	Chewing and swallowing	L	OR	Evil eye, swelling	(31)
	Albizia lebbeck (L.) Benth.	NA	Adekfurdu, Tigray, NE	Т	Wheat dough paste of root powder	R	DR	Oral hygiene	(25)
	<i>Calpurnia aurea</i> (Aiton) Benth.	<i>Digita</i> (Am)	Bahir Dar Zuria, NWE	Sh	Dry leaves or seeds are ground, macerated in cold water and drunk.	L/Sd	OR	-	(19)
	Crotalaria agatiflora Schweinf.	Unknown	Bale Goba, SEE	Sh	Dry seeds are ground, mixed with honey and applied.	Sd	DR	-	
	Crotalaria incana L.	Chelke (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh leaves are crashed and the sap applied.	L	DR	-	
	Lonchocarpus laxiflorus Guill. & Perr.	<i>Amera</i> (Am)	Bahir Dar Zuria, NWE	Т	Grounded together with onion and honey	R, L, Bk	DR	-	(23)
	Senna singueana (Delile) Lock	<i>Gefa</i> (Am)	Bahir Dar Zuria, NWE	Sh	Fresh leaves are crashed, macerated and drunk.	L	OR	-	(19)
Flacourtiaceae	Dovyalis abyssinica (A.Rich.) Warb.	Koshim (Am)	Fiche, CE	Sh	Eating 6 – 10 fruits a day	Fr	OR	Abdominal pain	(27, 34)
Iridaceae	Gladiolus candidus (Rendle) Goldblatt	<i>Milas Golgul</i> (Am)	Dega Damot and Deq island, NWE	Н	Powdered and drunk or applied	R	OR/ DR	-	(22, 35)

Lamiaceae	<i>Ajuga leucantha</i> Lukhoba	Tiks asht (Bnc)	North Bench (SNNPR), SE	Н	Fresh leaves are crushed and the sap is applied.	L	DR	-	(19)
	Leonotis ocymifolia (Burm.f.) Iwarsson	<i>Armagusa</i> (Am)	Bale Goba, SEE	Н	Fresh leaves are crashed, macerated overnight and drunk.	L	OR	-	
	Ocimum gratissimum L.	<i>Mekedesisa</i> (Sid)	Wendo Genet (SNNPR), SE	Н	Fresh roots are crushed boiled and drunk.	R	OR	-	
	Premna schimperi Engl.	Xullangee (Or)	Bule Horra, SWE	Sh	Pounding and making s/n	L	OR/DR	Eye diseases, wounds, toothache, haemorrhoids, hypertension	(30, 37)
	Pycnostachys abyssinica Fresen.	Tontona (Kt)	Doyo Gena (SNNPR), SE	Н	Fresh leaves are crushed and the sap is applied.	L	DR	-	(19)
	Rotheca myricoides (Hochst.) Steane & Mabb.	Mardhisiis Aa (Or), Malasincho (Bn)	 Bule Hora, SWE Bensa (SNNPR), SE 	Sh	 Crush the root mix it with butter and apply Chop leaf and eat or apply; 	L; R	OR/DR	Evil eye, stomach bloating, vomiting, urine retention	(32, 35-36, 38)
	<i>Salvia nilotica</i> Juss. ex Jacq.	Barnbanch (Bnc) or Hulegeb/Keske so (Am)	North Bench,(SNNP R), SE; Gonder, NWE	Η	Fresh leaf is grounded with water to make a paste	L	DR	Wounds, bleeding, Herpes simplex, tonsillitis, constipation	(19, 23-24, 27, 39)
	<i>Thymus schimperi</i> Ronniger	<i>Tosigne</i> (Am)	Bale Goba, SEE	Н	Dry leaves are decocted and drunk.	L	OR	-	(19)
Malvaceae	Sida schimperiana Hochst. ex A. Rich.	kote jebessa (Sid)	Wendo Genet (SNNPR), SE	Sh	Fresh leaves and roots are crashed, macerated and drunk.	L and R	OR	-	
Melianthaceae	Bersama abyssinica Fresen.	<i>Azamir</i> (Am)	Bahir Dar Zuria, NWE	Sh	Dry bark is ground, macerated and drunk before meal.	Bk	OR	-	
Menispermaceae	Stephania abyssinica (Quart Dill. & A.Rich.) Walp.	Kalala (Or)	Nekemte, WE	CI	The juice of freshly squeezed root is mixed with honey	R	OR	Cholera, gonorrhea, syphilis, wounds, anthrax	(20-21, 28)
Meliaceae	Lepidotrichilia volkensii (Gürke) JF.Leroy	<i>Tabecho</i> (Bn)	Bensa (SNNPR), SE	Т	Chopped leaf and fruit mixed with water	L/Fr	OR	-	(40)

Moraceae	Ficus carica L.	<i>Beles</i> (Am)	NA	T/ Sh	NA	Bk	NA	Cough, ascariasis, eye diseases, leprosy	(20)
	Dorstenia barnimiana Schweinf.	<i>Work Bemeda</i> (Am)	Bahir Dar Zuria, Dek island and Zegie Peninsula, NWE	H	 Dry roots are ground, mixed with water and honey and drunk; Dry roots are ground, mixed with honey and applied; or Incise and insert into the affected part 	R	DR	Diarrhea, goiter, heart failure, gonorrhea, diabetes	(19-20, 30, 35)
Oxalidaceae	Oxalis corniculata L.	Qinta (Sid)	Wendo Genet (SNNPR), SE	Н	Fresh leaves and roots are crashed and applied with a bandage.	L and R	DR	-	(19)
Phytolaccaceae	Phytolacca dodecandra L'Hér.	Endod (Am)	Bensa and Dawro (SNNPR), SE	Sh	Chopped; pound	L and R	OR	Dandruff, gonorrhea, rabies, amoebic dysentery	(20, 24)
Plantaginaceae	Plantago lanceolata L.	<i>Qorxobi</i> (Or) <i>Yebeglat</i> (Am)	Hawassa city (SNNPR), SE	Η	Crushed, powdered and apply	Sd	DR	Diarrhea, trachoma, cough, scorpion bite, wound, Tinea corporis	(20, 22, 27, 31, 41)
Plumbaginaceae	Plumbago zeylanica L.	<i>Martus</i> (Or); <i>Amira</i> (Am)	Ghimbi, SWE; Zegie Peninsula, NWE and Kilte Awulaelo, Tigray, NE	Н	Leaf squeezed and taken orally; root powder mixed with sulphur and applied topically; crushed and drunk with boiled coffee or tea	L; R	OR; DR	Gonorrhea, leprosy, lung tuberculosis, syphilis, Tinea corporis and Tinea nigra, cutaneous leishmaniasis, wounds, rheumatism, toothache, abdominal colic	(13, 20, 30, 38)
Podocarpaceae	Afrocarpus falcatus (Thunb.) C.N.Page	<i>Bribira</i> (Am)	Dek island, NWE	Т	Powdered dry root mixed with water	R	OR/DR	-	(35)
Polygonaceae	Rumex abyssinicus Jacq.	<i>Mokemoko</i> (Ti)	Seharti Samre, Tigray, NE	Н	Root powder is mixed in spicy stew	R	OR	Gonorrhea, leprosy, lung tuberculosis, fever	(20, 41)
	<i>Rumex nepalensis</i> Spreng.	Goecho (Kt)	Doyo Gena (SNNPR), SE	Н	 Dry roots are ground and taken with food; or Fresh bark is crashed, 	R/Bk	OR/DR	-	(19)

Ethiop. J. Health Dev. 2017;31(3)

					squeezed and the sap is applied.				
	Rumex nervosus Vahl	Huhot (Ti)	Seharti Samre, Tigray, NE	Sh	Crushed and paste applied on affected area	L	DR	-	(19-20, 41)
Punicaceae	Punica granatum L.	<i>Roman</i> (Am)	Libo Kemkem, South Gondar, NWE	Т	Crushed and ate	Fr	OR	Gonorrhea, cough, biliharziasis, diarrhea	(20-21)
Ranunculaceae	Clematis virginiana L.	Fidy (Or)	Bale, SEE	CI	Pounding the leaves, making s/n or mix with butter	L	OR/ DR	-	(42)
	Clematis simensis Fresen.	Yeazo Hareg (Am)	Libo Kemkem, South Gondar, NWE	CI	Crushed and applied	L	DR	-	(19, 21)
Rosaceae	Prunus africana (Hook.f.) Kalkman	Homii (Or), Tikur enchet (Am), Gebrcho (Bn)	Bensa (SNNPR), SE	Т	Powdered bark	Bk, L	OR/DR	Swelling	(19, 39, 43)
Rubiaceae	Pavetta gardeniifolia Hochst. ex A.Rich.	Qadiidaa (Or)	Bule Horra, SWE	Sh	Pounded and applied	R	DR	Liver disease, common cold	(36, 44)
Rutaceae	<i>Clausena anisata</i> (Willd.) Hook.f. ex Benth.	Limich (Am)	Abay Gorge, NWE	Sh	Dry leaves are ground, mixed with honey and eaten.	L	OR	-	(19)
	Zanthoxylum chalybeum Engl.	Ga'da (Sid)	Hawassa city (SNNPR), SE	Т	Powdered and drunk	L	OR	Toothache, common cold	(31-32, 44)
Sapindaceae	Dodonaea viscosa subsp. angustifolia (L.f.) J.G.West	<i>Kitkita</i> (Am)	Bahir Dar Zuria, NWE	Т	 Dry roots are ground, mixed with honey and applied or Dry roots are ground, decocted and drunk. 	R	DR/OR	-	(19)
Simaroubaceae	Brucea antidysenterica J.F.Mill.	Abalo (Am, Or)	1. Jimma, SWE 2. SEE	Sh /T	Dry bark is ground, macerated and drunk before meal.	Sm; Bk	NA	Amoebiasis, Tinea corporis, malaria	(19, 43, 26)

Solanaceae	Discopodium penninervium Hochst.	Chechanga (Kt)	Doyo Gena (SNNPR), SE	Sh	Fresh leaves are crashed and applied.	L	DR	-	(19)
	Solanum americanum Mill.	<i>Tikur awut</i> (Am)	NA	Sh	Leaves are boiled thoroughly and eaten	L; R; Sm	OR/DR	Gonorrhea, leprosy, syphilis, rheumatism, toothache, abdominal colic, epistaxis, bleeding after delivery	(20, 41, 45)
Thymelaeaceae	<i>Gnidia involucrata</i> Steud. ex A.Rich.	Mejrit, demerarit, yezingero telba (Am)	NA	Н	Powdered and paste with honey	R	OR	Gonorrhea, leprosy, syphilis, toothache, heart pain, rheumatism	(19-20, 24)
Verbenaceae	Lantana trifolia L.	Hanshebello (Sid)	Wondo Genet (SNNPR), SE	Sh	Fresh leaves are ground, macerated in cold spring water and drunk.	L	OR	-	(19)
	<i>Lippia adoensis</i> Hochst.	<i>Kessie</i> (Am)	Abay Gorge, NWE	Sh	Dry leaves are ground, macerated in cold water and drunk.	L	OR	-	
Vitaceae	Cyphostemma serpens (Hochst. ex A.Rich.) Desc.	Eiriti (Af)	Gewane, NEE	CI	Dry roots are ground, pasted with honey and eaten and applied.	R	OR and DR	-	

Key:- Growth form (Gf): H= herb, Cl=climber, Sh=shrub, and T: tree;

Parts: Bk=bark, L= leaves, Ltx= Latex, Sd=seed, Fr=fruit, FI= Flower, Sm=stem and R=root;

Geographical locations:CE=central Ethiopia, EE= East Ethiopia, WE= West Ethiopia, SE= South Ethiopia, NE= North Ethiopia, NWE= North West Ethiopia, NE= North East Ethiopia, SWE= South West Ethiopia, SE= South East Ethiopia and SNNPR= Southern Nations, Nationalities and People regional state;

Vernacular Names: Af=Afarigna, Am=Amharigna, Bnc=Benchigna, Bn=Bensa, Da= Dawrigna, En= English, Kt=Kembatigna, Or=Oromigna, Sid=Sidamigna, Sh=Sheko, Ti= Tigrigna and WI=Wolayitigna;

Preparation: s/n= Solution;

Route of application (Ro): OR=Oral, INS=Intranasal and DR=dermal; and

NA = Not available

Table 2: Traditional anticancer medicine with multiple plants prescription

No	Family	Botanical name	Vernacular name	Geographical location	Gf	Preparation	Parts used	Ro	References
1	Cucurbitaceae	Cucumis ficifolius A.Rich.	Yemidir Embuay (Am)	Debre Libanos,	Н	Powder mixed with	R	OR	(13, 22, 27,
	Euphorbiaceae	<i>Euphorbia abyssinica</i> J.F.Gmel.	Q <i>ulqwal</i> (Am)	NWE	Т	water	La		30, 31, 41)
		Euphorbia tirucalli L.	Kinchib (Am)		Sh		La		
	Fabaceae	<i>Calpurnia aurea</i> (Aiton) Benth.	<i>Digita</i> (Am)		Sh		L		
	Malvaceae	Malva verticillata L.	<i>Lut</i> (Am)		Н		R		
	Sapindaceae	Dodonaea viscosa subsp. angustifolia (L.f.) J.G.West	<i>Kitkita</i> (Am)		Т		L		
2	Amaranthaceae	Aerva javanica (Burm.f.) Juss. ex Schult.	<i>Tobia</i> (Am)	Dek island, NWE	Н	Powder mixed with bat's blood	NA	OR	(35)
	Brassicaceae	Lepidium sativum L.	Fetto (Am)		Н		NA		
	Plumbaginaceae	Plumbago zeylanica L.	Amira (Am)		Н		NA		
3	Amaryllidaceace	Crinum abyssinicum Hochst. ex A.Rich.	Gibb Shinkurt (Am)		BI	Powder mixed with hyena feces and	NA	DR	
	Crassulaceae	Kalanchoe petitiana A. Rich.	<i>Endehuahula</i> (Am)		Н	latex	NA		
	Euphorbiaceae	Euphorbia abyssinica J.F.Gmel.	<i>Qulqwal</i> (Am)	-	Т		La		
	Scrophulariaceae	Verbascum sinaiticum Benth.	Qetetina (Am)	-	Sh		NA		
4	Asclepiadaceae	Caralluma speciosa (N.E.Br.) N.E.Br.	Ya'ii Bera (Or)	Harla and Dengego valleys, EE	Н	Crushed and put on the tumor	Sm	DR	(30, 35, 47)
	Colchicaceae	Gloriosa superba L.	Harmel Kubra (Or)		Н		L		
5	Santalaceae	Osyris quadripartita Salzm. ex Decne.	Queret (Am)	Fiche, CE	Sh	Powder dried leaves of <i>O. quadripartita</i>	L	OR	(20, 34)
	Myrsinaceae	Myrsine africana L.	Kechemo (Am)	-	Sh	with dried fruits of <i>M.</i> africana	Fr		
6	Apocynaceae	Carissa spinarum L.	<i>Agam</i> (Am)	Bahir Dar Zuria, NWE	Sh	The mixture of fresh leaves of <i>A</i> .	L	OR	(19)
	Fabaceae	Albizia schimperiana Oliv.	Sessa (Am)	Abay Gorge, NWE	Т	schimperiana and C. spinarum are macerated in cold water for 2 days and the macerated liquid is drunk.	L		

7	Myrtaceae	Syzygium guineense (Willd.) DC.	<i>Dokima</i> (Am)	Bahir Dar Zuria, NWE	Т	Dry leaves and roots of <i>S. guineense</i> and	R&L	OR
	Santalaceae	<i>Osyris quadripartita</i> Salzm. ex Decne.	<i>Queret</i> (Am)	Abay Gorge, NWE	Sh	dry leaves of <i>O.</i> <i>quadripartita</i> are ground, mixed, decocted and drunk.	L	
8	Moraceae	Dorstenia barnimiana Schweinf.	Work Bemeda (Am)	Bahir Dar Zuria, NWE	Н	Fresh roots of <i>D.</i> barnimiana mixed	R	DR
	Ranunculaceae	Clematis simensis Fresen.	Yeazo Hareg (Am)		CI	with fresh leaves of <i>C. simensis</i> pounded and applied.	L	

Key:- Growth form (Gf): H= herb, Sh=shrub, BI=bulbous, CI= climber and T= tree;

Parts: L= leaves, La=latex, Fr=fruit, Sm=stem and R=root;

Geographical locations: CE=central Ethiopia, EE= East Ethiopia and NWE= North West Ethiopia;

Vernacular Names: Am= Amharigna and Or= Oromigna; and

Route of application (Ro): OR= Oral and DR=dermal;

Table 3: In vitro cytotoxicity and radical scavenging evaluation of Ethiopian plants

Family	Botanical name	Plant part	Extract/drug	IC ₅₀ (µg/mL)		Cell line	Test substance	Method	References
				Cytotoxicity	Radical scavenging activities		Substance		
Acanthaceae	Justicia schimperiana	FI	MeOH	219.8	-	HL-60	Crude	Resazurin	(57)
	(Hochst. ex Nees) T. Anderson		CH ₂ Cl ₂	135.6	-			reduction test	
Apiaceae	Ferula communis L.	AI	MeOH	236.6	-				
			CH ₂ Cl ₂	99.9	-				
	Foeniculum vulgare Mill.	L	HD	-	133.3 ± 9	-	Oil	DPPH	(58)
	Coriandrum sativum L.	Sd		-	21.22 ± 2.43			assay	
Apocynaceae	Acokanthera schimperi	L	MeOH	-	7.1	HL-60	Crude	Resazurin	(57)
	(A.DC.) Schweinf.		CH ₂ Cl ₂	-	28.8			reduction test	
	Carissa spinarum L.	R	80% EtOH	-	97.2 ± 4.9	-	Crude	DPPH assay	(59)
Asphodelaceae	Kniphofia foliosa Hochst.	-	-	3.3 ± 0.4	-	B16	knipholone	Alamar	(60)
				1.6 ± 0.3	-	RAW 264.7	anthrone	Blue assay	
				0.5 ± 0.1	-	U937			
				0.9 ± 0.1	-	THP-1			
					22 ± 1.5	-		DPPH assay	(61)

Ethiop. J. Health Dev. 2017;31(3)

Asteraceae	Guizotia scabra (Vis.) Chiov.	FI	MeOH	246.8	-	HL-60	Crude	Resazurin	(57)
			CH ₂ Cl ₂	25.5	-			reduction	
	Vernonia amygdalina Delile	AI	MeOH	158.9	-			test	
			CH ₂ Cl ₂	22.4	-				
	Vernonia hochstetteri	FI	MeOH	230.2	-				
	Sch.Bip. ex Walp.		CH ₂ Cl ₂	140.9	-				
	Artemisia annua L.	L	95% MeOH	3	-	LNCap	Crude	WST-1 assay	(62)
	Artemisia abyssinica Sch.Bip. ex A.Rich.	L	HD	350±5	-	THP-1	Oil	-	(63)
	Xanthium strumarium L.	L	-	7.09	-	HL-60	Squalene	Alamar	(64)
				52.50	-		Xanthatin	Blue assay	
				50.07	-		Stigmaster ol	-	
				24.91	-		β- Sitosterol- O- glucoside		
	Solanecio angulatus (Vahl)	L	MeOH	130.77	-	HL-60	Crude	Alamar	(65)
	C.Jeffrey	FI	MeOH	27.39	-			Blue assay	· · /
			Alkaloid extract	133.72	-		Monocrotali ne	-	
	Senecio hadiensis Forssk.	FI	MeOH	217.65	-	HL-60	Crude	Alamar Blue assay	
	<i>Cineraria abyssinica</i> Sch.Bip. ex A.Rich.	L	80% MeOH	-	5.78	-	Crude	DPPH assay	(66)
				-	3.53	-	Rutin		
Boraginaceae	Cordia monoica Roxb.	L	MeOH	53.2	-	HL-60	Crude	Resazurin	(57)
-			CH ₂ Cl ₂	219.9	-			reduction	
	Cordia sinensis Lam.	L	MeOH	169.3	-			test	
			CH ₂ Cl ₂	206.4	-				
	Cynoglossum coeruleum var.	L	MeOH	183.95	-			Alamar	(65)
	mannii (Baker & C.H.Wright)		CH ₂ Cl ₂	312.62	-			Blue assay	
	Verdc.	FI	MeOH	360.20	-				
	Heliotropium cinerascens	Tw	MeOH	247.91	-				
	DC. & A.DC		CH ₂ Cl ₂	161.31	-				
Celastraceae	Catha edulis (Vahl) Endl.	L	95% MeOH	2.4	-	LNCap	Crude	WST-1 assay	(62)
Chenopodiaceae	Dysphania ambrosioides (L.)	Al	MeOH	44.8	-	HL-60	Crude	Resazurin	(57)
	Mosyakin & Clemants		CH ₂ Cl ₂	219.0	-			reduction test	

Combretaceae	Combretum molle R.Br. ex	Bk	MeOH	>250.0	-				
	G.Don		CH ₂ Cl ₂	>250.0	-				
Ebenaceae	Euclea divinorum Hiern	L	MeOH	>250.0	-				
			CH ₂ Cl ₂	187.7 -					
	Euclea racemosa L.	L	Acetone	-	11.3	-	Crude	DPPH	(67)
				-	26.8		Quercetrin	assay	
				-	14.2		Myricitrin		
				-	9.5		Rutin		
				-	15.8		Myricetin-3- O-arabino- pyranoside		
Euphorbiaceae	Croton macrostachyus	Al	MeOH	108.2	-	HL-60	Crude	Resazurin	(57)
	Hochst. ex Delile		CH ₂ Cl ₂	150.8	-			reduction	
Fabaceae	Albizia schimperiana Oliv.	L	MeOH	184.1	-			test	
			CH ₂ Cl ₂	225.6	-				
	Calpurnia aurea (Aiton)	L	MeOH	147.5	-				
	Benth.		CH ₂ Cl ₂	244.3	-				
	Millettia ferruginea (Hochst.)	AI	MeOH	248.4	-				
	Baker		CH ₂ Cl ₂	87.5	-				
	Cassia arereh Delile	Pd	Petroleum Ether	-	113.2	-	Crude	DPPH assay	(68)
			EtOH	-	8.84				
			H ₂ O	-	16.76				
	<i>Senna singueana</i> (Delile) Lock	L	80% MeOH	-	18.75	-	Crude	DPPH assay	(69)
		Bk		-	6.16				
	Crotalaria agatiflora	Sd	MeOH	> 500	-	HL-60	Crude	Alamar	(65)
	Schweinf.		CH ₂ Cl ₂	> 500	-			Blue assay	
	Crotalaria abbreviata Baker f.	L	MeOH	489.77	-				
			CH ₂ Cl ₂	191.16	-				
	Crotalaria emarginella Vatke	L	MeOH	266.69	-				
	č		CH ₂ Cl ₂	380.69	-				
	Crotalaria incana L.	Tw	MeOH	404.61	-				
		L		232.22	-				
	Crotalaria laburnifolia L.	L	CH ₂ Cl ₂	332.39	-				
		Pd	MeOH	468.75	-				
		Tw	MeOH	401.58	-				
			CH ₂ Cl ₂	173.70	-				
	Lonchocarpus laxiflorus Guill. & Perr.	-	-	-	-		Rotenone	-	(20)

Ethiop. J. Health Dev. 2017;31(3)

Flacourtiaceae	Dovyalis abyssinica (A.Rich.)	L	MeOH	167.2	-		Crude	Resazurin	(57)
	Warb.		CH ₂ Cl ₂	174.9	-			reduction	
Lamiaceae	Leonotis ocymifolia (Burm.f.)	AI	MeOH	207.9	-			test	
	Iwarsson		CH ₂ Cl ₂	61.0	-				
	Ocimum gratissimum L.	L	MeOH	231.6	-				
			CH ₂ Cl ₂	156.2	-				
Thymus sc	Thymus schimperi Ronniger	L	MeOH	-	45.8±3	-	Crude	DPPH assay	(70)
			Acetone	-	19.8±1.3				
			80% MeOH	-	11.1±1				
	Rosmarinus officinalis L.	L	HD	-	28.08 ± 1.97	-	Oil	DPPH assay	(58)
	<i>Micromeria imbricata</i> (Forssk.) C.Chr.	L	HD	0.013 ± 0.002	-	THP-1	Oil	-	(63)
Meliaceae	Ekebergia capensis Sparrm.	L	MeOH	186.8	-				(57)
			CH ₂ Cl ₂	179.5	-	7			
Melianthaceae	Bersama abyssinica Fresen.	L and Tw	80% EtOH	-	26.0 ± 3.9	-	Crude	DPPH assay	(59)
		L	MeOH	-	7.5	-	Crude	DPPH	(67)
				-	23.7		Isoquercetri n	assay	
				-	22.6		Hyperoside		
				-	20.7		Quercetin- 3-O arabinopyra noside		
				-	> 50		Kaempferol -3-O- arabino- pyranoside		
				-	15.9	1	Mangiferin		
Molluginaceae	Glinus lotoides L.	Sd	<i>n</i> -Hexane	74.6±1.2	-	Caco-2	Crude	MTT assay	(71)
			CH ₂ Cl ₂	140.3±1.3	-	4			
			MeOH	69.7±1.2	-	4			
			H ₂ O	268.4±1	-		_		
			<i>n</i> -Hexane	79.8±1.3	-	Calu-3			
			CH ₂ Cl ₂	112±1.3	-	_			
			MeOH	29.7±1.3	-	_			
			H ₂ O	262.2±1.2	-				(10)
Myrsinaceae	Maesa lanceolata Forssk.	Sd	MeOH, fractionation	72.3	-	HCT116	Quercitrin	Clonogenic assay	(40)

Myrtaceae	Syzygium guineense (Willd.)	L	MeOH	>250.0	-	HL-60	Crude	Resazurin	(57)
	DC.		CH ₂ Cl ₂	119.8	-			reduction test	
Oleaceae	Jasminum abyssinicum Hochst. ex DC.	L	80% EtOH	-	26.3 ± 6.5	-	Crude	DPPH assay	(59)
Plumbaginaceae	Plumbago Zeylanica L.	R	EtOH, CHCl ₃	-	100	-	F ₈ P- 006	DPPH	(72)
C C				-	93.47		F7P- 006	assay	
				-	196.53		FcP- 006		
				-	634.21		F ₃ P- 006		
Polygonaceae	Rumex nepalensis Spreng.	L and Tw	80% EtOH	-	10.7 ± 1.7	-	Crude	DPPH	(59)
		R		-	5.7 ± 0.9			assay	
	Rumex abyssinicus Jacq.	L	95% MeOH	29	-	THP-1	Crude	WST-1 assay	(62)
Pteridaceae	Cheilanthes farinosa	AI	MeOH	-	52.5	-	Crude	DPPH	(67)
	(Forssk.) Kaulf.			-	9.5		Rutin	assay	
				-	15.1		Quercetin- 3-O diglucosyl-		
							rhamnoside		
				-	>58.1	(Kaempferol -3-O- diglucosyl- rhamnoside		
				-	>78		Kaempferol -3-O-gluco- rhamnoside		
				-	23.3		Caffeic acid		
				-	22.6		Chlorogeni c acid		
Rosaceae	Hagenia abyssinica (Bruce ex	Female Fl	MeOH	196.6	-	HL-60	Crude	Resazurin	(57)
	Steud.) J.F.Gmel.		CH ₂ Cl ₂	32.3	-			reduction	
	Rosa abyssinica Lindley	L	MeOH	153.3	-			test	
			CH ₂ Cl ₂	58.7	-	\neg			
	Rubus steudneri Schweinf.	R	80% EtOH	-	5.8 ± 1.1	-	Crude	DPPH assay	(59)
		L	80% MeOH	-	6.5	-	Crude	DPPH	(73)
			Acetone	-	9.8			assay	
			MeOH	-	9.9			-	
	Rubus apetalus Poir.	L	80% MeOH	-	12.3				
			Acetone	-	8.8				
			MeOH	-	8.4				

	Rubus niveus Thunb.	L	80% MeOH	-	19.0				
			Acetone	-	14.5				
			MeOH	-	14.4				
Rubiaceae	Pavetta gardeniifolia Hochst.	L	MeOH	>250.0	-	HL-60	Crude	Resazurin	(57)
	ex A.Rich.		CH ₂ Cl ₂	133.7	-			reduction	
Rutaceae	taceae Clausena anisata (Willd.) Hook.f. ex Benth.	Al	MeOH	118.5	-			test	
			CH ₂ Cl ₂	225.4	-				
Sapindaceae	Dodonaea viscosa subsp. angustifolia (L.f.) J.G.West	L	80% EtOH	-	22.2 ± 1.2	-	Crude	DPPH assay	(59)
Solanaceae	Datura stramonium L.	L	MeOH	120.4	-	HL-60	Crude	Resazurin	(57)
			CH ₂ Cl ₂	106.4	-			reduction	
	Solanum incanum L.	L	MeOH	227.2	-			test	
			CH ₂ Cl ₂	82.0	-				
	Withania somnifera (L.) Dunal	AI	MeOH	221.5	-	_			
			CH ₂ Cl ₂	187.1	-				
Verbenaceae	Verbena officinalis L.	WP	MeOH	225.6	-				
			CH ₂ Cl ₂	175.8	-				
	Lippia adoensis Hochst.	Al	MeOH	>250.0	-				
			CH ₂ Cl ₂	-	-				
	Lippia adoensis var. koseret	L	HD		10.08 ± 0.94	-	Oil	DPPH assay	(58)
Violaceae	<i>Viola abyssinica</i> Steud. ex Oliv.	AI	60% MeOH in H ₂ O	7.6	-	U-937 GTB	Comp. 1 (Cyclotide)	Flourometri c	(74)
				2.6	-		Comp. 2 (Cyclotide)	microcultur e cytotoxicity assay	

Key:- Plant part: Al=Aerial part, Bk=bark, L= leaves, Sd=seed, FI=Flower, Tw=Twig, Pd=Pod, R=root and WP=Whole part;

Extraction solvents/Extraction methods: H₂O= Distilled water, MeOH=Methanol, EtOH= Ethanol, CH₂Cl₂= Dichloromethane, CHCl₃= Chloroform and HD= Hydrodistillation; Cell lines: HL-60= Human promyelocytic leukemia, THP-1= Human leukemic monocyte, HCT116= Human colorectal carcinoma, Calu-3= Human lung adenocarcinoma, Caco-2= Human colorectal adenocarcinoma, LNCap= Human Prostate carcinoma, U-937= Human histiocytic lymphoma, RAW 264.7= Murine monocyte macrophage, B16= Murine melanoma; and

Assays: ABA= Alamar Blue assay, DPPH=1, 1-diphenyl-2-picrylhydrazyl, RRT=Resazurin reduction test, WST-1= 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)- 2H-5-tetrazolio]-1,3-benzene disulfonate and MTT=3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphemyl-tetrazolium bromide

Family	Botanical name	Plant part	Solvent	Experimental animal	Toxicity study (experimental periods), Dose (mg/kg, b.w.), route of administration and LD ₅₀ (mg/kg) b.w. or NOEL	Result	References
Acanthaceae	<i>Justicia schimperiana</i> (Hochst. ex Nees) T. Anderson	L	H₂O	-	Acute toxicity (24 hr), LD ₅₀ >2000	No mortality or signs of toxicity within the 14-day observation period.	83
Apiaceae	Ferula communis L.	-	-	-	-	-	-
	Foeniculum vulgare Mill.						
	Coriandrum sativum L.	Sd	H ₂ O	Swiss albino mice	15000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	84
					LD ₅₀ =2177.5 (lp)	Low mortality and signs of toxicity.	
Apocynaceae	Acokanthera schimperi (A.DC.) Schweinf.	L	H ₂ O and MeOH	Swiss albino mice	Acute toxicity (24 hr), 2000 mg/kg (Or) Subacute toxicity (96 hr), 2000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	85
	Carissa spinarum L.	-	-	-	-	-	-
Asphodelaceae	Kniphofia foliosa Hochst.						
Asteraceae	<i>Guizotia scabra</i> (Vis.) Chiov.	R	H ₂ O	Swiss albino mice	Acute toxicity (24 hr), Ip, LD ₅₀ = 783.4	Mortality and signs of toxicity.	86
			HA		Acute toxicity (24 hr), Ip, LD ₅₀ = 1023		
	Vernonia amygdalina Delile	L	MeOH		LD ₅₀ >5000	No mortality or signs of toxicity within the 14-day observation period.	87
	Vernonia hochstetteri Sch.Bip. ex Walp.	-	-	-	-	-	-
	Artemisia annua L.						
	Artemisia abyssinica Sch.Bip. ex A.Rich.	-					
	Xanthium strumarium L.	-					
	Solanecio angulatus (Vahl) C.Jeffrey						
	Senecio hadiensis Forssk.						
	<i>Cineraria abyssinica</i> Sch.Bip. ex A.Rich.	L	H ₂ O	Wistar albino mice	Acute toxicity (24 hr), 3000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day	88
			HA	1		observation period.	

Table 4: In vivo toxicity evaluation of Ethiopian plants

Boraginaceae	Cordia monoica Roxb.	-	-	-	-	-	-
	Cordia sinensis Lam.						
	Cynoglossum coeruleum var. mannii (Baker & C.H.Wright) Verdc. Heliotropium cinerascens						
Celastraceae	Catha edulis (Vahl) Endl.	L	CHCl ₃ and $(C_2H_5)_2O$	Sprague Dawley rats	Sub-acute toxicity (24 hr), 400 mg/kg (Or)	Mild to moderate kidney damage.	89
Chenopodiaceae	Dysphania ambrosioides (L.) Mosyakin & Clemants	-	-	-	-	-	-
Combretaceae	Combretum molle R.Br. ex G.Don						
Ebenaceae	Euclea divinorum Hiern						
	Euclea racemosa L.						
Euphorbiaceae	Croton macrostachyus Hochst. ex Delile	L	H ₂ O and MeOH	Swiss albino mice	Acute toxicity (24 hr), 1000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	85
			H ₂ O		Sub-acute toxicity (96hr), 1000 mg/kg (Or)	Weight loss	
		R	-	-	Acute toxicity (24hr), 5000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	83
Fabaceae	Albizia schimperiana Oliv.	L	MeOH and CH ₂ Cl ₂	Albino mice	Acute toxicity (24 hr), 2000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	90
	<i>Calpurnia aurea</i> (Aiton) Benth.	L	MeOH	Swiss albino mice	Acute toxicity (24hr), 2000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	91
	<i>Millettia ferruginea</i> (Hochst.) Baker	Sd	HA	Albino wistar rats	Acute toxicity (24 hr), Or, LD ₅₀ = 3500	Low mortality rate and signs of toxicity.	92
	Cassia arereh Delile	-	-	-	-	-	-
	Senna singueana (Delile) Lock	L	HA	Swiss albino mice	Acute toxicity (24 hr), 2000 mg/kg (Or)	No mortality or signs of toxicity within the 14-day observation period.	93
	<i>Crotalaria agatiflora</i> Schweinf.	-	-	-	-	-	-
	Crotalaria abbreviata Baker f.						
	Crotalaria emarginella Vatke						

	Crotalaria incana L.						
	Crotalaria laburnifolia L.						
	Lonchocarpus laxiflorus Guill. & Perr.						
Flacourtiaceae	<i>Dovyalis abyssinica</i> (A.Rich.) Warb.	L	MeOH and CH ₂ Cl ₂	Swiss albino mice	Acute toxicity (24 hr), Or, LD ₅₀ = 1265	Low mortality rate and signs of toxicity.	94
Lamiaceae	Leonotis ocymifolia (Burm.f.) Iwarsson	L and R	H ₂ O	Pregnant rats	<i>In vivo</i> anti-implantation and anti-fertility study (19 days), 300 mg/kg (Or)	Anti-implantation effect.	95
	Ocimum gratissimum L.	-	-	-	-	-	-
	Thymus schimperi Ronniger	L	H ₂ O	Wistar rats	Acute toxicity (24 hr), Or, LD ₅₀ >10,000	No mortality or signs of toxicity within the 14-day observation period.	96
					Sub-chronic toxicity (90 days), 200 mg/kg (Or)	Significant increase in body weight.	
	Rosmarinus officinalis L.	-	-	-	-	-	-
	Micromeria imbricata (Forssk.) C.Chr.						
Meliaceae	Ekebergia capensis Sparrm.						
Melianthaceae	<i>Bersama abyssinica</i> Fresen.	R	HA	Albino mice	Acute toxicity (24 hr), Or, LD ₅₀ = 5044	Mortality and signs of toxicity.	97
Molluginaceae	Glinus lotoides L.	Fr	H ₂ O	Swiss albino mice	Acute toxicity (24 hr), Ip, LD_{50} = 532.6	Mortality and signs of toxicity.	86
			HA		Acute toxicity (24 hr), Ip, LD ₅₀ = 1811	-	
Myrsinaceae	Maesa lanceolata Forssk.		H ₂ O	-	Acute toxicity (24 hr), lp, LD ₅₀ = 4847	-	
			HA		Acute toxicity (24 hr), Ip, LD ₅₀ = 3218		
Myrtaceae	Syzygium guineense (Willd.) DC.	L	1	Wistar albino rats	Acute toxicity (24 hr), Or, LD ₅₀ >5000	No mortality or signs of toxicity within the 14-day observation period.	98
			H ₂ O	Swiss albino mice	Chronic toxicity (6 weeks), Or, 600 mg/kg	Structural damage of the liver and kidney tissues.	99
Oleaceae	Jasminum abyssinicum Hochst. ex DC.	R			Acute toxicity (24hr), Ip, LD ₅₀ = 428.4	Mortality and signs of toxicity.	86
			HA		Acute toxicity (24 hr), Ip, LD ₅₀ = 673.3		

Plumbaginaceae	Plumbago Zeylanica L.	R		Rabbits	Skin irritation test using 9.45% of the crude extract.	Moderate irritation	100
Polygonaceae	Rumex nepalensis Spreng.	-	-	-	-	-	-
	Rumex abyssinicus Jacq.	Rh	H₂O and HA	Albino mice	Acute toxicity (24 hr), Or, LD ₅₀ >5000	No mortality or signs of toxicity within the 15-day observation period.	101
Pteridaceae	Cheilanthes farinosa (Forssk.) Kaulf.	Fro	MeOH	Wistar rats	Acute toxicity (24 hr), Or, 800 mg/kg	No mortality or signs of toxicity within the 10-day observation period.	102
Rosaceae	Hagenia abyssinica (Bruce ex Steud.) J.F.Gmel.	FI	H ₂ O	Albino rats	Single dose toxic effect (5000mg/kg), Or, LD ₅₀ >5000	No mortality or signs of toxicity within the 14-day observation period.	103
					Repeated dose toxic effect (350, 750, and 1500 mg/kg), Or, NOEL>1500		
	Rosa abyssinica Lindley	Fr	HA	Albino Swiss mic	Acute toxicity (24 hr), Or, limited dose at 2000 mg/kg, LD ₅₀ >2000	No mortality or signs of toxicity within the 14-day observation period.	104
	Rubus steudneri Schweinf.	-	-	-	-	-	-
	Rubus apetalus Poir. Rubus niveus Thunb.						
Rubiaceae	Pavetta gardeniifolia Hochst. ex A.Rich.	-					
Rutaceae	<i>Clausena anisata</i> (Willd.) Hook.f. ex Benth.						
Sapindaceae	Dodonaea viscosa subsp. angustifolia (L.f.)	L	H ₂ O	Swiss albino mice	Acute toxicity (24 hr), Ip, LD ₅₀ = 285.5	High mortality rate and signs of toxicity.	86
	J.G.West		HA		Acute toxicity (24 hr), Ip, LD ₅₀ = 322.3		
Solanaceae	Datura stramonium L.	-	-	-	-	-	-
	Solanum incanum L.	R	H₂O	Swiss albino mice	Acute toxicity (24 hr), Or, LD ₅₀ >15,000	No mortality or signs of toxicity within the 14-day observation period.	105
	<i>Withania somnifera</i> (L.) Dunal	L	CHCl₃ and MeOH		Acute toxicity (24 hr), Or, LD ₅₀ >1000	No mortality or signs of toxicity within the 14-day observation period.	106

Verbenaceae	Verbena officinalis L.	-	-	-	-	-	-
	<i>Lippia adoensis</i> Hochst.	L	H ₂ O and EtOH	Swiss albino mice	Acute toxicity (24 hr), Or, 50, 100 and 200 mg/kg	No mortality or signs of toxicity within the 14-day observation period.	75
	Lippia adoensis var. koseret	-	-	-	-	-	-
Violaceae	Viola abyssinica Steud. ex Oliv.						

Key:- LD₅₀=Lethal Dose 50; NOEL=No Observed Effect Level; Hr= Hour, b.w.= body weight

Plant part: L= leaves, Sd=seed, Fr=Fruit, Fl=Flower, Rh=Rhizomes, Fro=Fronds and R=root;

Extraction solvents/Extraction methods: H₂O= Distilled water, MeOH=Methanol, EtOH=Ethanol, CH₂Cl₂= Dichloromethene, (C₂H₅)₂O=Diethyl ether, CHCl₃=Chloroform and HA=Hydroalcololic; and **Route of administration**: Or= Oral and Ip= Intraperitoneal

Conclusions:

The most frequently cited anticancer plants identified by at least four different ethnobotanical studies were Carissa spinarum L., Croton macrostachyus Hochst. ex Delile, Dorstenia barnimiana Schweinf., Plantago lanceolata L., Plumbago zevlanica L., Ricinus communis L., Rotheca myricoides (Hochst.) Steane & Mabb and Salvia nilotica Juss. ex Jacq. (table 1). This might suggest better efficacy of these plants and make them candidate for further scientific studies. However, information regarding specific type of cancer treated, doses of the remedies, methods of preparation and toxicity were not documented by the majority of reviewed ethnobotanical studies. Moreover, a limited number of ethnopharmacological studies, seldom based on the locally available ethnomedicinal knowledge, were conducted on plants that grow in Ethiopia. Therefore, it is imperative to do more detail and comprehensive ethnobotanical studies and carry out mechanistic studies, using different cancer cell lines and tumor models, with the aim of promoting the use of traditional anticancer herbal remedies and discovering novel anticancer agents.

Acknowledgments

Addis Ababa and Jigjiga Universities are gratefully acknowledged for their financial supports. The authors are also grateful to Mr. Tamene Yohannes at the Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia, for provision of reference materials.

References

- Wu H-C, Chang D-K and Huang C-T. Targeted therapy for cancer. J Cancer Mol 2006;2(2): 57– 66.
- 2. Kintzios SE and Barberaki MG. Plants that Fight Cancer. Crc Press, 2004.
- 3. Gore M and Russell D. Principle of cancer care. In: Gore M and Russell D. eds. Cancer in Primary Care. 47-81. London: Martin Dunitz, 2003.
- Taiz L, Taiz E, Zeiger E, Uhart SAE, Uhart HESA, Echeverría HE, Rojo Hernández C, Terrón TU, De Vilardaga A and Vinas XN. Fisiología Vegetal/Plant Physiology. Universitat Jaume I, (Castelló de la Plan, Spain) 2006.
- 5. Kintzios S. Terrestrial plant-derived anticancer agents and plant species used in anticancer research. Crit Rev Plant Sci 2006;25:79–113.
- Ikeda T, Tsumagari H, Honbu T and Nohara T. Cytotoxic activity of steroida lglycosides from *Solanum* plants. Biol Pharm Bull 2003;26:1198-1201.
- Chang K, Kung M, Chow N and Su S. Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21 waf1/cip1 and Wee1. Biochem Pharmacol 2004; 67:717–726.
- Trapp S and Croteau R. Defensive resin biosynthesis in conifers. Annu Rev Plant Biol 2001;52:689–724.
- Cragg G, Newman D and Snader K. Natural products in drug discovery and development. J Nat Prod 1997;60:52–60.

- Tascilar M, de Jong FA, Verweij J and Mathijssen RH. Complementary and Alternative Medicine During Cancer Treatment: Beyond Innocence. The oncologist 2006;11(7):732-41.
- 11. Chartterjee A, Ganguly S, Pal S, Chatterjee A, Mukhopadhyay G and Bhakta R. Attitudes of patients to alternative medicine for cancer treatment. Asia Pac J Cancer Prev 2005;6:125– 129.
- 12. Gedif T and Hahn H. The use of medicinal plants in self-care in rural central Ethiopia. J Ethnopharmacol 2003;87:155–161.
- Abera B. Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia. J Ethnobiol Ethnomed 2014;10:1–15.
- Alonso-Castro A, Villarreal M, Salazar-Olivo L, Gomez-Sancheze M, Dominguez F and Garcia-Carranca A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 2011;133:945–972.
- Galvez M, Martin-Cordero C, Lopez-Lazaro M, Cortes F and Ayuso M. Cytotoxic effects of *Plantago* spp. on cancer cell lines. J Ethnopharmacol 2003;88:125-130.
- 16. Kaba M. Utilization of plant medicine for the treatment of health problems: the case of the Oromo of Chora District, Illubabor Zone, western Ethiopia. Ethiop J Health Dev 1996;10:161–166.
- 17. Fullas F. Ethiopian Traditional Medicine: Common Medicinal Plants in Perspective. Fekadu Fullas, 2001.
- Getahun A. Some Common Medicinal and Poisonous Plants Used in Ethiopian Folk Medicine. Amare Getahun, 1976.
- 19. Esubalew S, Gabriel T, Wondafrash M, Engidawork E, Asres K and Belete A. Ethnobotanical study of medicinal plants used by traditional healers to treat cancer-like symptoms in eleven districts, Ethiopia. 2017: (unpublished).
- 20. Abebe D, Debella A and Urga K. Medicinal Plants and Other Useful Plants of Ethiopia: Illustrated Checklist. Addis Ababa: Ethiopian Health and Nutrition Research Institute, 2003.
- 21. Chekole G, Asfaw Z and Kelbessa E. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J Ethnobiol Ethnomed 2015;11: 4.
- 22. Limenih Y, Umer S and Wolde-Mariam M. Ethnobotanical study on traditional medicinal plants in Dega Damot woreda, Amhara Region, North Ethiopia. Int J Res Pharm Chem 2015;5:258–273.
- 23. Ragunathan M and Abay S. Ethnomedicinal survey of folk drugs used in Bahirdar Zuria district, North West Ethiopia. Indian J Tradit Know 2009;8:281–284.
- 24. Agize M, Demissew S and Asfaw Z. Ethnobotany of medicinal plants in Loma and Gena Bosa districts (woredas) of Dawro zone, southern Ethiopia. Topclass J Herbal Med 2013;2:194–212.

- 25. Yirga G. Assessment of indigenous knowledge of medicinal plants in Central Zone of Tigray, Northern Ethiopia. Afr J Plant Sci 2010;4(1):6-11.
- 26. Wabe N, Mohammed MA and Raju NJ. An ethnobotanical survey of medicinal plants in the Southeast Ethiopia used in traditional medicine. Spatula DD 2011;1(3):153-158.
- 27. Enyew A, Asfaw Z, Kelbessa E and Nagappan R. Ethnobotanical study of traditional medicinal plants in and around Fiche District, central Ethiopia. Curr R J Biol Sci 2014;6: 154–167.
- Suleman S and Alemu T. A survey on utilization of ethnomedicinal plants in Nekemte Town, East Wellega (Oromia), Ethiopia. J Herbs Spices Med Plants 2012;18:34–57.
- Birhanu Z. Ethno-botanical survey on medicinal plants used by ethnic groups of Denbia district, north-western Ethiopia. J Nat Remedies 2011;11:119–123.
- Teklehaymanot T and Giday M. Ethnobotanical study of medicinal plants used by people in Zegie Peninsula, Northwestern Ethiopia. J Ethnobiol Ethnomed 2007;3(1):12.
- 31. Regassa R. Assessment of indigenous knowledge of medicinal plant practice and mode of service delivery in Hawassa city, southern Ethiopia. J Med Plants Res 2013;9:517–535.
- 32. Tekle Y. Medicinal Plants in the Ethno Veterinary Practices of Bensa Woreda, Southern Ethiopia. Open Access Lib J 2015;2(01):1-12.
- Birhanu Z. Traditional Use of Medicinal Plants by the Ethnic Groups of Gondar Zuria District, Northwestern Ethiopia. J Nat Remedies 2013;13: 46–53.
- 34. d'Avigdor E, Wohlmuth H, Asfaw Z and Awas T. The current status of knowledge of herbal medicine and medicinal plants in Fiche, Ethiopia. J Ethnobiol Ethnomed 2014;10:38.
- Teklehaymanot T. Ethnobotanical study of knowledge and medicinal plants use by the people in Dek Island in Ethiopia. J Ethnopharmacol 2009;124(1):69–78.
- 36. Mersha A. Ethnobotanical Study of Medicinal Plants in Guji Agro-pastorilists, Blue Hora District of Borana Zone, Oromia Region, Ethiopia. [MSc Dissertation]: Addis Ababa University; 2011.
- 37. Giday M, Teklehaymanot T, Animut A and Mekonnen Y. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in Northwest Ethiopia. J Ethnopharmacol 2007;110:516–525.
- Teklay A, Abera B and Giday M. An ethnobotanical study of medicinal plants used in Kilte Awulaelo District, Tigray Region of Ethiopia. J Ethnobiol Ethnomed 2013;9:4269– 4269.
- Kefalew A, Asfaw Z and Kelbessa E. Ethnobotany of medicinal plants in Ada'a District, East Shewa Zone of Oromia Regional State, Ethiopia. J Ethnobiol Ethnomed 2015;11:1–28.
- 40. Shin SY, Dekebo A, Dinku W, Terfa A, Lee YH, Lim Y and Yong Y. Identification of an anticancer compound contained in seeds of *Maesa lanceolata*, a medicinal plant in Ethiopia. J Korean Soc Appl Bioll Chem 2014;57(4):519–522.

- 41. Araya S, Abera B and Giday M. Study of plants traditionally used in public and animal health management in Seharti Samre District, Southern Tigray, Ethiopia. J Ethnobiol Ethnomed 2015;11:22.
- 42. Bussmann R, Swartzinsky P, Worede A and Evangelista P. Plant use in Odo-Bulu and Demaro, Bale region, Ethiopia. J Ethnobiol Ethnomed 2011;7:28.
- 43. Abera B. Medicinal plants used in traditional medicine in Jimma Zone, Oromia, Southwest Ethiopia. Ethiop J Health Sci 2003;13:2–8.
- 44. Kidane B, Andel T, Van der Maesen L and Asfaw Z. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia. J Ethnobiol. Ethnomed 2014;10:46.
- 45. Yadav R. Medicinal plants in folk medicine system of Ethiopia. J Poison Med Plants Res 2013;1(1):7-11.
- 46. Teklehaymanot T, Giday M, Medhin G and Mekonnen Y. Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia. J Ethnopharmacol 2007;111(2):271–283.
- 47. Belayneh A and Bussa F. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. J Ethnobiol Ethnomed 2014;10:4269– 4210.
- 48. Abebe D and Ayehu A. Medicinal Plants and Enigmatic Health Practices of Northern Ethiopia. Addis Ababa: BSPE, 1993.
- 49. Yineger H, Kelbessa E, Bekele T and Lulekal E. Plants used in traditional management of human ailments at Bale Mountains National Park, Southeastern Ethiopia. J Med Plants Res 2013;2(6):132–153.
- 50. Tariq A, Mussarat S and Adnan M. Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants. J Ethnopharmacol 2015;164: 96–119.
- 51. Hemaiswarya S and Doble M. Potential synergism of natural products in the treatment of cancer. Phytother Res 2006;20:239-249.
- 52. Aditya N, Shim M, Yang H, Lee Y and Ko S. Antiangiogenic effect of combined treatment with curcumin and genistein on human prostate cancer cell line. J Funct Foods 2014;8:204–213.
- 53. Suffiness M and Pezzuto J. Assays related to cancer drug discovery. In: Suffiness M and Pezzuto J. eds. Methods in Plant Biochemistry: Assays for Bio-Activity. London: Academic Press, 1990.
- Nasri H and Rafieian-Kopaei M. Protective effects of herbal antioxidants on diabetic kidney disease. J Res Med Sci 2014;19:82–83.
- 55. Pahari B, Chakraborty S, Chaudhuri S, Sengupta B and Sengupta P. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: insights from

spectroscopic and quantum chemical studies. Chem Phys Lipids 2012;165:488–496.

- 56. Agarwal J and Verma D. Antioxidant activityguided fractionation of aqueous extracts from *Lepidium sativum* and identification of active flavonol glycosides. Acad Arena 2011;3:14-18.
- 57. Nibret E and Wink M. Trypanocidal and cytotoxic effects of 30 Ethiopian medicinal plants. Z. Naturforsch. C. Biol Sci 2011;66:541–546.
- Mikre W, Rohloff J and Hymete A. Volatile constituents and antioxidant activity of essential oils obtained from important aromatic plants of Ethiopia. J Essent Oil Bear Plants 2007;10: 465– 474.
- 59. Tauchen J, Doskocil I, Caffi C, Lulekal E, Marsik P, Havlik J, Van Damme P and Kokoska L. *In vitro* antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind Crops Prod 2015;74:671–679.
- Habtemariam S. Knipholone anthrone from *Kniphofia foliosa* induces a rapid onset of necrotic cell death in cancer cells. Fitoterapia 2010;81:1013–1019.
- Habtemariam S. Antioxidant activity of knipholone anthrone. Food Chem 2007;102:1042– 1047.
- 62. Worku N, Mossie A, Stich A, Daugschies A, Trettner S, Hemdan NY and Birkenmeier G. Evaluation of the *in vitro* efficacy of *Artemisia annua*, *Rumex abyssinicus*, and *Catha edulis* Forsk extracts in cancer and *Trypanosoma brucei* cells. ISRN Biochem 2013;2013:910308.
- 63. Tariku Y, Hymete A, Hailu A and Rohloff J. Essential oil composition, antileishmanial, and toxicity study of *Artemisia abyssinica* and *Satureja punctata* ssp. *punctata* from Ethiopia. Chem Biodivers 2010;7:1009–1018.
- 64. Nibret E, Youns M, Krauth-Siegel R and Wink M. Biological activities of xanthatin from *Xanthium strumarium* leaves. Phytother Res 2011;25:1883– 1890.
- 65. Nibret E, Sporer F, Asres K and Wink M. Antitrypanosomal and cytotoxic activities of pyrrolizidine alkaloid-producing plants of Ethiopia. J Pharm Pharmacol 2009;61:801–808.
- 66. Sintayehu B, Bucar F, Veeresham C and Asres K. Hepatoprotective and free radical scavenging activities of extracts and a major compound isolated from the leaves of *Cineraria abyssinica* Sch. Bip. exA. Rich. Pharmacog J 2012;4:40–46.
- 67. Asres K, Gibbons S and Bucar F. Radical scavenging compounds from Ethiopian medicinal plants. Ethiop Pharm J 2006;24:23-30.
- Tirfe M, Gebrehiwot M, Gebrelibanos M, Sintayehu B and Gebremedhin G. Radical scavenging activity and preliminary phytochemical screening of pods of *Cassia arereh* Del. (Fabaceae). Momona Ethiop J Sci 2015;7:125-133.
- 69. Gebrelibanos M, Asres K and Veeresham C. *In vitro* radical scavenging activity of the leaf and bark extracts of *Senna singueana* (Del.) Lock. Ethiop Pharm J 2007;25:77–84.

- Dessalegn E, Bultosa G, Haki G and Vasantha H. Antioxidant and α-amylase inhibition activities *in vitro* of various solvent extracts of *Thymus schimperi* Ronniger. J Med Plants Res 2015;9:515–524.
- Mengesha A and Youan B. Anticancer activity and nutritional value of extracts of the seed of *Glinus lotoides*. J Nutr Sci Vitaminol 2010;56:311–318.
- 72. Getahun Y. *In vitro* Antimicrobial activity of *Plumbago zylanica* L. J Nat Sci Res 2014;4:92–99.
- 73. Tadesse S, Asres K and Veeresham C. Antioxidant activities of three *Rubus* species growing in Ethiopia. Ethiop Pharm J 2007;25:103–110.
- 74. Yeshak MY, Burman R, Asres K and Göransson U. Cyclotides from an extreme habitat: characterization of cyclic peptides from *Viola abyssinica* of the Ethiopian highlands. J Nat Prod 2011;74(4):727–731.
- 75. Debella A, Makonnen E, Zerihun L, Abebe D and Teka F. *In vivo* antipyretic studies of the aqueous and ethanol extracts of the leaves of *Ajuga remota* and *Lippia adoensis*. Ethiopian Medical Journal 2005;43(2):111-118.
- Agbabiaka T, Pittler M, Wider B and Ernst E. Serenoa repens (Saw Palmetto). Drug Safety 2009;32:637–647.
- 77. Bielory L. Adverse reactions to complementary and alternative medicine: ragweed's cousin, the coneflower (Echinacea), is "a problem more than a sneeze". Ann Allergy Asthma Immunol 2002;88:7–9.
- 78. Langmead L and Rampton D. Review article: herbal treatment in gastrointestinal and liver disease-benefits and dangers. Aliment Pharmacol Ther 2001;15:1239–1252.
- 79. Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C and Serrano JMG. An evidence-based systematic review of saffron (*Crocus sativus*) by the natural standard research collaboration. J Diet suppl 2011;8(1):58–114.
- Abebe D, Urga K, Debella A, Ambaye C and Dejene A. Survey of poisonous plants in southern Ethiopia. Ethiop J Health Dev 2001;15:209–221.
- Demma J, Engidawork E and Hellman B. Potential genotoxicity of plant extracts used in Ethiopian traditional medicine. J Ethnopharmacol 2009;122:136–142.
- 82. Demma J, Gebre-Mariam T, Asres K, Ergetie W and Engidawork E. Toxicological study on *Glinus lotoides*: A traditionally used taenicidal herb in Ethiopia. J Ethnopharmacol 2007;111:451–457.
- 83. Meresa A, Gemechu W, Basha H, Fekadu N, Teka F, Ashebir R and Tadele A. Herbal Medicines for the Management of Diabetic Mellitus in Ethiopia and Eretria including their Phytochemical Constituents. Am J Adv Drug Deliv 2017;5(1):40-58.
- Eguale T. In vitro and In vivo Evaluation of Anthelmintic Activities of Crude Extracts of Selected Medicinal Plants Against Haemonchus contortus. [MSc Dissertation]: Addis Ababa University; 2005.

- 85. Mohammed T, Erko B and Giday M. Evaluation of antimalarial activity of leaves of *Acokanthera schimperi* and *Croton macrostachyus* against *Plasmodium berghei* in Swiss albino mice. BMC Complement Altern Med 2014;14:314.
- Desta B. Ethiopian traditional herbal drugs. Part I: Studies on the toxicity and therapeutic activity of local taenicidal medications. J Ethnopharmacol 1995;45(1):27-33.
- Bashir A and Alhaji I. Effects of methanol extract of *Vernonia amygdalina* leaf on survival and some biochemical parameters in acute *Trypanosoma brucei brucei* infection. Afr J Biochem Res 2012;6(12):150-8.
- Sintayehu B, Asres K and Raghavendra Y. Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from *Cineraria abyssinica* Sch. Bip. Exa. Rich. J Appl Pharm Sci 2012;2(4):44-49.
- 89. Shewamene Z and Engidawork E. Subacute administration of crude khat (*Catha edulis* F.) extract induces mild to moderate nephrotoxicity in rats. BMC Complement Altern Med 2014;14:66.
- 90. Tesfaye A, Terefe G, Giday M and Shibeshi W. In vivo Anti-Trypanosomal Activity of the Leaf Extracts of Albizia Schimperiana (Fabaceae) Against Trypanosoma Congolense Infection in Mice. Clin Exp Pharmacol 2015;5:2.
- 91. Birhanu Z, Wuhab MA and Abula T. Antimalarial Activity of *Calpurnia aurea* Hydroalcoholic Leaf Extract in Mice Infected with *Plasmodium berghei*. Pharmacologyonline 2015;2:73-79.
- 92. Getu M. Evaluations of Sub-chronic Toxicity of Hydro-ethanolic Seed Extracts of *Albizia* gummifera and *Millettia ferruginea* on Blood, Heart and Small Intestine of Albino Wistar Rats. [MSc Dissertation]: Addis Ababa University; 2016.
- 93. Hiben MG, Sibhat GG, Fanta BS, Gebrezgi HD and Tesema SB. Evaluation of *Senna singueana* leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med 2016;6(1):112–117.
- 94. Tadesse B, Terefe G, Kebede N and Shibeshi W. In Vivo anti-trypanosomal activity of dichloromethane and methanol crude leaf extracts of Dovyalis abyssinica (Salicaceae) against Trypanosoma congolense. BMC Complement Altern Med 2015;15:278.
- 95. Tafesse G, Mekonnen Y and Makonnen E. *In vivo* and *In vitro* Anti-fertility and Antiimplantation Properties of *Leonotis ocymifolia* in Rats. Afr J Trad CAM 2005;2(2):103-112.
- 96. Debelo N, Afework M, Debella A, Makonnen E, Ergete W and Geleta B. Assessment of

Hematological, Biochemical and Histopathological Effects of Acute and Sub-chronic Administration of the Aqueous Leaves Extract of *Thymus schimperi* in Rats. J Clin Toxicol 2016;6:2.

- 97. Mengiste B. Antiplasmodial Activity of Extracts from *Dodonaea angustifolia* L.F. and *Bersama abyssinica* Fresen Against *Plasmodium berghei* in Mice Model. [MSc Dissertation]: Addis Ababa University; 2008.
- 98. Lorato ML. Evaluation of Acute and Subacute Toxicity of Methanol Extract of *Syzygium guineense* Leaves on the Histology of the Liver and Kidney and Biochemical Compositions of Blood in Rats. [MSc Dissertation]: Addis Ababa University; 2016.
- 99. Amare G. Chronic Effects of the Aqueous Leaf Extract of *Syzygium guineense* on Some Blood Parameters and Histopathology of Liver and Kidney of Mice. [MSc Dissertation]: Addis Ababa University; 2009.
- 100. Teshome K, Gebre-Mariam T, Asres K, Perry F and Engidawork E. Toxicity studies on dermal application of plant extract of *Plumbago zeylanica* used in Ethiopian traditional medicine. J Ethnopharmacol 2008;117(2):236-48.
- 101. Mekonnen T, Urga K and Engidawork E. Evaluation of the diuretic and analgesic activities of the rhizomes of *Rumex abyssinicus* Jacq in mice. J Ethnopharmacol 2010;127:433-439.
- 102. Yonathan M, Asres K, Assefa A and Bucar F. *In vivo* anti-inflammatory and anti-nociceptive activities of *Cheilanthes farinose*. J Ethnopharmacol 2006;108:462-470.
- 103. Kimmo JD. Toxicological Study of *Glinus* lotoides and Hagenia abyssinica: Traditionally used Taenicidal Herbs in Ethiopia. [MSc Dissertation]: Addis Ababa University; 2005.
- 104. Fekadu N, Shibeshi W and Engidawork E. Evaluation of the Antidepressant-like Activity of the Crude Extract and Solvent Fractions of *Rosa Abyssinica* Lindley (Rosaceae) Using Rodent Models of Depression. Clin Exp Pharmacol 2016;6:3.
- 105. Assefa A, Urga K, Guta M, Melaku D, Mekonen W, Melesse M, Senbeta A and Kidanemariam T. Spasmolytic Activity of the Aqueous Root Extract of *Solanum incanum*, Solanaceae. Ethiop J Biol Sci 2006;5(2):137-146.
- 106. Dame ZT, Petros B and Mekonnen Y. Evaluation of anti-*Plasmodium berghei* activity of crude and column fractions of extracts from *Withania somnifera*. Turk J Biol 2013;37:147-150.