# Risk factors for candida infection of the genital tract in the tropics

Dou Na, Li Weiping, Zhao Enfeng, Wang Chan, Xiao Zhaozhao, Zhou Honghui

Department of Gynecology and Obstetrics, Peoples Liberation Army General Hospital

## Abstract

Objective: To investigate the risk factors associated with candida infection of the genital tract in the tropics.

**Methods:** We performed questionnaire survey and experiments at the Hainan branch of General Hospital of People's Liberation Army, Hainan General Hospital and Sanya Maternity and Child Health Care Hospital in 2013. Controls were without Candida infection of genital tract, and cases had from Candida infection.

**Results:** We recruited 689 cases and 652 controls. The average age of cases with Candida infection of the genital tract was higher than that of controls. In the multivariate modeling, marriage (adjusted odds ratio: 2.49, 95% confidential interval: 1.09-5.67) and vaginal lavage (adjusted odds ratio: 4.41, 95% confidential interval: 1.13-5.14) were significantly associated with Candida infection of genital tract in tropics.

**Conclusion:** Candida infection was related with age. Marriage and Vaginal lavage were significant risk factors. Attention should be paid to health education for the prevention of these infections.

Key word: Candida infection, risk factors, genital tract.

## DOI: http://dx.doi.org/10.4314/ahs.v14i4.10

## Introduction

Candidal vaginitis represents one of the most common gynecological disorders<sup>1</sup>. Common risk factors for Candida infection are recent antibiotic use, pregnancy, diabetes mellitus, oral-contraceptives and inadequate therapy<sup>2</sup>.

Isolation of Candida (species) spp. from samples of vaginal exudates is a very frequent thing.

Candida albicans accounts for the majority of cases with Candida infection<sup>3-4</sup>. Almost 75% women will have a candidal vulvovaginitis during their life span, and nearly half of them will suffer from a second event<sup>5</sup>. It is widely perceived that the incidence of Candida infection is rising. This motivated the study to search for potential risk factors and to potentially prevent Candida infection.

Identification of risk factors is a very important way in the prevention of diseases. The objective of this study was to determine the risk factors for Candida infection of genital tract in the tropics and provide a basis for disease infection.

## **Corresponding author:**

Zhou Honghui Department of Gynaecology and Obstetrics, Peoples Liberation Army General Hospital, 28# Fuxing road, Beijing, 100853, China Tel: 86-10-66875547 Fax: 86-10-66938147 Email: zhouhonghuimed@163.com

# Methods

### Study design

This study was a case control study. information on the cases was collected from the Hainan branch of General Hospital of People's Liberation Army, Hainan General Hospital and Sanya Maternity and Child Health Care Hospital from January in 2013 to October 2013 using a detailed questionnaire survey. Cases were sexually active patients. Vaginal examination was performed in the cases. Vaginal secretion examination, microscopic examination and thin prep cytology test (TCT) were employed to diagnose Candida infection of genital tract. Controls were patients without Candida infection who were randomly selected from patients presenting to the hospitals. This study was approved by the Ethics committee of Chinese People's Liberation army General Hospital, and informed consent was acquired from the patients.

Data was collected by physicians. Data included patient baseline demographic characteristics, underlying disease, potential risk factors for Candida infection of genital tract. Risk factor information for cases and controls included: age, marriage, household register, length of residence in Hainan, education, procreation of children, abortion, tight pants wearing, use of sanitary towel, vaginal lavage, use of pantyliners, times of sex, cleaning the vulva before sex, sexual partners, type of registered permanent residence, type of current address, type of current domicile, occupation, disease, ways of cleaning knickers, ways of drying knickers, times of swimming, quency of daily shower, ways of shower, contraceptive method, frequency of shower during menstrual period, cleaning the vulva after sex, fabric of knickers, knickers replacement, working environment.

#### Statistical analysis

Univariate analysis was conducted for each case-control study to identify potential risk factors for Candida infection of Genital tract. The yi spuare or Fisher's Exact Test was used for categorical variables, and independent infection and 97.3% were infected by more than 2 t-test was used for continuous variables.

Variables with p values  $\leq 0.10$  by univariate analyses were included in multivariate modeling. Multivariate analysis was performed by conditional multiple logistic regression for the risk factors associated with Candida infection of the genital tract. Adjusted odd ratios (ORs) were calculated. Categorical covariates analysis were used Indicator. Two-sided p values of <0.05 were considered statistically significant. Sta-

menstrual cycle, sexual during menstrual period, fre- tistical analysis was performed using SPSS ver. 13.0.

#### Results

#### **Cases characteristics**

Total 1341 patients participated in the questionnaire. Among them, 689 patients were infected by Candida spp. 382 infected patients and 263 controls responded to a simplified questionnaire survey. Blank and input errors were excluded from the study. In the cases, only 2.6% (n=683) patients had first time

times. 46.2% (n=671) were unsure of the reason for infection.

33.8% (n=674) infected person were unknown drug treated for disease. In 142 (72.4%, n=196) cases, leucorrhea was abnormal, accompanied with pruritus vulvae.

#### **Risk factors for Candida infection**

Table1 shows the results of univariate analyses. Patients with infection were older (p=0.003).

Table 1 Univariate analyses for risk factors associated with Candida infection of genital tract in tropics

| Variables <sup>a</sup>            | Case      | Control Group(%) | P value | Unadjusted      |
|-----------------------------------|-----------|------------------|---------|-----------------|
| Age, Median (interquartile range) | 35(28-41) | 32(25-38)        | 0.003   | •               |
| Marriage                          |           |                  | <0.001  | 2.0(1.484-2.601 |
| Yes(n=1075)                       | 585(54.4) | 490(45.5)        |         |                 |
| No(n=254)                         | 96(37.8)  | 158(62.2)        |         |                 |
| Length of residence in Hainan     |           |                  | 0.095   |                 |
| Short stay(n=72)                  | 35(48.6)  | 37(51.4)         |         |                 |
| 2-6 months(n=55)                  | 23(41.8)  | 32(58.2)         |         |                 |
| 6-12 months(n=59)                 | 30(50.8)  | 29(49.2)         |         |                 |
| 1-3 years(n=145)                  | 62(42.8)  | 83(57.2)         |         |                 |
| Long term(n=988)                  | 526(53.2) | 462(46.8)        |         |                 |
| Education                         |           |                  | 0.045   |                 |
| Primary school (n=99)             | 50(50.5)  | 49(49.5)         |         |                 |
| Junior school(n=439)              | 233(53.1) | 206(46.9)        |         |                 |
| High school(n=198)                | 101(51.0) | 97(49.0)         |         |                 |
| Special school(n=141)             | 71(50.4)  | 70(49.6)         |         |                 |
| College(n=197)                    | 127(64.5) | 90(35.5)         |         |                 |
| University (n=207)                | 87(42.0)  | 120(58.0)        |         |                 |
| Graduate and above(n=20)          | 12(60.0)  | 8(40.0)          |         |                 |
| Procreation of Children           |           |                  | <0.001  |                 |
| None(n=477)                       | 196(41.1) | 281(58.9)        |         |                 |
| One(n=464)                        | 261(56.3) | 203(43.7)        |         |                 |
| Two(n=314)                        | 173(55.1) | 141(44.9)        |         |                 |
| Three(n=90)                       | 49(54.4)  | 41(45.6)         |         |                 |
| ≥Four(n=11)                       | 7(63.6)   | 4(36.4)          |         |                 |
| Abortion                          |           |                  | <0.001  |                 |
| None(n=641)                       | 263(41.0) | 378(59.0)        |         |                 |
| One(n=335)                        | 180(53.7) | 155(46.3)        |         |                 |
| Two(n=210)                        | 141(67.1) | 69(32.9)         |         |                 |
| Three(n=81)                       | 58(71.6)  | 23(28.4)         |         |                 |
| ≥Four(n=56)                       | 39(69.6)  | 17(30.4)         |         |                 |
| Tight pants wearing               |           |                  | <0.001  | 1.5(1.204-1.870 |
| Yes(n=539)                        | 309(57.3) | 230(42.7)        |         |                 |
| No(n=798)                         | 377(47.2) | 421(52.7)        |         |                 |
| Vaginal lavage                    |           |                  | <0.001  | 1.9(1.347-2.760 |
| Yes(n=198)                        | 138(69.7) | 60(30.3)         |         |                 |
| No(n=421)                         | 229(54.4) | 192(45.6)        |         |                 |
| Cleaning the vulva before sex     |           |                  | 0.067   |                 |
| Day-to-day(n=338)                 | 189(55.9) | 149(44.1)        |         |                 |
| Once in a while(n=133)            | 87(65.4)  | 46(34.6)         |         |                 |
| No(n=97)                          | 64(66.0)  | 33(34.0)         |         |                 |
| Sexual partner                    |           |                  | 0.001   |                 |
| One(n=602)                        | 355(59.0) | 247(41.0)        |         |                 |
| Two(n=16)                         | 15(93.8)  | 1(6.2)           |         |                 |
|                                   |           |                  |         |                 |
| Three(n=6)                        | 1(16.7)   | 5(83.3)          |         |                 |
| $\geq$ Four(n=4)                  | 3(75)     | 1(25)            |         |                 |
| OR=odds                           |           |                  |         |                 |

Ratio a, Only these variables with P values less than ming, menstrual cycle, sexual life during menstrual peor equal to 0.10 are included. The following variable are also tested: household register, use of Pantyliners, use of sanitary towel, times of sex, type of registered permanent residence, type of current address, type of ric of knickers, knickers replacement, working envicurrent domicile, occupation, disease, ways of cleaning knickers, ways of drying of knickers, times of swim- b, OR are available for  $2 \times 2 \chi 2$  test.

riod, frequency of daily shower, ways of shower, contraceptive method, frequency of shower during menstrual period, cleaning the vulva after sex, fabronment.

African Health Sciences Vol 14 Issue 4, December 2014

The average age of cases was 35 years, while for conregister, use of pantyliners, use of sanitary towels, trols it was 32 years. Cases tended to be married than frequency of sexual intercourse, type of registered uninfected control (unadjusted OR: 2.0, p<0.001). permanent residence, type of current address, type of Length of residence in Hainan Province, education and current domicile, occupation, disease, ways of cleancleaning vulva before sex, to some degree, were not ing knickers, ways of drying of knickers, times of associated with infection, demonstrated by P=0.095, swimming, menstrual cycle, sexual intercourse during menstrual periods, frequency of daily shower, ways of 0.045 and 0.067 respectively. Cases had given birth more times, compared with controls (p < 0.001). Abortion was shower, contraceptive method, frequency of shower linked to a high chance of Candida infection (p < 0.001). during menstrual period, cleaning the vulva after sex, Patients always wearing tight pants were more likely to fabric of knickers, knickers replacement and working suffer from infection, compared with these who did not environment in either of case-control study. Data are wear (unadjusted OR:1.5(1.204-1.870), p<0.001). The not shown in Table1. probability of infection in patients with vaginal lav-Table 2 displays the logistic regression analysis for risk age was 1.9 times of control group (unadjusted factors. Since length of residence in Hainan Province OR:1.9(1.347-2.760), P<0.001). Cases commonly maniand education were considered to be potential confested more sexual partners than control (P=0.001). founders, they were included in the subsequent analy-There were no significantly differences in household sis.

Table 2 Logistic regression analysis for risk factors associated with Candida infection of genital tract in tropics

| Variables                     | В       | S.E.      | Wald   | P value | Adjusted OR (95%<br>Cl) |
|-------------------------------|---------|-----------|--------|---------|-------------------------|
| Marriage                      | 0.910   | 0.421     | 4.679  | 0.031   | 2.485(1.089-5.667)      |
| Length of residence in Hainan |         |           |        | 1.000   |                         |
| 2-6 months                    | -21.023 | 11371.907 |        | 0.999   |                         |
| Long term                     | -20.417 | 30980.364 |        | 0.999   |                         |
| Education                     |         |           | 0.021  | 1.000   |                         |
| Junior school                 | -0.523  | 30612.812 |        | 1.000   | 0.593(—)                |
| High school                   | -0.248  | 50747.745 |        | 1.000   | 0.780(—)                |
| Special school                | -20.320 | 51207.827 |        | 1.000   |                         |
| College                       | -42.432 | 52436.590 |        | 0.999   |                         |
| University                    | -65.822 | 2576.564  |        | 0.999   |                         |
| Graduate and above            | -65.956 | 52576.564 |        | 0.999   |                         |
| Procreation of Children       |         |           | 17.744 | P<0.001 |                         |
| One                           | 0.072   | 40879.255 |        | 1.000   | 1.075(—)                |
| Two                           | 0.718   | 42632.209 |        | 1.000   | 2.050(—)                |
| Three                         | -0.029  | 42632.209 |        | 1.000   | 0.132(—)                |
| Abortion                      |         |           | 21.554 | P<0.001 |                         |
| One                           | 42.176  | 10126.212 |        | 0.997   | 2E+018(—)               |
| Тwo                           | 83.645  | 11945.469 |        | 0.994   | 2E+036(—)               |
| Three                         | 88.521  | 11945.469 |        | 0.994   | 2E+038(—)               |
| ≥Four                         | 89.759  | 11945.469 |        | 0.994   | 2E+039(—)               |
| Vaginal lavage                | 0.880   | 0.386     | 5.205  | 0.023   | 2.412(1.132-5.128)      |
| Constant                      | -23.655 | 30981.954 |        | 0.999   | 0.000                   |

one in multivariate modeling. Marriage and vaginal lav-In defining Categorical Variables, Reference Catage were independent risk factors for Candida inegory for Length of residence in Hainan, Education, Procreation of Children and abortion was short term, fection. High education can protect females against infection. Abortion was a dangerous factor, increased Primary school, none and none separately. possibility of illness. Variables in univariate models were examined one by

#### Discussion

In our study, age was a factor related to the infection. In univariate analysis, the average ages in cases was generally older that controls(35 years versus 32 years, p=0.003), which was consistent with previous study that incidence of Candida infection increased with age<sup>6</sup>. In multivariate analysis, patients who had the marriage (married or divorced status) were more prone to vaginal candidiasis (adjusted OR: 2.5(1.089-5.667)). Therefore, married or divorced females should be concerned about Candida infection.

Particular attention should be paid to vaginal lavage. Women carring out vaginal lavage were more likely to develop vaginal candidiasis than no-users (adjusted OR: 2.4(1.132-5.128)). Vaginal lavage increased the case rate by 1.4. Females lacked professional knowledge about lavage and used the wrong methods for lavage. On one hand, lavage caused vaginal dysbacteriosis, especially the laetobacillus, which competed with Candida spp. for nutrients<sup>7</sup>. On the other hand, lavage destroy epithelial cell. As a result, Candida spp. could easily penetrate and invade vaginal surface cells8.

Education was also closey linked to the infection. We discovered that patients with higher education were unlikely to be infected by Candida species. The possible explanation for this outcome maybe that the high educated woman mastered the knowledge of candidal vaginitis and discerned how to protect herself for infection. Along with the data collected in this study that 46.2% (n=671) patients were unsure the reason for infection, it is clear that female knowledge about candidal vaginitis and some preventive methods Recurrent vulvovaginal candidiasis was a problem in is an essential strategy.

Worldwide, observed predisposing factors for Candida infection include pregnancy, diabetes mellitus, contraception and antibiotics<sup>9-10</sup>. In this study, we did not observe the relationship of diabetes mellitus and infection. The reason maybe the fact that only 7 diabetic patients (0.5%, n=1317) responded to the questionnaire survey. Due to the small numbers, this result is not surprising. increased candidal colonization has been shown in several studies in patients using oral contraceptives containing a high estrogen dose<sup>11</sup>. However we did not find that contraceptive use was a risk factor for infection (P=0.328). This discrepancy can be understood when considering sexual behavior of the Chinese and using contraceptive ring. In our survey, only 15.2% patients (n=639) were sexually active, which resulted in no difference of contraceptive between cases and controls.

Brabin and colleagues demonstrated reproductive tract infections induced abortion in girls in rural areas<sup>12</sup>. Meizoso et al. reported three of the cases had predisposing risk factors, like rupture of membranes or intrauterine contraceptive device, and ended in fetal death<sup>13</sup>. Our results revealed abortive women had a high proportion of infection than women without abortion, providing strong evidence that there is a firm relationship between vaginal infection and abortion.

In the present paper, to some extent, we observed the childbearing was the predisposed factor infection. Pregnancy was associated with an increased vaginal colonization rate and stimulate the adherence of C.albicans to vaginal epithelia cells in vitro<sup>2, 14-15</sup>. The more childbearing, the more times of pregnancy, the higher risk of infection. However, we noticed that when patients bore three times, on the contrary, the case rate declined (shown in Table2). Considering the birth control policy, it is normal to observe this evidence due to limited samples available.

Hainan Province located on the southern coast of China with a tropical monsoon climate. No association between tropical monsoon climate and Candida infection had been investigated. In order to research the relationship, we added the length of residence in Hainan to the questionnaire survey. We found long-term residence had an increased vaginal susceptibility to infection than that of short stay. Muggy and relative humid environment favour the growth of Candida species and the temperature in Hainan is suitable for propagation of pathogena. Finally, more females suffer from this disease under this tropic environment in Hainan.

gynecological disorders. Widespread use of antibiotics contributes to an increased prevalence of Candida vaginal infection<sup>16</sup>. In our study, 44.5% females (n=683) were infected at least three times by Candida species. 38.1% infected patients (n=207) admitted that they had used antibiotics in recent 6 mouths. It is necessary to perform further study to investigate the relationship between antibiotics and infection in tropics. This study had several limitations. A relatively small number of cases with diseases, such as diabetes and cancer, were included and we did not analyze the influence of antibiotics on Candida infection between cases and controls in tropics. We need further experiments to research the distribution of Candida spp. isolated from cases and controls in tropics. However, to our knowledge, this is the first report on the risk factors for Candida infection of genital infection in tropics.

#### Conclusions

We found several risk factors for Candida infection. Candida spp. belongs to the pathogenic fungi, its infectivity is the result of interaction by host, fungi, environment and nosocomial factors<sup>17-19</sup>. To understand the mechanism of candidal vulvovaginitis and exploit it for treatment, further studies using new advances in Candida biology as well as high-quality, large-scale data are needed.

#### Acknowledgement:

This work was supported by a grant from Peoples Liberation Army General Hospita, China, No. 2012FCT-SYS-4025.

#### References

1. Sobel JD. Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis[]]. Am J Obstet Gynecol. 1985; 152(7 Pt 2): 924-935.

2. Grigoriou O, Baka S, Makrakis E, et al. Prevalence of clinical vaginal candidiasis in a university hospital and possible risk factors[]]. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2006; 126(1): 121-125. 3. Boselli F, Chiossi G, Garutti P, et al. Preliminary results of the Italian epidemiological study on vulvova-ginitis []]. Minerva Ginecol. 2004; 56(2): 149-153. 4. Ben-Haroush A, Yogev Y, Kaplan B. The importance of diagnostic work-up in the management of candidal vulvovaginitis. A prospective study[J]. Clin *Exp Obstet Gynecol.* 2004; 31(2).

5. Hurley R, De Luvois J. Candida vaginitis[]]. Postrgrad. 1979; 55: 645-647.

6. Pfaller MA, Diekema DJ. Role of sentinel surveillance of candidemia: trends in species distribution and antifungal susceptibility[]]. J Clin Microbiol. 2002; 40(10): 3551-3557.

7. Ferrer J. Vaginal candidosis: epidemiological and etiological factors[]]. International Journal of Gynecology & Obstetrics. 2000; 71: S21-S27.

- 8. Sobel JD, Myer P, Levison ME. Candida albicans adherence to vaginal epithelial cells[]]. J Infect Dis. 1981; 143: 76-82.
- 9. Reed B. Risk factors for candidal vulvovaginitis Obstetrical & Gynecological Survey. 1992; 47: 551-560.
- 10. Saporiti AM, Gomez D, Levalle S, et al. Vaginal candidiasis: etiology and sensitivity profile to antifungal agents in clinical use[]]. Rev Argent Microbiol. 2001; 33(4): 217-222.
- 11. Denning DW, Evans EG, Kibbler CG, et al. Fungal nail disease: a guide to good practice (report of a Working Group of the British Society for Medical Mycology) []]. *BMJ*. 1995; 311(7015): 1277–1281.
- 12. Brabin L, Kemp J, MA, et al. Reproductive tract infections and abortion among adolescent girls in rural Nigeria[]]. The Lancet. 1995; 345(8945): 300-304.
- 13. Meizoso T, Rivera T, MJ Fernández-Aceñero, et al. Intrauterine candidiasis: report of four cases[]]. Archives of Gynecology and Obstetrics. 2008; 278(2): 173-176.
- 14. Sobel JD. Candidal vulvovaginitis[]]. Clinical obstetrics and gynecology. 1993; 36:153-165.
- 15. Segal E, Soroka A, Schechter A. Correlative relationship between adherence of Candida albicans to human vaginal epithelial cells in vitro and candidal vaginitis[]]. Medical Mycology. 1984; 22(3).
- 16. Spinillo A, Capuzzo E, Acciano S, et al. Effect of antibiotic use on the prevalence of symptomatic vulvovaginal candidiasis[]]. American Journal of Obstetrics and *Gynecology.* 1999; 180(1): 14-17.
- 17. Camps IR. Risk factors for invasive fungal infections in haematopoietic stem cell transplantation []]. International Journal of Antimicrobial Agents. 2008; 32(Supplement 2): S119-123.
- 18. Osorio II, Roman AR, Torre-Cisneros. Spectrum and risk factors of invasive fungal infection []]. Enferm Infect Microbiol Clin. 2007; 25(7): 467-476.
- 19. Rosen GP, Nielsen K, Glenn S, et al. Invasive fungal infections in pediatric oncology patients: 11year experience at a single institution[]]. Journal of hematology/oncology. 2005; 27(3): 135-140.