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Water temperature and riverine ecosystems: 
An overview of knowledge and approaches for assessing 
biotic responses, with special reference to South Africa

Helen Dallas*
Freshwater Research Unit, Department of Zoology, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa

Abstract

Available information pertaining to water temperature in riverine ecosystems is examined and consolidated into an overview 
that describes the spatial and temporal variation in water temperature, the importance of water temperature in lotic ecosys-
tems, the measurement and modelling of water temperature, anthropogenic factors that modify water temperature, the effects 
of temperature changes on the physical and chemical characteristics of water; and on aquatic organisms and ecosystems.  
Methods for assessing the effects of temperature changes on aquatic organisms are discussed and current water temperature 
guidelines for the protection of aquatic ecosystems are outlined.  This paper highlights the complexity of water temperature 
in the aquatic environment and the importance of understanding the spatio-temporal variability in water temperature and 
the variable responses of aquatic organisms to thermal stress. Anthropogenic modifiers of the thermal regime, which include 
heated discharges, flow modifications, riparian vegetation removal and global climate change; present ongoing threats to 
aquatic ecosystems.  Whilst Northern Hemisphere information on water temperature is plentiful, this overview has identified 
the huge gap that exists in temperature-related data in South Africa.  Without baseline data on water temperature and the 
thermal requirements of aquatic organisms, it is extremely difficult to adequately manage aquatic ecosystems.  The risk of 
increasingly harsh conditions caused by greater water demands and climate change accentuates the need for a greater under-
standing of the thermal conditions in aquatic ecosystems in South Africa and the requirements and triggers of the associated 
aquatic biota. Future directions for thermal research are described.  

Keywords: water temperature, riverine ecosystems, rivers, thermal regimes, biotic responses, aquatic
organisms

Introduction

Natural thermal characteristics of riverine ecosystems are 
dependent on hydrological (e.g. source of water, relative con-
tribution of groundwater, rate of flow or discharge, volume of 
water, inflow from tributaries); regional (e.g. latitude, altitude); 
climatological (e.g. air temperature, solar radiation, cloud cover, 
wind speed, vapour pressure, precipitation, evaporation); and 
structural features (e.g. topographic features, aspect and slope, 
riparian vegetation cover, channel form, geology, substratum, 
water depth, turbidity, percentage of pool habitat) of the region, 
catchment and site (Fig. 1).  The relative importance of these 
features differs amongst rivers and river reaches. 

Spatial and temporal variation in water  
temperature

At the catchment scale, differences are driven by variation in cli-
mate, geography, topography and vegetation (Poole et al., 2001). 
At a river scale, variation occurs longitudinally down a river sys-
tem with headwaters typically cooler than lowland areas.  Maxi-
mum temperatures increase downstream (Ward, 1985), while the 
maximum range is often found in the middle reaches (Vannote 
and Sweeney, 1980).  At a site scale, differences are often deter-
mined by geomorphic variation, i.e. laterally across the channel 

and in relation to different habitats (Ebersole et al., 2003; Poole 
et al., 2001), with different habitats having different tempera-
ture profiles (e.g. Appleton, 1976; Harrison and Elsworth, 1958; 
Allanson, 1961; Nordlie and Arthur, 1981).
 Lotic systems in regions of seasonal climates exhibit diel 
(daily) and annual (seasonal) temperature periodicity patterns 
(Ward, 1985).  Hourly temperatures are generally lowest during 
the night time or early morning and highest in the mid to late 
afternoon, although this may shift with season (e.g. Hopkins, 
1971) and size of river.  Small, heavily canopied streams and 
large, deep rivers exhibit the least diel ranges in water tempera-
ture, while shallow streams exposed to direct solar radiation and 
braided rivers exhibit the largest diel ranges in water temperature 
(Ward, 1985; Constantz et al., 1994).  Seasonally, temperatures 
generally exhibit a sinusoidal pattern with temperatures highest 
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Figure 1
Hydrological, regional, climatic and structural factors influencing 

water temperature in riverine ecosystems
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in the summer and lowest in the winter.  Inter-annual variation is 
less predictable with variation in temperature regimes reflected 
as ‘hot-dry’ and ‘cool-wet’ years (Poole et al., 2001).  
 If spatial and temporal variation is combined, three broad 
spatio-temporal scales may be defined (Gunderson et al., 1995 
cited by Rivers-Moore et al., 2004): namely micro-scale [operat-
ing at areas < 10 m2 (site or reach) and over a time period of hours 
(diel)]; meso-scale [operating between 10 m2 to 10 km2 (longitu-
dinal) and over a time period of days (seasonal)]; and  macro-scale 
[operating at areas > 10 km2 (regional) and over a time period of 
years (inter-annual)]. Understanding spatial and temporal trends 
and variation in water temperature is necessary if the ecological 
responses of aquatic organisms to changes in water temperature 
are to be determined.  Aquatic organisms, which are poikilother-
mic, are susceptible to changes in water temperature and it is 
recognised as a key environmental variable structuring aquatic 
communities (Arscott et al., 2001).  Studies that have included 
water temperature as a variable indicate that spatial and temporal 
variation occurs in South African rivers (Box 1).

The importance of water temperature in lotic 
ecosystems 

The importance of water temperature in river ecosystems has 

been recognised for some time (e.g. Whitney, 1939) and sev-
eral authors have reviewed the subject (e.g. Smith, 1972; Ward, 
1985; Cassie, 2006).  Studies from the 1960s to 1980s focused 
on the effects of thermal pollution resulting from power stations 
and changes in the thermal regime below impoundments, while 
more recently (1990s and 2000s) the potential impact of climate 
change on aquatic ecosystems has been driving research.  Stud-
ies have broadly focused on reporting and understanding the 
thermal regime including water temperature modelling; docu-
menting anthropogenic causes of thermal changes and the eco-
logical consequences of these changes; and developing methods 
for estimating thermal tolerance ranges via both field experi-
mentation and laboratory studies.  In the Northern Hemisphere 
(Europe, North America and Japan) the thermal characteristics 
of lotic habitats have been reasonably well documented (Ward, 
1985) and are considered important in influencing life histories 
of aquatic organisms (e.g. Brittain, 1975; Vannote and Sweeney, 
1980; Elliot, 1987a; b).  Thermal data for Southern Hemisphere 
rivers is, however, limited, with most information for Africa and 
Australia derived from ecological and hydrobiological studies 
(e.g. Appleton, 1976; Harrison and Elsworth, 1958; Oliff, 1960) 
with few focused studies on water temperature (e.g. Campbell, 
1986; Brittain, 1991; Brittain and Campbell, 1991; Rivers-Moore 
and Jewett, 2004; Rivers-Moore et al., 2004; 2005).  There has 

Box 1  
Examples of spatial and temporal variation in water temperature in South African rivers

Water temperature in the Lang River, a shaded mountain stream in the • Western Cape (King et al., 1988), varied from 7.5 
to 15.1oC, with a mean of 10.9oC at one site (altitude = 671m), and from 7.0 to 20.0oC, with a mean of 13.1oC at a second site 
(altitude = 335 m). 
Water temperature in the Molenaars River, an upper foothill river in the • Western Cape, ranged from 7.9 to 28.4oC, with a 
median temperature of 15.6oC.  Summer peaks occurred between mid- December to end of February although inter-annual 
variation was apparent (Unpublished data, GR Ractliffe, Freshwater Research Unit, University of Cape Town).
Water temperatures, given as the winter minimum to summer maximum range per zone, for the Berg River in the • Western 
Cape, were measured in the 1950s (Harrison, 1965).  Values per zone were: Mountain Torrent zone (8.9 to 22.8oC), Upper 
Foothill (9.0 to 29oC), Lower foothill stony run zone (9.0 to 32.5oC), Foothill soft-bottom zone (10.0 to 31.7oC) and the Flood 
plain zone (9.0 to 25.5oC).
The Buffalo River in the • Eastern Cape had average minimum and maximum temperature ranges of 12 to 20oC in the 
Mountain Torrent Zone, 15 to 30oC in the Upper Foothill Zone, and 19 to 35oC in the Lower Foothill Zone (Palmer and 
O’Keeffe, 1989).  In winter, the cold waters typical of the upper reaches, extended further downstream. 
Water temperatures (minimum and maximum) in the Umzimvubu (4 to 28• oC), Umzintlava (1 to 27oC), Kinira (9 to 28oC), 
Tina (12 to 25oC) and Tsitsa (11 to 23oC) rivers in the Eastern Cape (Madikizela and Dye, 2003) were measured seasonally.  
Minimum and maximum daily means, measured in each season in the Gladdespruit • Mpumalanga (Appleton, 1976), 
showed that minimum and maximum temperatures ranged from 15.2 to 29.3 oC, in summer 12.1 to 21.6oC, in autumn 6.5 to 
15.4 oC in winter, and 12.2 to 21.1 oC in spring.  
Mean and maximum water temperatures (summarised from daily water temperature) increased longitudinally down the • 
Sabie River, Mpumalanga (Rivers-Moore et al., 2004) as did variability, with lowland reaches having a greater daily range 
than upper reaches.  Variability varied with season, with greatest variability in winter (June to August).  Minimum tem-
peratures remained relatively constant.  The average daily water temperatures could be divided into two clusters reflecting 
longitudinal distance: 0 to 57 km and 57 to 160km which coincided with foothill and lowland zones. 
Instantaneous water temperature was measured at many sites in the Vaal Dam catchment, • Free State (Chutter, 1970).  Mini-
mum and maximum temperatures for each zone were: Source Zone (5.9 to 27.0 oC), Eroding Zone (7.0 to 28.8 oC), Stable 
Depositing Zone (4.2 to 24.4 oC), Unstable Depositing Zone (4.5 to 28.2 oC) and a High-lying Unstable Depositing Zone  
(4.4 to 30.5 oC).  Temperatures were lower in the Source Zone but mean temperatures in the remaining zones were relatively 
uniform.  Diurnal ranges measured over two periods showed an April range of 15.0 to 21.6 oC and September range of 13.5 
to 18.2 oC.  
Fluctuations in Vaal River surface water temperature followed a seasonal pattern marked by rapid warming of the water • 
during September October and November and rapid cooling during April May and June (Free State, Roos and Pieterse, 
1994).  The seasonal extremes were small in comparison to the air temperature fluctuations where monthly average was 
between -1.1 and 33oC whilst the difference in water temperature (midday) was between 10 and 27oC.  There was a lag of 
days to several weeks between water and air temperature.
Studies undertaken in the 1960s and 1970s for many rivers in the • Kwazulu-Natal region (e.g. Brand et al., 1967 Archibold 
et al., 1969) reported temperatures ranging from 7.5 to 35oC with some differences between zones.
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been debate on the validity of ecological concepts developed in 
the Northern Hemisphere to Southern Hemisphere rivers (Lake 
et al., 1985) including those related to the life histories of aquatic 
organisms and it has been suggested that environmental vari-
ability (including extreme variations in flow) overrides life his-
tory features such as synchrony (Hynes and Hynes, 1975; Camp-
bell, 1986; McKie et al., 2004).  

Measuring water temperature in aquatic eco
systems – In situ measurements

Studies measuring water temperature either record instanta-
neous measurements at different periods of the day or utilise 
water temperature loggers, which measure temperature on an 
hourly (or less) frequency.  The latter is the more useful from 
an ecological perspective as it provides detail on the diurnal 
variation, which is important and allows for the measurement of 
extreme temperatures that are likely to be more ecological sig-
nificant than average temperatures. For example, the presence or 
absence of a fish species is best predicted by the number of days 
a site exceeds a critical temperature threshold (Rivers-Moore et 
al., 2005).  Water temperature has not been routinely measured 
in South African rivers although spot measurements of water 
temperature are available for many rivers (Department of Water 
Affairs and Forestry, 2008).  This allows for some understand-
ing of broad trends in water temperature but does not allow for 
an understanding of diurnal variation or temperature minimum 
and maximum values.  More recently Rivers-Moore et al. (2004) 
conducted a study to determine the intra-annual thermal pat-
terns in the main rivers of the Sabie River catchment in Mpuma-
langa.  Other ad hoc studies have generated water temperature 
data for various upland rivers in the Western Cape (Dallas et al., 
1998; and unpublished data), the Salt River in the southern Cape 
(Rivers-Moore and De Moor, unpublished data), the Great Fish 
River in the Eastern Cape (Rivers-Moore et al., 2006) and the 
Mgeni River in KwaZulu Natal (Dickens and Graham, 2006).

Modelling water temperature 

Studies aimed at developing water temperature models are 
widespread (e.g. Smith, 1981; Mackey and Berrie, 1991) and are 
broadly classified into three groups: regression, stochastic and 
deterministic models (Cassie, 2006).  The subject is reviewed 
extensively by Cassie (2006).  Regression models include linear 
(e.g. Stefan and Preud’homme, 1993; Webb and Nobilis, 1997; 
Erickson and Stefan, 2000), multiple or logistic (nonlinear e.g. 
Mohseni et al., 1998; 1999) models.  Simple linear models pre-
dict water temperature as a function of air temperature (mostly 
weekly or monthly), multiple regression models include other 
factors such as discharge time lag etc., while logistic models 
account for groundwater and evaporative cooling (Mohseni and 
Stefan, 1999; Webb et al., 2003).  More realistic but data intensive 
models are the stochastic and deterministic models. Stochastic 
models are simpler as they require only air temperature as the 
input, while deterministic models use all relevant meteorological 
data to calculate energy components (Stefan and Sinokrot, 1993).  
Rivers-Moore et al. (2005) tested five different regression water 
temperature models using maximum daily water temperatures 
for the Sabie River in Mpumalanga and concluded that multiple 
linear regression models were the most pragmatic for simulating 
ecologically important water temperatures.  Water temperature 
models are able to provide data for use in constructing thermo-
graphs for rivers (Rivers-Moore et al., 2005).  Two common out-
puts are duration curves (percentage time versus temperature) 

and degree curves (hours, days), which facilitate the comparison 
of sites and quantify cumulative warmth at a site within a season 
(Essig, 1998 cited by Rivers-Moore et al., 2005). 

Anthropogenic factors that modify water  
temperature

Several factors have been shown to modify water temperature, 
thereby causing a shift in the water temperature distribution, 
with an increase or decrease in temperature extremes; or a 
change in temperature variation (Table 1, next page).  Elevated 
water temperature is more common and widely documented in 
the literature, although examples for South African rivers are 
relatively scarce.  The effect of a change in water temperature 
may be direct including thermal discharges; or indirect includ-
ing land-use changes, agricultural irrigation return-flows, flow 
modifications (river regulation), inter-basin water transfer, mod-
ification to riparian vegetation, and global warming.  The extent 
to which each of these thermal modifiers affects river systems in 
South Africa is not known, although, it is likely that all modifi-
ers are present within the country.  Certainly, agricultural prac-
tices, flow modifications (both regulation and inter-basin water 
transfer) and afforestation are widespread within the country, 
although the extent of each is likely to vary geographically.  
More broadly, global warming is of significance for Southern 
Africa and is likely to have consequences for riverine ecosys-
tems and the associated biota, although the severity of the effect 
may also vary geographically.  

Effects of temperature changes on physical and 
chemical characteristics of water

Temperature exerts a strong influence on many physical and 
chemical characteristics of water including the solubility of oxy-
gen and other gases, chemical reaction rates and toxicity, and 
microbial activity (Dallas and Day, 2004).  Higher temperatures 
reduce the solubility of dissolved oxygen in water, decreasing 
its concentration and thus its availability to aquatic organisms.   
Chemical reaction rates and the toxicity of many substances (e.g. 
cyanide, zinc, phenol, xylene), and the vulnerability of organ-
isms to these toxins, is intensified as temperature increases 
(Duffus, 1980).  If the organic loading is high oxygen depletion 
is further accelerated by greater microbial activity at the higher 
temperature.  

Biological effects of temperature changes on 
aquatic organisms and aquatic ecosystems

All organisms have a range of temperatures at which optimal 
growth (adult size), reproduction and general fitness occur. This 
is often termed the ‘optimum thermal regime’ (Vannote and 
Sweeney, 1980).  Temperature outside of the ‘optimum thermal 
regime’ may effect the metabolism, growth, behaviour, food and 
feeding habits, reproduction and life histories, geographical dis-
tribution and community structure, movements and migrations, 
and tolerance to parasites, diseases and pollution; of aquatic 
organisms.  Vannote and Sweeney’s (1980) ‘Thermal Equilib-
rium Hypothesis’ ascribes a dominant role to temperature in 
maintaining niche differentiation in lotic assemblages and regu-
lating large-scale patterns of species diversity and distribution 
(McKie et al., 2004).  There is some debate on the validity of 
this hypothesis for Southern Hemisphere Rivers.  Specifically, it 
is suggested that this hypothesis in its current form may not be 
relevant for Australia and other regions of the world where lotic 
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TABLE 1
Anthropogenic factors that modify water temperature in lotic ecosystems

Modifier Characteristics and effects on aquatic organisms and riverine ecosystems

Thermal 
discharges

Sources of heated discharges include heated industrial discharge, heated cooling waters from power stations, 
and returning irrigation waters.  Effects are variable, dependent on season (Wellborn and Robinson, 1996) 
and on the degree to which the heated effluent mixes with the receiving water (Mann, 1965).  Heated indus-
trial discharges are frequently linked to other forms of pollution (e.g. chemical pollution) and the toxicity of 
chemicals may be significantly increased when released in association with elevated temperatures.

Flow 
modification 
(river regulation)

In a natural river, water temperature increases as discharge decreases (Hockey et al., 1982; Webb et al., 
2003), and the magnitude of diurnal variation is typically inversely proportional to flow rate (Constanz et al., 
1994).  An alteration in the volume of discharge may affect the thermal capacity of a river and may encourage 
higher water maxima and lower minima (Webb, 1996; Gu et al., 1998).  Decreasing flow is therefore likely 
to increase daily water temperatures, including daily maxima due to the lower corresponding depth of flow 
(Sinokrot and Gulliver, 2000).  River regulation exerts a moderating influence on the downstream thermal 
regime, including diurnal and seasonal thermal constancy (Ward, 1982).  Effects may include an increase in 
mean water temperature and a reduction in the extent of variability between temperature extremes (Webb 
and Walling, 1993; 1997), as well as delayed seasonal temperature maximum (Ward, 1982). The extent to 
which an upstream impoundment modifies downstream thermal conditions depends on operational variables 
(release depth, discharge pattern), limnological variables (retention times, stratification pattern and thermal 
gradients) and the position of the impoundment along the longitudinal profile of the river (Ward and Stanford, 
1982; Palmer and O’Keeffe, 1989).  Impoundments have been shown to modify the downstream biota includ-
ing changes in community structure of aquatic invertebrates (e.g. Petts and Greenwood, 1985; Storey et al., 
1991; Ogbeibu and Oribhabor, 2002) and timing and spatial pattern of fish spawning (e.g. Bok and Heard, 
1982; Tomasson et al., 1984; Paller and Saul, 1996; Cambray et al., 1997; King et al., 1998).  Specifically, 
reduced water temperatures resulting from a hypolimnetic discharge, delayed spawning in direct proportion 
to the proximity to the dam (Paller and Saul, 1996), while epilimnetic releases resulted in early spawning.  

Inter-basin water 
transfer (IBT)

IBT constitutes ‘the transfer on water from one geographically distinct river catchment to another; or from 
one river reach to another’ (Davies et al., 1992).  IBTs have been shown to have an impact on the aquatic 
organisms of the recipient river with a shift in composition often occurring.  An extensive review of IBTs 
internationally is given in Snaddon et al. (2000).

Modification 
to riparian 
vegetation

Riparian vegetation affects water temperature by adsorbing some of the incoming radiation, emitting long-
wave radiation and creating a microclimate, which in turn affects evaporation, conduction, ground and water 
temperature (Rutherford et al., 1997).  Removal of riparian vegetation exposes water to increased direct solar 
radiation, which leads to higher temperatures, particularly during summer low flows, and greater temperature 
ranges and fluctuations.  Smaller streams with canopy-like vegetation are more likely to experience signifi-
cant temperature changes if the vegetation is removed, while reduction in riparian shading in larger rivers has 
less of an effect on water temperature (Quinn et. al., 1992).   Riparian vegetation is also important in influenc-
ing air temperatures which affect adult insects (Collier and Smith, 2000).  

Climate change 
and global 
warming

Major anthropogenic contributions to global warming include the combustion of fossil fuels and biomass, 
nuclear fission, the burning of forests, and human and animal wastes (NWQMS, 2000). In South Africa, 
higher air temperatures are predicted for the entire country, with January air temperatures expected to 
increase most in the central interior and Northern Cape (2.4 to 4.5oC) and least at the coast (0.5 to 1.0oC). 
In general, summer rainfall is expected to increase by between 5% in the northern regions to 25% in the 
Eastern and Southern Cape, while winter rainfall in the Western Cape is predicted to decrease by as much as 
25%.   The combination of rising air temperatures and decreasing rainfall in some regions is likely to lead to 
increased water temperatures.  Northern Hemisphere studies on the potential impact of global warming on 
invertebrates (e.g. Hogg et al., 1995) and fish populations (e.g. Eaton and Scheller, 1996) indicate that changes 
in developmental rates growth rates and emergence times may result in changes in community structure and 
density of invertebrates.  Higher temperatures may lead to a reduction in suitable habitat for cold and cool 
water fish species (Eaton and Scheller, 1996; Keleher and Rahel, 1996) and may effectively limit the longi-
tudinal distribution of fish (Meisner, 1990), restrict seasonal migration patterns (Berman and Quinn, 1991), 
and fragment populations within a catchment by isolating suitable thermal habitats (Keleher and Rahel, 1996; 
Matthews and Zimmerman, 1990).  No studies have been undertaken in South Africa, although it is likely 
that similar scenarios may occur.  The distribution ranges of the more thermally sensitive aquatic organisms, 
including fish, may be modified with increasing water temperatures, potentially shrinking their distribu-
tion.  This may have serious consequences for several endemic species of fish which are already under severe 
pressure from factors such as flow modifications, land use changes, and invasion of alien fish species.  The 
Western Cape, which is predicted to have both elevated air temperatures and a 25% reduction in rainfall, also 
has the highest number of endemic and threatened fish species.  
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environmental regimes (temperature and flow) are less predict-
able (McKie et al., 2004), such as South Africa. 
 Aquatic organisms may be broadly categorized as cold steno-
therms (those organisms with narrow tolerance ranges in cold 
arctic regions); warm stenotherms (those organisms with nar-
row tolerance ranges in warm regions in the tropics); and eury-
therms: those species with wide tolerance ranges, e.g. in temper-
ate or sub-tropical regions (Langford, 1990). Temperature effects 
may be evident at the individual level through physiological and 
behavioural effects; the population level through development, 
fecundity and survival of individuals; and the community level by 
favouring temperature-tolerant taxa over temperature-intolerant 
ones leading to a shift in community structure (Mitchell, 1999). 

Physiological and behavioural effects at the 
individual level

Aquatic organisms are very susceptible to changes in water 
temperature since a 10oC increase results in a doubling of the 
organism’s metabolic rate (Hellawell, 1986).  The increased res-
piration and oxygen demand, combined with reduced supply, 
results in significant stress to aquatic organisms.  The metabolic 
rate of invertebrates (e.g. Eriksen, 1964) and fish (e.g. Cech et 
al., 1990) increase in response to elevated water temperatures. 
Cech et al. (1990) in a study of fish in streams of the Mediter-
ranean region (California) of the United States, suggest that tem-
perature (specifically the effect on metabolic rate) and dissolved 
oxygen (specifically the metabolic responses to hypoxia - low 
dissolved oxygen concentration) play a major role in determin-
ing their distribution.  This region is climatically similar to the 
south-western Cape in South Africa.  Studies on parasites and 
diseases have shown that fish become more susceptible to dis-
eases when water temperature is elevated and fish are thermally 
stressed, and many parasites increase rapidly in response to 
elevated water temperatures.  Water temperature plays a vital 
role in Schistosome (Bilharzia) transmission in permitting a 
suitable snail population to flourish and in controlling the length 
of the incubation period of the parasite in the snail (Pitchford 
and Visser, 1975).  
 Temperature (and dissolved oxygen concentrations) has 
been shown to modify prey behaviour in some species (e.g. 
Kolar and Rahel, 1993) and influence predator-prey relation-
ships (e.g. Cockrell, 1984).  It has been shown to influence the 
rate of feeding of invertebrates and fish, with feeding rates vary-
ing significantly at different temperatures (Kishi et al.2005), and 
highest feeding rates at intermediate temperatures (9 to 12oC), 
which coincided with mean summer water temperature.  Some 
fish species also exhibit a temperature threshold below which 
they stop feeding or only feed sporadically (Keast, 1968 cited 
by Mohseni et al., 1998).  Trophic interactions, such as preda-
tion, may be modified by water temperature as shown by Kishi 
et al. (2005) whose study highlighted the potential for trophic 
cascading effects resulting from changes in water temperature 
and provide evidence that thermal habitat alteration may affect 
not only thermally sensitive species like fish but also resistant 
species like caddis fly larvae and periphyton via indirect effects 
in food webs.  Quinn et al. (1992) showed how changes in algal 
periphyton abundance and macroinvertebrate community struc-
ture were linked to increasing light and water temperature with 
certain taxa increasing in response to thicker algal mats while 
other taxa which favoured low periphyton abundance decreased.  
Temperature may influence movement of aquatic organisms par-
ticularly fish, which are known to utilise thermal refugia and 
often thermoregulate by migrating to areas of cooler water when 

surrounding water temperatures are outside of their preferred 
range or exceed their upper tolerances (e.g. Torgersen et al., 
1999; Elliot, 2000; Ebersole et al., 2001; Gardner et al., 2003).  
Thermal refugia, which include undercut banks and overhang-
ing vegetation (Bell, 2006), coldwater patches associated with 
lateral seeps, cold side-channels, floodplain tail seeps, flood-
plain seeps and stratified pools (Mosley, 1983; Ebersole et al., 
2001) are most numerous in intact riverine systems with riparian 
vegetation and groundwater (Torgersen et al., 1999).  Vertical 
stratification in pools (Matthews and Berg, 1997; Elliot, 2000; 
Tate et al., 2006) may result in pools acting as thermal refugia 
with fish migrating to cooler bottom water when surface temper-
atures exceed their incipient lethal limit.  These bottom waters 
are often lower in dissolved oxygen (DO) than the surface water 
resulting in a trade-off between high temperatures and low DO 
(Matthews and Berg, 1997; Elliot, 2000). 

Reproduction (fecundity), development, growth 
and life histories at the population level

There is a linear relationship between egg production (fecundity) 
in aquatic insects and adult female body size; thus any factors 
affecting fecundity will affect recruitment and the competitive 
ability of the subpopulation (Vannote and Sweeney, 1980).  Tem-
perature may influence breeding, egg incubation period (e.g. 
Elliot, 1972; 1987a; Harper, 1973; Humpesch, 1980; Weatherley 
and Ormerod, 1990; Brittain, 1991), hatching success and dura-
tion (Elliot, 1972), and the induction and termination of diapause 
(Ward and Stanford, 1982), and it is often the reproductive stages 
that are most sensitive to thermal disruption (NWQMS, 2000).  
Fish gonadal development and spawning may be triggered by 
temperature, photoperiod, water level or flooding, intra-specific 
interactions, and the presence of suitable spawning substrates 
(Lake, 1967; Jones et al., 1978 cited by Paller and Saul, 1996). 
Fish tend to spawn during the warmest months of year partly 
because rates of egg embryo and larval development are posi-
tively correlated with temperature and partly because it the time 
of year in temperate systems when food for larvae and juve-
niles is most abundant (Humphries et al., 1999).  In the North-
ern Hemisphere several fish species spawn within 3 to 5oC of 
their critical thermal maximum.  Several studies have examined 
the reproductive biology of fishes in South Africa (Box 2) and 
studies have shown that temperature is an important factor trig-
gering spawning, with temperatures between 18 and 19°C trig-
gering spawning of several of South Africa’s indigenous fish 
species (e.g. Groenewald, 1951 cited by Tomasson et al., 1984; 
Wright and Coke, 1975 cited by Tomasson et al., 1984; Bok and 
Heard, 1982; Tomasson et al., 1984; Cambray et al., 1997; King 
et al., 1998). 
 The growth of aquatic insects has been shown to be strongly 
correlated with temperature in several taxa including mayflies 
(Markarian, 1980; Huryn, 1996), stoneflies (Harper, 1973) 
and isopods (Thorup, 1973).   Growth rates in aquatic inverte-
brates have rarely been studied in South Africa (e.g. Hart, 2001) 
although King (1981) and King et al. (1988) suggest that the 
aquatic invertebrates in mountain streams of the Western Cape, 
South Africa have extremely slow growth rates due to the oligo-
trophic water.  Water temperature is considered to be the most 
important environmental factor affecting fish growth (Marine 
and Cech, 2004) with growth occurring within a limited thermal 
range and the temperature regime determining the length of the 
growth season.  South African studies on fish growth are mostly 
on fish living in impoundments or natural lakes (e.g. Bruton and 
Allanson, 1974; Hecht, 1980) and rarely in rivers (e.g. Baird, 
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1976).  Growth is often correlated with degree-days, which 
accounts for time and the minimum temperatures necessary for 
growth and is a summation of mean daily water temperature 
above a critical point (e.g. Hart, 1985; Markarian, 1980).
 Temperature appears to be a determinant of synchrony of 
life history (Lake et al., 1985).  Clifford (1973 cited by Camp-
bell, 1986) suggested that life history synchrony decreased 
towards the equator, i.e. with latitude, with univoltine life cycles 
dominant in the arctic and cold temperate regions and growth 
restricted or completed within one part of the year.  In moderate 
temperate regions, univoltine life cycles dominate and growth is 
throughout the year, while in the tropics multivoltine life cycles 
dominate.  In high latitudes of the Northern Hemisphere, repro-
duction, development rates and life histories are largely synchro-
nous and strongly seasonal (e.g. Coleman and Hynes, 1970; Brit-
tain, 1975; Sweeney and Vannote, 1980; Macan, 1981).  Short 
emergence periods are common (e.g. Coleman and Hynes, 1970) 
and the degree of synchrony in the development of nymphs (e.g. 
Macan, 1981) enables several species in the same genus to co-
exist, thereby facilitating resource partitioning.  In contrast, in 
lower latitudes of the Northern Hemisphere emergence is longer 
and life cycles are less seasonal (e.g. Berner, 1950 cited by 

Campbell, 1986). These differences were attributed to climatic 
differences, primarily higher water temperatures at the lower 
latitudes.  In the Southern Hemisphere, Hart (1985), Campbell 
(1986), Hynes and Hynes (1975), McKie et al. (2004) and others 
have suggested that life cycles of aquatic insects are less rigid 
and more flexible than those found in the Northern Hemisphere 
and are largely asynchronous with continuous growth and long 
emergence periods, although there is considerable variation in 
life histories (Lake et al., 1985; Campbell, 1986; Huryn, 1996).  
The flexible life cycles are considered an adaptation to the unpre-
dictable and highly variable climate in Southern Hemisphere 
regions such as Australia (Hynes and Hynes, 1975).  Studies in 
South Africa are scarce, with information inferred from more 
generalist studies such as King (1981) and King et al. (1988).  
King et al. (1988) observed that abundance peaked in spring 
and late summer, while juvenile recruitment peaked in spring 
(November) in the Western Cape.  The ‘winter’ communities, 
whose life cycles began in winter, appeared almost simultane-
ously with the winter rains, and predictable seasonal changes 
occurred at the same time each year (King, 1981).  Many species 
emerged in summer, possibly to avoid high temperatures year 
(King, 1981).    

Box 2 
Examples of fish spawning in South African rivers

In the Western Cape,•  Barbus capensis (Clanwilliam yellowfish), ascend rivers and spawn in gravel beds in relatively 
shallow water (Hey, 1947 cited by Cambray et al., 1997). Upstream migration occurs between September and December 
(Harrison, 1950 cited by Cambray et al., 1997), while gonad mass increases in August and September, reaches a maxi-
mum between October and December and decreases in January (Van Rensburg, 1966 cited by Cambray et al., 1997). Dam 
releases of high-flow freshes from the Clanwilliam Dam on the Olifants River in spring (October to November) corre-
sponded with successful spawning (Cambray et al., 1997).  This was linked to favourable water temperatures, with a gen-
eral spring increase in water temperature.  Temperature at the spawning beds was between 19.1 and 23.1oC.  In contrast, 
lower temperatures the following year due to late cold weather resulted in spawning bed temperatures between 16.6 to 17.5 

oC.  No spawning occurred during this period (King et al., 1998).  A thermal spawning threshold of 19 oC has been proposed 
(King et al., 1998).   In the Gouritz River system Labeo umbratus migrate upstream and spawn on the floodplain (Jackson 
and Coetzee, 1982).  This has been observed in heavy floods in summer (Hamman and Thorne, 1982 cited by Tomasson 
et al., 1984).  Larvae hatched after 30 h at 22oC (Mulder, 1971 cited by Tomasson et al., 1984). Various aspects related to 
seasonality, spawning and life history of fish in the Western Cape are currently being investigated (Paxton, 2008).  
In the Eastern Cape, • Oreochromus mossambicus, usually spawn in late November when minimum water temperatures 
exceeded 18 oC (James and Bruton, 1992) while Barbus trevelyani (Border barb) requires a minimum water temperature of 
18oC for successful induced spawning (Bok and Heard, 1982).
In the Northern Cape, Tomasson et al• . (1984) studied the reproductive biology of four indigenous cyprinids Barbus holubi 
(smallmouth yellowfish), Barbus kimberleyensis (largemouth yellowfish), Labeo capensis (Orange River labeo) and Labeo 
umbratus (moggel), in the Le Roux Dam on the Orange River.  Although they studied the fish populations in the man-made 
lake, spawning was observed in the natural riverine section of the lake. Large Barbus spawn on gravel beds within the 
river channel in spring or summer, with B. kimberleyensis spawning 4 to 6 weeks before the more cold-tolerant B. holubi.  
Spawning in the regulated section of the dam was governed by water temperature and influenced by the effect of the hydro-
logical regime on water temperatures, with spawning earlier when temperatures were warmer due to leases of epilimnetic 
water from the upstream Gariep Dam.  Unseasonal hypolimnetic releases from the Gariep Dam, however, resulted in poor 
reproductive success.  In contrast to Barbus, Labeo species spawned on newly flooded ground and spawning was asynchro-
nous with local conditions triggering possibly localised flooding due to localised rain.  L. capensis bred throughout the lake 
and did not exhibit a longitudinal migration while L. umbratus uses larger inflowing tributaries for spawning. Elsewhere 
on the upper Orange River B.holubi migrate upstream during the first spring floods and spawn over gravel beds within the 
river (Shortt-Smith, 1963 cited by Tomasson et al., 1984).  Breeding behaviour of B. holubi was observed when water tem-
peratures exceeded 18oC (Groenewald, 1951 cited by Tomasson et al., 1984) and fertilized eggs of B. halubi incubated for 3 
to 8 d at 18 to 21.5oC (Le Roux, 1968 Mulder and Franke, 1973 cited by Tomasson et al., 1984).  
In Kwazulu Natal,•  Barbus natalensis, migrate upstream to spawn and are unable to breed in still water (Crass, 1964 cited by 
Tomasson et al., 1984).  They spawn in clean, well circulated gravel in fast flowing water, when water temperature exceeds 
19oC (Wright and Coke, 1975 cited by Tomasson et al., 1984).
In neighbouring Lesotho, • Oreodaimon quathlambae (Maluti minnow), is limited to the extreme upper area of the 2 300 km 
Orange River system.  Adults’ spawn and eggs are laid amongst boulders in mid-channel which is oxygen-rich (Cambray 
and Meyer, 1988). 
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Functional and structural changes at the  
community level

Temperature regulates ecosystem functioning directly by influ-
encing primary production.  Studies have shown that primary 
production generally increases with temperature (e.g. Quinn et 
al., 1992; Kishi et al., 2005) and there is a shift in the dominance 
of algal classes from diatoms (<20oC) to green algae (15 to 30oC) 
to blue-green algae (>30oC) (DeNicola, 1996).   Algal species 
diversity increases from 0 to 25oC and decreases at temperatures 
>30oC; while biomass increases with temperature from approxi-
mately 0 to 30oC and decreases at 30 to 40oC.  The degree to 
which algal community composition changes with thermal input 
depends on the initial ambient temperature, with increases in 
temperature in environments near 25 to 30oC usually causing 
greater changes in community structure than in environments 
<25oC (DeNicola, 1996).   Algal community structure usually 
recovers rapidly (<1 yr) when temperature stress is discontinued.  
In many natural communities temperature does not usually limit 
algal biomass and primary productivity but it does set an upper 
limit for production when other factors are optimal (DeNicola, 
1996).
 Water temperature strongly influences the geographic dis-
tribution of a species (Hart, 1985; Bell, 2006) and changes in 
water temperature may lead to structural changes in the abun-
dance, density, biomass, diversity and composition of aquatic 
communities.  In the Northern Hemisphere, water temperature 
variability has been positively correlated with species diversity 
(Vannote et al., 1980) and the maximum temperature reached 
during the summer is thought to limit the occurrence of certain 
species (Vannote and Sweeney, 1980).  Hawkins et al. (1997) 
consider summer to be a critical season for many aquatic insect 
populations in that much of the biological production occurs 
when temperatures are highest.  Several studies have shown a 
reduction in macroinvertebrate abundance and diversity follow-
ing an average temperature increase of around 7oC (Coutant, 
1962 cited by Mann, 1965; Wellborn and Robinson, 1996; Hogg 
et al., 1995). 
 In the Northern Hemisphere, different species of fish have 
been shown to have different thermal niches, with groups of fish 
species forming three main thermal guilds – warm water, cool 
water and coldwater (Coutant, 1987; Magnuson et al., 1979).  
Studies in the Southern Hemisphere are, however, limited with 
some studies (e.g. Richardson et al., 1994 New Zealand) showing 
that fish species are able to thrive in a wide temperature range.  
South African freshwater fish are broadly categorized into tem-
perate and tropical fauna with temperate fauna restricted to areas 
where the maximum water temperatures are generally below  
25 to 28oC during the summer months (Skelton, 1993).  Tropi-
cal fauna is restricted to areas where the water temperatures do 
not decline below 15 to 18oC during the cooler winter months 
(Skelton, 1993).  

Assessing the effects of temperature changes 
on aquatic organisms

The effect of water temperature changes on aquatic organ-
isms are assessed and monitored by direct measurement and 
observation in the field; and by laboratory studies, with the two 
methods often used in a complimentary way.  Empirical data, 
derived from field observation, can provide useful information 
on the distribution of aquatic organisms.  The potential problem 
with this method, however, is that it does not take into account 
microhabitat heterogeneity (Beitinger et al., 2000).  Field data is 

often used to calculate averages such as the 7 d average of daily 
maximum temperature (Huff et al., 2005), which may be related 
to thermal niches.  In South Africa, water temperature data 
are largely limited to spot measurements taken at the site with 
associated biotic data (e.g. Rivers Database Ewart-Smith et al., 
2000) and summarised data where monthly means, maximum 
and minimums, etc. are given (e.g. Biobase Dallas et al., 1999).  
Water temperature data also exist for fish distribution records 
but these have not been captured into the distribution database 
(Bills, 2007).  The utility of the two aquatic invertebrate data-
bases in identifying thermally-sensitive taxa via calculation of 
the temperature ranges for different invertebrate families and 
selected genera or species was examined and is reported on in 
Dallas (2007). 
 Laboratory studies on the thermal tolerance of aquatic organ-
isms are numerous particularly in the Northern Hemisphere.  
Effects may be assessed in terms of an organism’s lethal lim-
its (minimum and maximum), sublethal effects or behavioural 
avoidance preferences.  For a comprehensive understanding of 
the effect of water temperature on aquatic organisms a combina-
tion of these methods is recommended although it is recognised 
that this is not always feasible.

Lethal effects on aquatic organisms

Lethal temperature is affected by several factors (Fig. 2, after 
Langford, 1990) including the rate of change of temperature, 
acclimatisation and acclimation (i.e. an organism’s temperature 
history), duration of exposure (i.e. acute versus chronic), life his-
tory stage (e.g. eggs and larvae are often more susceptible than 
adult stages), multiple stresses (e.g. water quality impairment), 
and adaptive strategies that allow for behavioural thermoregu-
lation or physiological adaptations.  Laboratory studies include 
two approaches: lethal effects and critical thermal methodology.  
Lethal effects are determined by acute (short-term) experimen-
tal exposure to a range of temperatures in order to measure LT50 
or LC50’s (e.g. Nebeker and Lemke, 1968; De Kozlowski and 
Bunting, 1981).  LC50 is the temperature lethal to 50% of the test 
organisms, while the LT50 is the median lethal time, which is the 
duration eliciting 50% mortality at a specific temperature.  The 
critical thermal methodology (CTM) is based on the exposure 
of an organism to a constant linear increase or decrease in tem-
perature until a predefined sublethal but near lethal endpoint is 
reached.  CTM is defined as: ‘The arithmetic mean of the collec-
tive thermal points at which locomotory activity becomes disor-
ganised and the animal loses its ability to escape from conditions 
that will probably lead to its death when heated from a previous 
acclimation temperature at a constant rate’ (Cox, 1974 cited by 
Ernst et al., 1984).  The CTM endpoint is the critical thermal 
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maximum or minima CTmaximum or CTminimum (Beitinger et 
al., 2000) and may include loss of equilibrium and onset of mus-
cle spasms (Beitinger et al., 2000).  Survival occurs if the organ-
ism is returned to their pre-test acclimation temperature.  The 
CTM method offers several advantages over the lethal methods 
in that temperature tolerances are determined without lethality, 
which enables tests to be performed on indigenous and possible 
endangered fish and the statistical analysis is relatively simple 
with data compared by t-tests or Analysis of Variance (ANOVA).   
Consideration however needs to be given to the rate of change of 
temperature, which needs to be fast enough to avoid acclimation 
but slow enough to allow an organism’s internal temperature to 
equal water temperature.  The rate of 0.3oC/min has been recom-
mended (Beitinger et al., 2000).  
 Several studies in the Northern and Southern Hemisphere 
have documented lethal and CTmaxima (or CTminima) for 
aquatic invertebrates.  Many of these together with sub-lethal 
effects have been tabulated in Dallas (2007) although Northern 
Hemisphere studies are exhaustive and only selected studies are 
included.  Lethal limits varied from 16oC for a North American 
family of Perlidae to 38.4oC for a freshwater prawn acclimated to 
32oC in Mexico.  In the Southern Hemisphere lethal limits varied 
from 21.9oC for a leptophlebiid mayfly to 32.4oC for a hydrobid 
snail (New Zealand studies).  Mean CTM varied from 31.5oC 
for a North America perlid to 40.7oC for freshwater prawns.  No 

 

Southern Hemisphere studies using traditional CTM were noted.  
Information on temperature tolerances of North American fish is 
numerous and approximately 80 studies provide tolerance data 
(see Beitinger et al., 2000 for a review).  Information on the tol-
erance ranges of Southern Hemisphere fish is less plentiful (e.g. 
Richardson et al., 1994), while South African studies on the tem-
perature tolerance of freshwater fish is scarce.  

Sublethal effects

Sublethal (chronic) effects include those on reproduction, 
spawning, egg incubation and hatchability, development and 
growth, survival of fry, and emergence success, as well as sub-
lethal physiological effects.  The duration of exposure is impor-
tant in assessing sublethal effects.  Two common measures of 
chronic exposure are the maximum weekly average tempera-
ture (MWAT) and the maximum weekly maximum tempera-
ture (MWMT).  Many studies have examined egg incubation 
and hatchability rates for aquatic insects (Elliot, 1972; Harper, 
1973; Humpesch, 1980; Weatherley and Ormerod, 1990; Brit-
tain, 1991) and fish (e.g. Brungs, 1971; Crisp, 1990; Evans and 
Petts, 1997), while others have examined growth rates (e.g. Tho-
rup, 1973; Markarian, 1980; Vannote and Sweeney, 1980; Cou-
tant, 1987; Richardson et al., 1994) and emergence success (e.g. 
Nebeker, 1971a; b; 1972; Nordlie and Arthur, 1981).  Studies on 

TABLE 2
Guidelines and criteria for water temperature in South Africa, Australia and New Zealand, Canada 

and the United States
Country Guidelines or criteria References

South Africa Guidelines are site-specific and based on the deviation from “natural” (reference) condi-
tions.  A target water quality range is specified whereby water temperature should not 
be allowed to vary from the background daily average water temperature considered to 
be normal for that specific site and time of day by > 2oC or by > 10%, whichever esti-
mate is the more conservative.  Daily temperature data are however limited and the cur-
rent approach used to estimate the natural distribution of temperature is by specifying 
a monthly temperature range characterised by the 10th and 90th percentile temperatures.  
Where actual data do not exist modelled temperature data for a reference site as close to 
the resource unit of interest is used to derive the “no-effect” range.  The “no-effect” and 
“critical effect” levels thus respond to natural seasonal variation.  

DWAF, 1996

Dallas et al., 
1998

Jooste and 
Rossouw, 2000

Australia 
and New 
Zealand 

Guidelines are site-specific and based on the derivation of trigger values (20th and 80th per-
centile).  These values are based on site-specific biological effects data and are generally 
calculated from data at a reference site.  It is recommended that trigger values be developed 
for each month (for ecosystems not characterised by large seasonal or event-scale effects) 
or for each wet-dry season where reference data is partitioned according to specific flow 
regimes and/or seasons.  The median (maximum or minimum – depending upon whether 
increase or decrease in temperature) daily temperature is used for comparison.  Trigger 
values may be modified depending on the management objective i.e. levels of ecosystem 
condition.  

NWQMS, 2000

Canada Guidelines are site-specific and largely based on the protection of important fish species.  
Criteria are based on Maximum Weekly Average Temperatures (MWAT), which take into 
account the physiological optimum temperature (usually for growth) in warmer months, 
the survival temperature in winter months, the reproductive functions (e.g. migration 
spawning egg incubation fry rearing) of important species during the reproductive season, 
and overall species diversity and prevention of undesirable growths of nuisance organisms. 

CCRME, 1999

United 
States 

Guidelines are numerous and often regionally focused with emphasis placed on fish popu-
lations.  Temperature criteria generally specify a temperature threshold calculated over an 
averaging period.  Various temperature indices are used including the annual maximum 
(the maximum hourly temperature that occurs each year), the 7-day maximum (the average 
of the daily maximum temperature of the 7 warmest consecutive days), and the 7-day mean 
(MWAT) - the average of the daily mean temperature of the 7 warmest consecutive days.  

McCullough et 
al., 2001
Poole et al., 
2001)
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the physiological effects of modifications to water temperature 
are often linked to metabolic rates (e.g. Eriksen, 1964; Beamish, 
1981; Cech et al., 1990) and oxygen consumption (e.g. Nebeker 
et al., 1996).  

Behavioural preferences and avoidance

Studies on the behavioural effects have primarily been under-
taken on fish (e.g. Cincotta and Stauffer, 1984) with fewer 
studies conducted on aquatic invertebrates (e.g. Gerald and 
Spezzano, 2005).  Thermal gradient tanks have been used to 
determine temperature preferences (Cherry and Cairns, 1982; 
Boubee et al., 1991; Richardson et al., 1994).  This technique 
involves the establishment of a temperature gradient that is then 
used to evaluate the temperatures preferred or avoided by vari-
ous organisms.  The method facilitates the determination of the 
effects of gradual temperature changes and allows ontogenetic 
shifts in temperature preferences to be calculated. Boubee et al. 
(1991) showed experimentally that the final preferred tempera-
ture of Galaxias maculates resident in New Zealand is about 
20oC and temperatures above 29.5oC were totally avoided.

Water temperature guidelines for the protection 
of aquatic ecosystems 

An examination of the guidelines for water temperature in 
aquatic ecosystems highlights the importance of understand-
ing natural spatial and temporal variability in water tempera-
ture.  Identification of appropriate temperature criteria to protect 
aquatic organisms is complicated by the highly variable nature 
of water temperature in rivers, coupled with the variable tem-
perature requirements of aquatic organisms.  Guidelines stress 
that no single temperature or thermal regime would be suitable 
for all seasons, all parts of a country, all river zones or all spe-
cies.  The characteristics of temperature regimes relevant to 
temperature criteria (Sullivan et al., 2000) include temperature 
thresholds that reflect biological effects (acute sublethal); tem-
perature fluctuation characteristic (maximum mean minimum 
fluctuation); and averaging period (instantaneous maximum 7 d 
average monthly seasonal average).  Temperature criteria typi-
cally have two key elements: a threshold temperature that sig-
nals when adverse biological response is likely to occur; and an 
averaging period that indexes the duration of exposure likely to 
trigger that response (Sullivan et al., 2000).  The combination of 
the threshold temperature and the duration of exposure to that 
temperature are an expression of the risk imposed by the envi-
ronmental temperature to the targeted species.  Table 2 provides 
a brief overview of the current guidelines developed in South 
Africa and elsewhere including Australia and New Zealand 
the United States and Canada.  No appropriate references were 
located for the European Union. 

Conclusions

This overview highlights the complexity of water temperature 
in the aquatic environment, the importance of understanding 
the spatial and temporal variability in water temperature, and 
the variable responses of aquatic organisms to thermal stress. 
Anthropogenic modifiers of the thermal regime, including heated 
discharges, flow modifications, riparian vegetation removal and 
global climate change, present ongoing threats to aquatic eco-
systems.  South Africa is a country already stressed by scarcity 
of water. The risk of increasingly harsh conditions caused by 
greater water demands and climate change, reflected as higher 

air temperatures and lower rainfall, accentuates the need for a 
greater understanding of the thermal conditions in aquatic eco-
systems in South Africa and the requirements and triggers of the 
associated aquatic biota.  Whilst Northern Hemisphere informa-
tion on temperature is plentiful, this overview has identified the 
huge gap that exists in temperature-related data in South Africa.  
Without baseline data on water temperature and the thermal 
requirements of aquatic organisms, it is extremely difficult to 
adequately manage aquatic ecosystems.  It is thus critical that 
this knowledge gap be filled through a comprehensive and inte-
grated applied research programme.  
 Such a programme has recently been initiated in South 
Africa (Dallas and Rivers-Moore, 2008) with the focus on lotic 
ecosystems, since these systems are subject to flow regulation 
and water abstraction to a much greater degree than lentic sys-
tems.  The persistence of these ecosystems is more likely to be 
achieved through a better understanding of water temperature 
patterns and processes.  Emphasis will be placed on the collec-
tion of long term data, which are necessary for extracting prin-
ciples on water temperature relevant to South Africa.  These 
will in turn inform policy.  Research has indicated that there are 
likely to be significant differences between Northern and South-
ern Hemisphere aquatic thermal regimes (Dallas, 2007; Rivers-
Moore, 2007).  Thus, Northern Hemisphere practices cannot be 
blindly applied to management issues in Southern African rivers.  
It is recognised that only through a foundation of fundamental 
research linking water temperatures and biotic response, will 
the water temperature requirements for the ecological Reserve 
be met.  The exact nature of these differences will only truly 
be understood through a series of carefully constructed in situ 
and ex situ projects linking biotic response to thermal triggers.  
The usefulness of these data will be further enhanced through a 
more complete spatial understanding of water temperatures and 
a series of scenario analyses, based on temperature simulations 
using a suitable water temperature model.
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