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ABSTRACT

Root-zone soil moisture at the regional scale has always been a missing element of the hydrological cycle.
Knowing its value could be a great help in estimating evapotranspiration, erosion, runoff, permeability,
irrigation needs, etc. The recently developed Soil Moisture Analytical Relationship (SMAR) can relate

the surface soil moisture to the moisture content of deeper layers using a physically-based formulation.
Previous studies have proved the effectiveness of SMAR in estimating root-zone soil moisture, yet there is
still room for improvement in its application. For example, the soil water loss function (i.e. deep percolation
and evapotranspiration), assumed to be a linear function in the SMAR model, may produce approximations
in the estimation of water losses in the second soil layer. This problem becomes more critical in soils with
finer textures. In this regard, the soil moisture profile data from two research sites (AMMA and SCAN)
were investigated. The results showed that after a rainfall event, soil water losses decrease following a power
pattern until they reach a minimum steady state. This knowledge was used to modify SMAR. In particular,
SMAR was modified (MSMAR) by introducing a non-linear soil water loss function that allowed for

improved estimates of root zone soil moisture.
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INTRODUCTION

The moisture content of the vadose zone plays an important
role in many water- and energy- related studies, numerical
weather predictions, global change modelling, prediction of
surface runoff, and evaporation modelling (Holmes et al., 2009;
Brocca et al., 2010; Manfreda and Fiorentino, 2008; Manfreda
etal., 2010; Parinussa et al., 2012). Soil moisture can help us

to understand the interaction between land and atmosphere

as it determines the partitioning of energy between the
different water fluxes. However, the in-situ measurement of soil
moisture, even for small watersheds, is often time-consuming
and requires a large effort to adequately sample.

In previous research, description of an analytical
relationship between the soil moisture at the surface and that
in the lower soil layers has been emphasized as a significant
challenge (Ochsner et al., 2013). Wagner et al. (1999) suggested
the use of an exponential filter and a recession constant (T) to
convert the time series of surface measurements to a signal that
is able to capture the dynamics of the lower soil layer. The great
advantage of this model is its simplicity, due to using only one
parameter (i.e., T) and because the derived soil moisture index
(SWI) relies only on surface observation. This approach has
been tested with both simulated and measured data, and has
been extensively used to improve the description of root-zone
soil moisture in rainfall-runoff applications (e.g., Manfreda et
al., 2011; Brocca et al., 2010, 2012; Matgen et al., 2012). Despite
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numerous efforts to find a physical interpretation for the
parameter T (e.g. Ceballos et al., 2005; De Lange et al., 2008;
Albergel et al., 2008) that is influenced by a number of physical
processes controlling soil moisture fluctuations, researchers
did not observe significant relationships between T and the
main soil properties (clay and sand fractions, bulk density and
organic matter content).

The recently developed Soil Moisture Analytical
Relationship (SMAR) was derived from a simplified soil water
balance equation for arid and semi-arid environments that
provides a relationship between root-zone and surface soil
moisture. Results have proved the potential of this model to
estimate root-zone soil moisture. Applications of the SMAR
model in estimating root-zone soil moisture (RZSM) from a
time series of surface soil moisture (SSM), at both local and
regional scales, have proved the capability of this methodology
in providing a good description of RZSM (e.g., Manfreda et al.,
2014; Faridani et al., 2016; Baldwin et al., 2016). The advantage
of the SMAR model over the SWI method is that there are clear
physical interpretations for the SMAR parameters which can
be easily determined knowing soil texture and climate of the
target location. In the original model proposed by Manfreda
et al. (2014), the water loss function was assumed to be a linear
function, but they suggested improving the SMAR model by
representing a soil water loss function that accounts for the
non-linearity of this process. This study therefore aimed to
discover the water loss pattern of the root zone after a rainfall
event in order to modify the SMAR model, using two different
soil databases, i.e., in Africa and North America (the AMMA
and SCAN networks, respectively).
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SOIL MOISTURE DATA

In-situ sites: the AMMA database

The African Monsoon Multidisciplinary Analysis (AMMA)
programme, which started in 2004, has developed a network
of ground-based stations in sub-Saharan West Africa (see
Redelsperger et al., 2006). In this study, we focused on the
point measurements of soil moisture taken at the sites of
Belenfougou, Wankama and Tondikiboro in Niger.

These sites have a semi-arid climate characterized by
limited rainfall that is generally concentrated in time. The
mean annual rainfall reaches a value of about 550 mm
(AMMA-CATCH, 2014).

At each site, soil moisture data were collected at 5 different
depths (5, 10, 40, 70, 100 and 135 cm) using water content
reflectometers (CS616 — Campbell Scientific Inc., Logan,

Utah, USA) placed along the soil column with the geometry
schematically described in Fig. 1. Similar to Manfreda et al.
(2014), the relative saturation at 5 cm depth was considered as

a reference surface measurement, and the relative saturation
over the root zone was estimated by averaging the soil moisture
measurements below the surface layer. The AMMA database
and other soil moisture products from other projects have been
collected in the International Soil Moisture Network (ISMN)
database (e.g. Dorigo et al., 2011 - available at: http://ismn.geo.
tuwien.ac.at).

In-situ sites: the SCAN database

The Soil Climate Analysis Network (SCAN) consists of more
than 190 stations in the United States (US) with a variety of
climatic, geological and vegetation conditions (e.g. Schaefer et
al., 2007). Measurements are collected by dielectric devices at 5,
10, 20, 50, and 100 cm depth. The selected stations were: Widow
Wells and Cross Roads in New Mexico; Enterprise in Utah;

and Mammoth Cave and Princeton#1 in Kentucky, US. The
pedological report on the SCAN website allowed for definition
of the soil texture characteristics of the first (the first 10 cm) and
the second layer of soil (assumed equal to the remaining 90 cm),
which can be used to derive soil parameters for each site.

MATERIALS AND METHODS
The SMAR Model

Manfreda et al. (2014) assumed that soil was composed of

2 layers: one surface layer with a depth of a few centimetres
(equivalent to the retrieval depth of the satellite sensor) and a
second layer below with a depth corresponding to the rooting
depth of the vegetation. Infiltration is the most relevant water
mass exchange between the two layers and other processes such
as lateral flow and capillary rise are assumed negligible. The
water flux from the top layer can be considered significant only
when the soil moisture exceeds field capacity. Assuming that
the soil moisture movement from the upper to the lower layer
during a rainfall event can be modelled following the Green-
Ampt equation (Green and Ampt, 1911), one can also assume
that all water in the first layer above field capacity will move
into the lower layer within 1 day. Under such assumptions,

Eq. I describes the instantaneous infiltration flux from the

top layer to the lower layer. Therefore, infiltration is:

1(t) “Ca) 1(t) el
I’IIZle(t) = nlzrly[sl(t)’ t] = nZr, (()f g ;(t) ;; 6
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Figure 1
Relative position of the six soil moisture probes
installed at the station of Tondikiboro in Niger

where: y(f) is the fraction of soil saturation infiltrating in the
lower layer, #, is the soil porosity of the top layer, Zr, [L] is the
depth of the top layer, s, (6,/n,) is the relative saturation of the
first layer (given by the ratio between the soil water content,
91, and the porosity, n, of the top layer), and sc, is the value of
relative saturation at field capacity of the top layer of soil.

In order to avoid the underestimation of infiltration, the
surface-soil moisture value should be referred for the first
5-10 cm of soil. Most satellite sensors cannot observe deeper
than a few centimetres, but it is a reasonable assumption that
these measures can be representative of the dynamics of a
surface layer of approximately 5-10 cm (Manfreda et al., 2014).
SMAR assumes that the soil water losses decrease linearly, from
a maximum value under well-watered conditions to zero at the
wilting point.

Soil water balance can be described by defining
x,=(s,—s,)/(1 s, ) as the ‘effective’ relative soil saturation
of the second soil layer and w = (1 - s ) n,Zr, as the soil water
storage. Eq. 2 describes the soil water balance which Manfreda
et al. (2014) used in the SMAR model.

dx,(t)

(1- swz)nzZrzT =nZry(t) - Vx, () )
where: s, is the relative saturation of the soil, s , represents
the relative saturation at the wilting point, n, is the soil
porosity, Zr, [L] is the soil depth, V, [LT-1] is the soil water
loss coefficient accounting for both evapotranspiration and
percolation losses, and x, is the ‘effective’ relative soil saturation
of the second soil layer. The model was developed mainly for
an arid and semi-arid climate with flat surfaces and neglecting
the presence of phreatic surfaces, effects due to topographic
convergence (e.g. subsurface flows), the presence of frozen soils,
etc. (Manfreda et al., 2014).
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The equation above can be simplified using normalized
coefficients a and b defined as:

— VZ b= nlzrl 3
- s nZr, (-2 )nZr, ®)
The value of these parameters can be related to the ratio of
the depths of the two layers and the soil water loss coefficient.
Therefore, the soil water balance equation becomes:
dx,(t) ) 4
2 = by(0) - ax, () @
Equation 4 shows a generalization that includes the proposed
case by Wagner et al. (1999). Manfreda et al. (2014) assumed
an initial condition for the relative saturation x,(t) equal
to zero and derived an analytical solution to this linear
differential equation:
t
x,(t) = jbe”(w") y(w)dw (5)
0
For practical applications, the discrete form of Eq. 5 may
also be needed:
J
x,() = Lbe ) y(t ) At ©)

i=0

Expanding Eq. 6 and assuming At = (£, - £, ), one may derive

the following expression for the soil moisture in the second
layer based on the time series of surface soil moisture:

3() = 3,0, )e " by -1, ) @)

This may be rewritten as a function of s, as:

In SMAR, the soil water loss function is a simple linear
function with parameter V, that can be written as:

L(s,(0) = Vs,(6) ©)

Such a formulation represents an approximation, leading to
errors, especially in clay soils or humid environments where
non-linear processes become dominant. The objective of the
present study was to test the potential improvements that can
be obtained with a new, more realistic, loss function.

Modification of SMAR

The soil water loss function is assumed to be linear in the
SMAR model. However, by plotting the water losses against
the days since the last precipitation, it was observed that soil
water losses exhibit nonlinear behaviour in the days after
rainfall (Fig. 2). As Laio et al. (2001) suggested, soil water loss
(i.e. evapotranspiration and deep percolation) is a non-linear
function influenced by soil permeability and local climate.

Laio et al. (2001) assumed that leakage is at its maximum
when soil is saturated and then rapidly decreases as the soil
dries out, following the decrease in hydraulic conductivity
K. They assumed that the hydraulic conductivity decreases
exponentially from K at s, = 1 to zero at field capacity s,,.
Thus, the behaviour of leakage losses is described as:

DP(s,) = K 5§ (10)
where: ¢ = 2d + 4 and d is an experimentally determined
parameter of the soil-water retention curve suggested by Clapp

and Hornberger (1987). The values of parameters c and d for
different soil textures are provided in Table 2.

The evapotraspiration (ET) is calculated by:

—a(t -t ) ETW52 —Shz Sh<SZSSw2
§0) = 5,558~ 5,)e )+ (=5 Dby(t)E 1) (@) W
ET(s) =|ET, + (ET,- ET,) ﬁ s,,<8,<s*
Parameters s, s, d, and b can be estimated from the soil ET w2 s<s <1
texture, the soil depth, and the soil water losses (Table 1). The max T (11)
parameter a is a function of potential evapotranspiration where: s, and s* are soil saturations at hygroscopic scale and
and soil permeability which can be estimated by regression stomata closure, respectively. s* depends on both vegetation
functions such as those proposed by Pan et al. (2003). and soil characteristics (Laio et al., 2001).
TABLE 1
Soil parameters associated with different soil textures. The relative saturation at field capacity and
wilting point were estimated using the Brooks-Corey model assuming ¢ = —1.5 and —0.03 MPa, respectively.
. n m K, s, s,
Soil type [ & [em/d] G [
Sand 0.437 0.592 7.26 504.00 0.06 0.14
Loamy sand 0.437 0.474 8.69 146.60 0.11 0.24
Sandy loam 0.453 0.322 14.66 62.20 0.19 0.42
Silty loam 0.501 0.211 20.76 31.70 0.27 0.57
Loam 0.463 0.220 11.15 16.30 0.25 0.50
Sandy clay loam 0.398 0.250 28.08 10.30 0.34 0.62
Silty clay loam 0.471 0.151 32.56 3.60 0.45 0.73
Clay loam 0.464 0.194 25.89 5.50 0.40 0.67
Sandy clay 0.430 0.168 29.17 2.90 0.51 0.75
Silty clay 0.479 0.127 34.19 2.20 0.52 0.78
Clay 0.475 0.131 37.30 1.40 0.56 0.80
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Figure 2
Soil water losses against days since last precipitation for the considered sites

Thus, the soil water loss function becomes:

ET(s,) + DP
1y - E1) )
2 2

where: DP(s,) is the amount of deep percolation at s,.
An example of such formulation is given in Fig. 3.

Soil texture, surface layer (Zr,) and root-zone layer (Zr,)
were determined based on the soil characteristic report
of study sites. According to the defined texture for each
station, parameterss_, s, s, 4, b and K, were determined
from Table 1 and parameters: ¢, and s*, were determined
from Table 2. Finally, parameters: V,ET, and E T, were
determined according to the climate of study areas. Table 3
shows all the mentioned parameters for all the studied field sites.

The SMAR model was modified by substituting the water
loss coeflicient with Eq. 12. Then the time series of surface soil
moisture was applied in both the SMAR model and modified
SMAR model (hereafter referred to as MSMAR). The time
series of surface soil moisture (SSM), measured RZSM and
estimated RZSM for the study sites are depicted in Figs 4 and 5.

As can be seen in Fig. 4 A2, B2 and C2, the rainfall pattern
in the AMMA study area has two distinct dry and wet seasons
which causes very clear rises and abrupt decreases in the

TABLE 2
Parameters describing various soil characteristics used in
the water loss function proposed by Laio et al. (2001)

Soil texture c d° s

Sand 11.1 4.05 0.33
Loamy sand 11.7 4.38 0.31
Sandy loam 12.8 4.90 0.46
Loam 13.8 5.39 0.57
Clay 25.8 11.4 0.78

* Data reference: Laio et al. (2001). The value s* have been calculated
supposing a soil water potential equal to 0.03 MPa.
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soil water content of both surface and root-zone layers. This

is mainly due to the high permeability of soil that is mainly
characterized by a coarse texture. Looking at Fig. 4 Al and

B1, one can see that both the SMAR and MSMAR models

had similar RZSM estimates in Tondikiboro and Wankama
Stations. Because of the pure sandy textures of the soil at these
stations, the MSM AR water loss function (Eq. 12) becomes
almost equal to the water loss function proposed by the SMAR
model, which will ultimately give similar results for the two
models. Nevertheless, the MSMAR estimates of RZSM become
significantly better when moving from coarse to finer textures.
This can be seen for Belenfougou Station where the soil is finer
(Fig. 4-C1).

As depicted by Fig. 5, MSMAR outperformed SMAR in the
estimation of RZSM for most of the SCAN sites. In general,
SMAR tends to underestimates RZSM in finer soil textures.
Considering the spatial and climatic diversity of the locations
where the soil profile saturation has been measured, results
show that the proposed modifications improve modelling
performance.

L(s) [cm/day]

i1 Ke

Figure 3
Typical water loss function (L(s)) for typical climate,
soil and vegetation conditions in arid and semi-arid regions
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TABLE 3

SMAR parameters assigned for each station based on soil characteristic
report and tables proposed by Manfreda et al. (2014) and Laio et al. (2001)

. Zr. s, n Zr, S, s,* S, K, n, c, v, ET . ET,
Database | Study site @ | OO e | & O | O [ O | O || cmid ]| cmid
AMMA Tondikiboro 10 | 014 0437 ] 125 | 0.06 | 0.11 | 0.14 | 504 | 0437 | 111 | 2 2 | o1
data base
Wankama 10 0.24 | 0.437 | 125 0.06 | 0.20 | 0.24 | 146.6 | 0.437 | 11.7 2 2 0.1
Belenfougo 10 0.57 [ 0.453| 125 | 0.51 | 065 | 0.75 | 62.2 | 0.430 | 13.8 2 2 0.1
SCAN Enterprise 10 | 034 [0453] 90 | 027 | 050 | 0.57 | 31.7 | 0501 | 132 | 15 | 0.7 | 0.1
data base
Princeton#1 10 0.57 | 0.501 | 90 0.27 | 0.50 | 0.57 | 31.7 | 0.501 | 13.2 1.5 0.7 0.1
Mammoth Cave 10 0.50 | 0.463 90 0.40 | 0.52 | 0.67 55 (0464 | 14.2 1.5 0.7 0.1
Cross Roads 10 0.24 | 0.437 | 90 0.11 | 0.50 | 0.57 | 31.4 | 0.437 | 13.2 2 1.5 0.1
Widow Wells 10 0.14 | 0.453 90 0.19 | 0.30 | 042 | 62.2 | 0437 | 12.8 2 1.5 0.1
TABLE 4
MAE, RMSE and R values between measured and estimated RZSM values using (1) SMAR and (2) MSMAR models
Parameter AMMA database SCAN database
Tondikiboro | Wankama | Belefougou | Enterprise | Mammoth Cave | Princeton#1 | Cross Roads | Widow Wells
MAE 0.020 0.013 0.086 0.128 0.181 0.211 0.067 0.017
SMAR |RMSE 0.027 0.030 0.107 0.152 0.188 0.249 0.082 0.029
R 0.840 0.813 0.935 0.734 0.726 0.899 0.699 0.899
MAE 0.017 0.020 0.057 0.046 0.083 0.086 0.019 0.004
MSMAR | RMSE 0.024 0.029 0.082 0.094 0.098 0.058 0.040 0.029
R 0.840 0.754 0.964 0.807 0.762 0.839 0.862 0.874
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Figure 5
Time series of (1) measured and estimated RZSM using SMAR and MSMAR models and
(2) SSM for stations in the SCAN database in the US

In order to evaluate the accuracy of both the SMAR and
MSMAR models, the mean absolute error (MAE), root mean
square error (RMSE) and correlation coefficient (R) between
measured and modelled RZSM values for each station were
calculated (Table 4). In all stations except Widow-Wells, the
MSMAR model had a lower RMSE than that of the SMAR
model. Also, in terms of the correlation coefficient (R), for all
stations except Wankama, MSMAR had better and/or equal
correlations with the measured RZSM than that of the SMAR
model (Table 4). Therefore, the MSMAR model may represent a
good alternative in the estimation of RZSM.

DISCUSSION AND CONCLUSIONS

In this study, the performance of the SMAR model in
estimation of root zone soil moisture (RZSM) was investigated.
The soil water loss function of the SMAR model was originally
assumed to be a linear function for a given day. Since soils
with finer textures have higher holding capacity and lower
infiltration capacity, assuming such a linear relationship may
lead to errors in the evaluation of soil water losses.

By plotting measured soil water losses (the difference
between RZSM of the current and previous days) vs. the
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number of days since the last precipitation for each day, soil
water loss was shown to be strongly non-linear over time. Thus
SMAR was modified (MSMAR) by substituting the water loss
coeflicient with the soil water loss function proposed by Laio
et al. (2001), the parameters of which can be determined by
knowledge of soil characteristics.

The performance of the SMAR and MSMAR models were
evaluated by comparing RMSE and R values between measured
and estimated RZSM values. The results showed that, in general,
the MSM AR model improved the estimation of RZSM from the
time series of surface soil moisture measurement. Nevertheless,
these models had similar results in very coarse textured soils.

Since both the SMAR and MSM AR models use the moisture
of the top few centimetres of the soil to estimate the root zone
soil moisture, it is suggested that the possibility of assimilating
satellite soil moisture data into these two models be evaluated.

ACKNOWLEDGMENTS

The authors wish to acknowledge Ferdowsi University of
Mashhad for granting this research under the number 31317,
and to thank the University of Basilicata for providing the
opportunity for this collaboration.

497


http://dx.doi.org/10.4314/wsa.v43i3.14
http://www.wrc.org.za
https://creativecommons.org/licenses/by/2.0/za/

REFERENCES

ALBERGEL C, RUDIGER C, PELLARIN T, CALVET JC, FRITZ N,
FROISSARD F and MARTIN E (2008) From near-surface to root-
zone soil moisture using an exponential filter: an assessment of
the method based on in-situ observations and model simulations.
Hydrol. Earth Syst. Sci. 12 (1) 1323-1337. https://doi.org/10.5194/
hess-12-1323-2008

BALDWIN D, MANFREDA S, KELLER K and SMITHWICK EAH
(2017) Predicting root zone soil moisture with soil properties
and satellite near-surface moisture data across the conterminous
United States. J. Hydrol. 546 393-404. https://doi.org/10.1016/j.
jhydrol.2017.01.020

BROCCA L, MELONE F, MORAMARCO T, WAGNER W, NAEIMI
V, BARTALIS Z and HASENAUER S (2010) Improving runoff
prediction through the assimilation of the ASCAT soil moisture
product. Hydrol. Earth Syst. Sci. 14 (10) 1881-1893. https://doi.
org/10.5194/hess-14-1881-2010

BROCCA L, MAROMARCO T, MELONE F, WAGNER W,
HASENAUER S and HAHN S (2012) Assimilation of surface-and
root-zone ASCAT soil moisture products into rainfall-runoff
modeling. IEEE Trans. Geosci. Remote Sens. 50 (7) 2542-2555.
https://doi.org/10.1109/TGRS.2011.2177468

CEBALLOS A, SCIPAL K, WAGNER W and MARTINEZ-
FERNANDEZ ] (2005) Validation of ERS scatterometer-derived
soil moisture data in the central part of the Duero Basin Spain.
Hydrol. Process. 19 (8) 1549-1566. https://doi.org/10.1002/hyp.5585

CLAPP RB and HORNBERGER GM (1978) Empirical equations for
some soil hydraulic properties. Water Resour. Res. 14 (4) 601-604.
https://doi.org/10.1029/WR014i004p00601

DE LANGE R, BECK R, VAN DE GIESEN N, FRIESEN J, DE WIT
A and WAGNER W (2008) Scatterometer-derived soil moisture
calibrated for soil texture with a one-dimensional water-flow
model. IEEE Trans. Geosci. Remote Sens. 46 (12) 4041-4049. https://
doi.org/10.1109/TGRS.2008.2000796

DORIGO WA, WAGNER W, HOHENSINN R, HAHN §, PAULIK
C, XAVER A, GRUBER A, DRUSCH M, MECKLENBURG S,
OEVELEN PV and ROBOCK A (2011) The International Soil
Moisture Network: a data hosting facility for global in situ soil
moisture measurements. Hydrol. Earth Syst. Sci. 15 (5) 1675-1698.
https://doi.org/10.5194/hess-15-1675-2011

FARIDANIF, FARID A, ANSARI H and MANFREDA S (2016)
Estimation of the root-zone soil moisture using passive microwave
remote sensing and SMAR Model. J. Irrig. Drain Eng. 04016070.

GREEN WH and AMPT GA (1911) Studies on soil phyics. J. Agric. Sci.
4 (1) 1-24. https://doi.org/10.1017/S0021859600001441

ISMN (International Soil Moisture Network) (2014) The ISMN Data
Portal. URL: http://ismn.geo.tuwien.ac.at (Last accessed December
2014).

LAIO F, PORPORATO A, RIDOLFI L and RODRIQUEZ-ITURBE
1 (2001) Plants in water-controlled ecosystems: active role in
hydrologic processes and response to water stress: II Probabilistic
soil moisture dynamics. Adv. Water Res. 24 (7) 707-723. https://doi.
0rg/10.1016/50309-1708(01)00005-7

MANFREDA S and FIORENTINO M (2008) A stochastic approach
for the description of the water balance dynamics in a river basin.
Hydrol. Earth Syst. Sci. 12 (5) 1189-1200. https://doi.org/10.5194/
hess-12-1189-2008

MANFREDA S, SCANLON TM and CAYLOR KK (2010) On the
importance of accurate depiction of infiltration processes on
modelled soil moisture and vegetation water stress. Ecohydrology
3 (2) 155-165.

MANFREDA S, LACAVA T, ONORATI B, PERGOLA N, LEO MD,
MARGIOTTA MR and TRAMUTOLI V (2011) On the use of
AMSU-based products for the description of soil water content at
basin scale. Hydrol. Earth Syst. Sci. 15 (9) 2839-2852. https://doi.
org/10.5194/hess-15-2839-2011

MANFREDA S, BROCCA L, MARAMARCO T, MELONE F
and SHEFFIELD ] (2014) A physically based approach for the
estimation of root-zone soil moisture from surface measurements.
Hydrol. Earth Syst. Sci. 18 (3) 1199-1212. https://doi.org/10.5194/
hess-18-1199-2014

MATGEN P, HEITZ S, HASENAUER S, HISSLER C, BROCCAL
L, HOFFMANN L and SAVENIJE HHG (2012) On the potential
of MetOp ASCAT-derived soil wetness indices as a new aperture
for hydrological monitoring and prediction: a field evaluation
over Luxembourg. Hydrol. Process. 26 (15) 2346-2359. https://doi.
org/10.1002/hyp.8316

OCHSNER TE, COSH MH, CUENCA RH, DORIGO WA, DRAPER
CS, HAGIMOTO Y and ZREDA M (2013) State of the art in large-
scale soil moisture monitoring. Sci. Soc. Am. J. 77 (6) 1888-1919.
https://doi.org/10.2136/ss5aj2013.03.0093

PAN F, PETERS-LIDARD CD and SALE M]J (2003) An
analytical method for predicting surface soil moisture from
rainfall observations. Water Resour. Res. 39 (11). https://doi.
0rg/10.1029/2003WR002142

http://dx.doi.org/10.4314/wsa.v43i3.14

Available on website http://www.wrc.org.za

ISSN 1816-7950 (Online) = Water SA Vol. 43 No. 3 July 2017
Published under a Creative Commons Attribution Licence

498


http://dx.doi.org/10.4314/wsa.v43i3.14
http://www.wrc.org.za
https://creativecommons.org/licenses/by/2.0/za/
https://doi.org/10.1017/S0021859600001441
http://ismn.geo.tuwien.ac.at
https://doi.org/10.1016/S0309-1708%2801%2900005-7
https://doi.org/10.1016/S0309-1708%2801%2900005-7
https://doi.org/10.5194/hess-12-1189-2008
https://doi.org/10.5194/hess-12-1189-2008
https://doi.org/10.5194/hess-15-2839-2011
https://doi.org/10.5194/hess-15-2839-2011
https://doi.org/10.5194/hess-18-1199-2014
https://doi.org/10.5194/hess-18-1199-2014
https://doi.org/10.1002/hyp.8316
https://doi.org/10.1002/hyp.8316
https://doi.org/10.2136/sssaj2013.03.0093
https://doi.org/10.1029/2003WR002142
https://doi.org/10.1029/2003WR002142
https://doi.org/10.5194/hess-12-1323-2008
https://doi.org/10.5194/hess-12-1323-2008
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.5194/hess-14-1881-2010
https://doi.org/10.5194/hess-14-1881-2010
https://doi.org/10.1109/TGRS.2011.2177468
https://doi.org/10.1002/hyp.5585
https://doi.org/10.1029/WR014i004p00601
https://doi.org/10.1109/TGRS.2008.2000796
https://doi.org/10.1109/TGRS.2008.2000796
https://doi.org/10.5194/hess-15-1675-2011

	INTRODUCTION
	SOIL MOISTURE DATA
	In-situ sites: the AMMA database
	In-situ sites: the SCAN database

	MATERIALS AND METHODS
	The SMAR Model
	Modification of SMAR

	DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

