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ABSTRACT
Southern Africa is likely to experience higher evapotranspiration and altered rainfall characteristics due to global warming 
and climate change. Climate-driven water use may potentially stress water supply facilities due to increased demand and 
reduced surface water yield. This paper presents a conceptual theoretical framework for assessing impacts of climate 
change on domestic irrigation water use. The prediction of climatic conditions that may potentially influence future water 
use is reviewed together with regional capacity for downscaling global climate projections. The impact assessment of water 
use is based on the modification and adaptation of an existing end-use model for water demand to include parameters for 
climate change. The Penman-Monteith equation and the soil water balance equation are incorporated for the estimation of 
daily water needs of vegetated areas in residential properties. The paper also discusses data requirements and a calibration 
procedure to improve model fit to the observed domestic irrigation water use. The proposed approach could form a basis 
for constructing a detailed model for planning various adaption measures relating to climate-driven domestic irrigation 
water use.
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INTRODUCTION

Research context

Domestic water use comprises indoor and outdoor compo-
nents. Water is needed outdoors mainly for garden irriga-
tion – to water vegetation such as lawns, flowerbeds and trees. 
Other outdoor water uses include pool top-ups, washing of 
cars, washing of hard surfaces, etc.. Water may also be used 
for small-scale urban agriculture – to grow edible plants like 
herbs, fruit and vegetables. Various climatic parameters impact 
outdoor water use, including, for example, rainfall, evapo-
transpiration and ambient temperature (Balling et al., 2008; 
Praskievicz and Chang, 2009; Breyer and Chang, 2014). This 
climatically-driven water use profile is particularly true for 
edible plants with seasonal growth. 

Climate change has been reported to affect parameters 
requisite for estimating irrigation requirements (Gutzler and 
Nims, 2005; Balling and Cubaque, 2009), and may thus have 
important implications for modelling residential outdoor water 
use. To study the impacts of climate change on residential 
outdoor water use, it is vital to incorporate biophysical inter-
relationships pertinent to outdoor water using features. In 
this regard, water end-use models are more likely to produce 
better results compared to models that are built on aggregated 
water use measurements (Bennett et al., 2013). Research is still 
needed to estimate the impact of climate change on water use 
at the end-use level, thereby augmenting other existing broad-
scale efforts aimed at assessing the current and future capacity 
of water resources to meet domestic, agricultural and environ-
mental water requirements. 

Objectives

The main objective of this paper is to present a conceptual 
theoretical framework for a Climate Impact Water Use (CIWU) 
model that would integrate climate change impacts into a 
residential end-use model for estimating domestic irrigation 
water use. The goal is to present a framework or tool that could 
ultimately feed into a more complex model in future to predict 
long-term impacts of climate change on outdoor water use. In 
this paper, the focus is on lawn and garden irrigation which, 
when present on a residential property, contributes significantly 
to water use (Jacobs et al., 2007).

Pricing, technological change and other socio-economic 
factors have also been reported to influence water use (Howe 
and Lineweaver, 1967; Butler and Memon, 2006). While such 
factors may change over time and thereby impact domes-
tic irrigation water use, they have been disregarded in the 
modelling framework presented. Instead, the proposed end-
use model allows for the analysis of the impact of predicted 
changes in climatic parameters on domestic irrigation water 
use of a specific residential property in a ‘static environment’ 
wherein non-climatic parameters remain constant. 

Motivation

On a global scale, impacts of climate change on the water cycle 
are mainly manifested in the increased intensity and frequency 
of extreme events (Rana et al., 2014; Niang et al., 2014). The 
Mediterranean and southern Africa regions are generally 
expected to experience a significant decline in water resources 
due to global warming (IPCC, 2007; Niang et al., 2014). Thus, 
sustainable management of water resources and implemen-
tation of action plans to deal with possible water shortages 
require a good understanding of water end-uses and their 
response to climate change.

Water supply utilities are already facing pressure to 
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maintain supply in the face of increasing water use and uncer-
tain supply (Danilenko et al., 2010). Outdoor water use restric-
tions have already been applied extensively in many cities to 
manage water supply shocks (Atwood et al., 2007; Jacobs et al., 
2007; Survis and Root, 2012). Any future increase in domestic 
irrigation water requirements that may be brought about by 
climate change could potentially further stress water resources 
due to increased water use, possibly combined with reduced 
surface water yield (Kusangaya et al., 2014). Accurate model-
ling of water use in the context of climate change is essential 
to effectively plan and implement future water management 
strategies.

STATE-OF-THE-ART CONCEPTS IN CLIMATE 
CHANGE AND WATER END-USE MODELLING

Climate change 

Global warming due to increasing concentrations of green-
house gases (GHG) in the atmosphere is expected to cause 
significant changes in future climate. According to the IPCC 
(2013), global temperatures will continue to rise given the pre-
sent levels of anthropogenic GHG emissions. The direct effect 
of higher temperatures is increased atmospheric water demand 
and the intensification of the hydrological cycle. The intensi-
fication of extreme events is expected even in areas that are 
bound to experience decreased rainfall due to global warming, 
such as the Mediterranean Basin and some parts of southern 
Africa (Niang et al., 2014).

Global circulation models (GCMs) are widely used to 
generate forecasts of future climate (Dufresne, 2006; Rana, 
2014; Servat, 2014; André, 2014). Prediction of future climate is 

a complex undertaking involving many physical, chemical and 
biological processes. Confidence in the application of GCMs 
has been growing with improved computing capabilities that 
have made it possible to perform numerically-intensive simula-
tions within reasonable lengths of time. There are now a large 
number of GCMs available from different institutions around 
the world. The results of the IPCC fifth assessment, made public 
for potential use by the scientific research community, are 
based on the analysis of 27 GCMs (IPCC, 2007; IPCC, 2013). It 
has now become the norm to assess future climate conditions 
from an ensemble of GCMs in order to reduce regional and 
seasonal bias exhibited by individual models (Graham et al., 
2011; Faramarzi et al., 2013). Table 1 provides an inventory of 
16 of the most sophisticated GCMs amongst the 27 GCMs used 
by IPCC. 

Versatile as they are, GCMs can only give valid outputs 
at grid scales that are essentially too coarse for most impact 
studies, particularly when the focus is on water use of relatively 
small residential neighbourhoods. Working at grid sizes larger 
than around 350 km2 to 450 km2, GCMs fail to capture the 
spatial and temporal patterns of second-order processes, for 
example, rainfall, with the same level of consistency as first-
order atmospheric processes (Hardy, 2003). Regional downs-
caling is required to bring the GCM outputs to grid scales of 
about 10 km2 to 50 km2. Two basic approaches are available for 
downscaling. The first approach, known as dynamical down-
scaling, links a regional climate model (RCM) of smaller grid 
size to the relevant GCM. RCMs are based on similar theoreti-
cal foundations to those used in GCMs and offer results with 
finer spatial resolution (Rana et al., 2014). However, the scope of 
RCMs is limited to their regions of validity. Alternatively, sta-
tistical downscaling can be used to transfer GCM projections 

TABLE 1
Characteristics of 16 GCMs

GCM name Institution Country of origin ID according to CMIP3

BCC_BCM2.0 Bjerkness Centre for Climate Research Norway BCM2.0

CCCMA_CGCM3.1 Canadian Center for Climate Modelling and Analysis Canada CGCM3.1(T47)2

CNRM_CM3 Météo-France/Centre National de Recherches 
Météorologiques

France CNRM-CM3

CSIRO_MK3.5 Australia’s Commonwealth Scientific and Industrial 
Research Organisation

Australia CSIRO_MK3.5

GFDL_CMD2.0 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics 
Laboratory

USA GFDLCM2.04

GFDL_CMD2.1 US Dept. of Commerce/NOAA/Geophysical Fluid Dynamics 
Laboratory

USA GISS-ER6

GISS_MODE_E_R NASA/Goddard Institute for Space Studies USA e for Spa

INGV_ECHAM4 INGV, National Institute of Geophysics and Volcanology Italia ECHAM4.6

INMCM3.0 Institute for Numerical Mathematics Russia INMCM3.0

IPSL_CMD4 Institut Pierre Simon Laplace France IPSLCM4

MIROC3.2_MEDRES CCSR/National Institute for Environmental Studies/FRCGC Japan MIROC3.2

MIUB_ECHO_G Meteorological Institute of the University of Bonn, 
Meteorological Research Institute of KMA, Model and Data 
group at MPI-M

Germany/
Korea

ECHO-G1

MPI_ECHAM5 Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM

MRI_CGCM2.3.2a Meteorological Research Institute Japan MRICGCM2.3.2

UKMO_HadCM3 Hadley Centre for Climate Prediction, Met Office UK UKMOHadCM3

UKMO_HadGEM1 Hadley Centre for Climate Prediction, Met Office UK UKMOHadGEM1
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to the area of interest by coupling the regional and local cli-
mate through available observations. Statistical downscaling 
has much fewer computational requirements than dynamical 
downscaling but the final results will inherit any anomalies in 
the available data (Graham et al., 2011). According to Maraun 
et al. (2010), consensus between results from dynamical down-
scaling and statistical downscaling is a better indicator of valid-
ity of the results.

A key issue when using future climate projections is quan-
tifying the uncertainty inherent in the successive stages of 
modelling. Some climate processes are not yet well understood 
in terms of climate modelling. Thus, errors can be introduced 
into the results leading to an over- or underestimation of future 
climate (Schulze, 2011). The anthropogenic GHG emission 
scenarios used in GCMs are based on assumptions of highly 
unpredictable socio-economic and technological statuses of the 
future. The GCMs themselves comprise parameterisations that 
oversimplify processes of many local climate phenomena they 
represent. Hence it is desirable to introduce as little additional 
uncertainty as possible in the downscaling or sequent model-
ling stages. 

In the African context, climate change simulations are 
usually carried out by using GCMs suggested by the IPCC. 
The severe lack of observed climate data and credible stud-
ies conducted on spatial and temporal variation of climate 
across Africa preclude an accurate assessment of future 
regional climate scenarios of most African regions (Gbesso et 
al., 2014; Kling et al., 2014; Rana et al., 2014). Projections of 
extreme weather conditions, as of the IPCC report published 
in 2001, were not available for wide portions of Africa due to 
inadequacy of data (DFID, 2004). The case in South Africa, 
however, seems to be different from the rest of the continent. 
South Africa seems to have more active participation in 
global climate change programmes and a wealthier literature 
resource of work on climate change than the rest of the con-
tinent (Ziervogel et al., 2014). International efforts are under-
way to develop regional climate models, especially for the 
southern African part. The UK Department for International 
Development (DFID) had supported the development of a 
regional climate model called ACCURATE from the Hadley 
Centre (DFID, 2004). CORDEX-Africa is yet another joint 
programme meant to increase the availability and quality of 
downscaled climate projections for Africa. In addition, South 
Africa has implemented strategic actions to better under-
stand the implications of climate change at national level. 
The Climate Systems Analysis Group (CSAG) affiliated to the 
University of Cape Town has generated future climate scenar-
ios on a daily scale for national and local application using five 
GMCs, namely, CGCM3.1, CNRM-CM3, ECHAM5/MPI-OM, 
GISS-ER and IPSL-CM4 (Schultze, 2011).

Residential water end-use modelling methods

Reliable water use estimates are the basis for most decisions 
water utilities and practitioners have to make concerning the 
design, operation and management of water distribution sys-
tems (Donkor et al., 2012). If water use estimates are obtained 
precisely at the spatial scale of individual residential properties, 
a marked improvement is evident in the performance of various 
aspects of the corresponding water supply network models (Xu 
and Goulter, 1998; Garcia et al., 2004; Alvisi et al., 2014). End-
use modelling has been recognised to be the key to enhanc-
ing the spatial and temporal resolution of water use estimates 
entered as inputs into water supply network models. Water 

conservation studies have also demonstrated the potential of 
end-use models to achieve future water savings through effec-
tive implementation of bottom-up water demand management 
measures as a supplement to the usual top-down approaches 
(Macy, 1999; Mayer et al., 2003; Willis et al., 2009).

Several residential water end-use models have been pro-
posed (Buchberger and Wu, 1995; Alvisi et al., 2003; Jacobs and 
Haarhoff, 2004; Garcia et al., 2004; Blokker et al., 2009; Bennett 
et al., 2013) since the development of technologies for effectively 
disaggregating metered consumption into water end uses at 
individual plumbing fixtures. Buchberger and Wells (1996) first 
showed that water use events at a residential stand can be rep-
resented by rectangular pulses characterised by their intensity, 
duration and frequency. Subsequently, models for simulating 
residential water use estimates were based on regenerating the 
patterns of occurrence of the pulses observed at the residential 
stand connection in probabilistic functions (Buchberger and Wu, 
1995; Alvisi et al., 2003; Garcia et al., 2004; Blokker et al., 2009; 
Alvisi et al., 2014). Although the earlier stochastic end-use mod-
els, once calibrated, reproduce the water use events reasonably 
well, they do not hypothetically relate the simulated water usage 
to the inherent characteristics of the residential stand concerned. 
Consequently, extrapolating the simulation models in time or 
transferring the models to other locations demands recalibration 
of the model parameters using a new set of end-use data. 

The residential end-use model (REUM), however, was 
developed to estimate water use from parameters that define 
characteristics of the respective water-using fixtures (Jacobs 
and Haarrhoff, 2004). Multiple facets of residential water use 
were addressed in REUM, namely, indoor water use, outdoor 
water use, hot water use and wastewater flow. REUM was 
formulated to produce monthly averaged outputs from inputs 
of typical parameter values. Scheepers and Jacobs (2014) later 
increased the indoor model complexity by describing all indoor 
parameters stochastically and modifying this model compo-
nent to output hourly water-use estimates. 

The cost associated with collecting and processing end-
use data is perhaps the major challenge to the application of 
stochastic water end-use models. Blokker et al. (2009) dem-
onstrated in the Simulation of Demand and End-Use Model 
(SIMDEUM) that water use events can alternatively be gener-
ated from parameters derived from household characteristics 
of the residential stands. The advantage of SIMDEUM is that it 
avoids expensive data-logging exercises by utilizing household 
characteristics model inputs derived primarily from household 
survey data. SIMDEUM, however, does not consider param-
eters for outdoor water use and may therefore not perform 
equally well where outdoor water use features are dominant. 
Generally, the more versatile residential water end-use models 
remain confined to indoor water end uses.

The outdoor water use model proposed by Jacobs and 
Haarhoff (2004) estimated outdoor water consumption from 
pan evaporation and rainfall. A similar formulation was 
adopted by DeOreo et al. (2011) for estimating outdoor water 
use in an end-use study in California. Later work by Du Plessis 
and Jacobs (2014) applied the outdoor demand component of 
REUM to residential estates in South Africa. Unlike the origi-
nal model, Du Plessis and Jacobs (2014) used separate param-
eters to model evapotranspiration from plant surfaces and 
evaporation from open water surfaces. In each case, outdoor 
water use was assumed to essentially result from replenishing 
of water lost from evaporating surfaces. Outdoor consump-
tion was deduced from monthly averaged pan evaporation and 
effective rainfall data but temperature, which is an important 
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component in climate projections, was not included. Pan 
evaporation is also known to be sensitive to local conditions 
and requires application of carefully chosen pan coefficients 
(Sumner and Jacobs, 2005).

The estimation of outdoor water use is a fundamental issue 
in modelling residential water demand in southern Africa. One 
factor that makes outdoor water demand modelling problematic 
is the large variation observed between seasons and geographi-
cal locations. Correlating water use estimates and measured 
consumption is further complicated by uncertain behavioural 
responses of consumers to landscape water needs (Du Plessis and 
Jacobs, 2014). Considerable variability in outdoor consumption 
often occurs amongst residential stands of similar characteristics 
(Jacobs and Fair, 2012). Nevertheless, there is a close association 
between residential water use and stand area (Jacobs et al., 2004; 
Van Zyl et al., 2008; Griffioen and Van Zyl, 2014).

ADAPTED domestic irrigation WATER END-USE 
MODEL 

Model development

The concept of the proposed CIWU model builds on the REUM 
outdoor demand model (Jacobs and Haarhoff, 2004) and 
extends the underlying concepts to include basic weather vari-
ables for the study of the impact of climate change on domestic 
irrigation water use. A set of equations for evapotranspiration 
and soil water balance were built into CIWU and used to model 
domestic irrigation water requirements on a daily time-step, 
in a similar manner to crop water use modelling in case stud-
ies by Kuo and Liu (2003) and Smith et al. (2012). A calibration 
scheme using end-use data is suggested for adjusting model 
parameters to attain best fit to the observed water use while 
fine-tuning the model to show good agreement with the inci-
dence of irrigation water use events. Notable climate-driven 
outdoor water uses are pool filling, lawn irrigation and garden 
irrigation. Other residential water uses located outdoors may 
also be indirectly influenced by climatic factors and therefore 
portray seasonal patterns, for example, pool top-ups, car wash-
ing etc. The focus in the CIWU model, however, is on domestic 
irrigation water use. Therefore the other outdoor water end 
uses have not been included in the conceptual model presented. 
The resulting calibrated model is expected to give satisfactory 
outdoor water use estimates in areas where lawn and garden 
irrigation are predominant.

Estimation of daily domestic irrigation water needs

Modelling of domestic irrigation water use relies on concep-
tualizing atmospheric water demand and soil-plant-water 
interrelationships. Water applied to the landscape is normally 
lost into the atmosphere through evapotranspiration from the 
soil and plant surfaces. Atmospheric water demand is defined 
as water loss from a hypothetical crop growing in non-lim-
iting conditions, conventionally referred to as reference crop 
evapotranspiration (Allen et al., 1998). Several methods exist 
for estimating reference crop evapotranspiration, each with 
unique advantages. The Hargreaves method, for example, 
models reference crop evapotranspiration accurately enough 
in certain regions from temperature data alone (Jensen et al., 
1997). The Penman-Monteith method is chosen here because 
it has been shown to perform more consistently in different 
geographical regions than other methods (Sumner and Jacobs, 
2005; Benli et al., 2010). According to Allen et al. (1998), 

reference crop evapotranspiration is given by:

ETo = ​ 
0.408Δ(Rn – G) + y ​  900 ______ T + 273 ​ u2 (es – ea)   __________________________  Δ + y (1 + 0.3u2)

  ​� (1)

where:
ETo is the reference evapotranspiration (mm/d)
Rn is the net radiation at the crop surface (MJ/m2∙d)
G is the soil heat flux density (MJ/m2∙d)
T is the mean daily air temperature at 2 m height (°C)
u2 is the wind speed at 2 m height (m/s)
es is the saturation vapour pressure (kPa)
ea is the actual vapour pressure (kPa)
∆ is the slope of the saturation vapour pressure curve at tem-
perature T (kPa/°C)
g is the psychrometric constant (kPa/°C)

Crop evapotranspiration, ETc, is related to daily reference crop 
evapotranspiration by

ETc = Kc × Ks × ETo� (2)

where: 
Kc is a crop coefficient
Ks is a reduction factor dependent on amount of water left in the soil

Some garden plants are seasonal and their crop coefficients vary 
within the year. The crop coefficient at each growth stage can be 
expressed as follows (Allen et al., 1998):

Kci = Kcprev + ​[ ​ i – ∑Lprev ______ Lstage
  ​ ]​ (Kcnext – Kcprev)� (3)

where:
i is the day number within the growing season
Kc i is the crop coefficient on day i
Lstage is the length of the stage under consideration
∑(Lstage) is the sum of the lengths of all previous stages

The reduction factor, Ks, is given by:

Ks =
	    1				    ,	 (TAW – Dr) ≥ (1 – p) . TAW

		​  
TAW – Dr __________ (1 – p) . TAW ​	 ,	 otherwise� (4)

where:
Ks is the reduction factor dependent on available soil water
Dr is the root zone depletion in mm
TAW is the total available soil moisture in the root zone in mm
p is the fraction of TAW that a crop can extract from the root 
zone without suffering water stress.

Incorporating the soil water balance equation

Hypothetically, irrigation takes place to refill the root zone 
when a given fraction of the available water, p, has been 
depleted. The amount of water applied at a given event is 
assumed to be equal to the depth necessary to bring the soil 
moisture to field capacity. For a plant with an effective root 
zone, Zr (measured in mm), the total available water (TAW) at 
field capacity is: 

 TAW = 1000(θFC – θPWP)Zr� (5)

where:
θFC is the moisture content at field capacity 
θPWP is the moisture content at permanent wilting point
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The water stored in the soil at any time is tracked by maintain-
ing a soil-water balance at a daily time-step (Kuo and Liu, 2003; 
Davis and Dukes, 2010) instead of monthly averages used in 
REUM. Groundwater contribution and effective rainfall are the 
two inputs of the water balance equation that are particularly 
difficult to measure or estimate. Since the water table is usually 
below 1 m in residential neighbourhoods, its effect on the root 
zone will be negligible. At a daily time-step, it is reasonable 
to assume that effective rainfall is limited to the amount that 
fills up the root zone (Davis and Dukes, 2010). Any rainfall in 
excess of this amount is assumed to be lost as runoff or deep 
percolation. The irrigation water use is given by the following 
simplified form of the soil-water balance equation: 

IRe.j = we.j – 1 – we.j + ETce.j – rj� (6)

where: 
IR is the net irrigation requirement
ETc is the crop evapotranspiration
r is effective rainfall
w is soil moisture depletion in the soil at a given time
subscripts e and j denote end use and day of the year, 
respectively

The landscape is assumed to be divided into areas compris-
ing plants of similar water use characteristics. Once suitable 
parameter values have been estimated for each type of feature, 
the landscape water use can be computed from the daily water 
requirement of each peculiar plant area. For any given period, 
n, the outdoor water use, is calculated from the summation of 
values of the irrigation requirement, IR, obtained at each time-
step. Unlike monthly averaged water use estimates in REUM 
(Jacobs and Haarhoff, 2004), the monthly domestic irrigation 
usage is derived from the summation of the daily irrigation 
requirements as:

MIRm = ​∑e = 1​ 
n  ​(fe × εe × se)​ ​∑t = d​ 

d + dmonth​IRe.i​� (7)

where:
MIR is the estimated monthly outdoor water use
ε represents the efficiency of the irrigation system
f relates to over-irrigation and under-irrigation
s is the surface area of the vegetation type
IR is the irrigation requirement 
d is the number of days in the month
n is the number of types of vegetated surfaces
subscripts m and e denotes month and outdoor end use 
respectively.

Data requirements

As outdoor water use is estimated from outdoor water-using 
features, the presence and characteristics of the various features 
need to be determined as accurately as possible for the location 
of interest. End-use models typically have huge data require-
ments at their development stages. Populating parameters for 
each determinant of the domestic irrigation water use model 
requires, at minimum, data that describes the weather, the 
characteristics of landscape features and calendars of seasonal 
garden activities. 

Weather data plays a central role in simulating atmospheric 
water demand. In some regions, acquiring weather data may 
not be a straightforward task. The model may not be effectively 
applied in regions where weather data of satisfactory quality 

is not available. The common issues are sparse networks of 
weather stations, or stations reporting only a subset of the 
desired weather variables or in some cases extended periods of 
missing values. The increased availability of automated weather 
stations, most of which are capable of continuous and remote 
data acquisition, is expected to help overcome these challenges. 

Data required to populate parameters that characterise 
vegetated surfaces, including the cropping patterns of seasonal 
plants, can be sourced through household surveys, fixture 
audits and the use of geographical information systems (GIS). 
A number of case studies have demonstrated that landscape 
features can be demarcated, characterised and measured using 
aerial photographs or high-resolution satellite images (Mayer 
et al., 1999; Du Plessis and Jacobs, 2014; Hof and Wolf, 2014). 
DeOreo et al. (2011) have shown that the latter approach yields 
better results than measurements provided by survey respond-
ents. For effective model calibration, a corresponding data set 
of actual irrigation water use is necessary. 

Model calibration

Calibration is necessary to ensure that the irrigation water 
use model reproduces observed values reasonably well under 
the given climatic conditions. Some of the model biophysical 
parameters cannot be determined directly without elaborate 
laboratory analyses or experimentation. Soil properties in 
particular can be expensive and time consuming to measure. 
Even if the measurements were carried out, it is unlikely that 
the scale would be representative of the heterogeneity of the 
landscapes in all the neighbourhoods concerned (Wagener and 
Wheater, 2006). In addition, suitable over- and under-irrigation 
factors need to be identified considering the end users would 
not apply the exact amounts of water required by the plants. 
Likewise, the root zone depletion levels need to correspond 
with the end-user water application intervals. Similar chal-
lenges in parameter estimation are addressed through cali-
bration in other water-related applications. Numerous case 
studies that utilise parametric calibration have been published 
in water distribution network modelling (Madsen, 2000; Van 
Vuuren, 2002; Van Dijk et al., 2008), rainfall-runoff modelling 
(Ndiritu and Daniell, 1999) of watersheds, etc. The calibration 
process involves the systematic adjustment of parameter values 
to achieve good agreement between model outputs and the 
observed values. The parameter values have to be maintained 
within their acceptable ranges, based on physical and math-
ematical constraints, while the model performance is evaluated 
by an objective function until an optima is reached. A common 
optimisation scheme is to minimise the sum of squares of devi-
ations between simulated water use and observed consumption. 

If end-use data is available, optimisation can focus on 
multiple facets of the observed outdoor water end uses. One 
such strategy would be to minimise the sums of squares of the 
total volumetric water use as well as the observed frequencies 
of water application events. The benefit realised from using the 
second objective function is that the final model will gener-
ate water application events that reflect the frequency of water 
application of the consumers. The use of multiple objectives on 
the other hand leads to computational complexity. The solution 
may not be a straightforward set of parameters but pareto-
optimal solutions encapsulating the entire range of the feasible 
parameter values (Madsen, 2000). Solving the optimisation 
problem requires choice of an appropriate algorithm. The two 
broad classes are local and global optimisation algorithms 
(Duan et al., 1992). Global optimisation algorithms have the 
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advantage of avoiding local minima by examining the entire 
search space to arrive at a global minima or maxima. Genetic 
algorithms are quite popular for solving global optimisation 
problems because of their simplicity, which nonetheless comes 
at the expense of processing time and computing resources 
(Koppel and Vassiljev, 2009).

INTEGRATING CLIMATE CHANGE IMPACTS INTO 
the domestic IRRIGATION WATER-USE MODEL

The irrigation water end-use model, once properly calibrated 
to suit a given location, provides the means to assess potential 
impacts of future climatic conditions on irrigation water use 
in that location. Figure 1 shows a schematic of the CIWU 
modelling framework. Potential future water use is evaluated 
by inputting weather data sets generated from projections of 
climate models for a selected climate change scenario. It is 
then possible to make comparisons of the prevalent water use 
with the projected usage for selected future climate scenarios. 
The sensitivity of irrigation water use to geographical charac-
teristics implies downscaling to smaller spatial scales applica-
ble to cities. 

The proposed CIWU model is a potential tool for plan-
ning of various adaptation measures under climate change 
relating to domestic irrigation water use. Several options for 
managing domestic irrigation water use are viable. The choice 
of the actual measures to implement would consider the 
savings attained by checking water use estimates predicted 
by the model as an appropriate variable is adjusted over its 

feasible range. For example, xeriscaping can be reflected in 
the model by reducing the size of irrigated areas in the model. 
Introduction of irrigation equipment that reduces water losses 
means a higher value of irrigation efficient becomes applicable 
in the model. A smaller crop coefficient would be used to repre-
sent a change to drought-tolerant landscaping plants. 

CONCLUSIONS

This paper has discussed an integrated modelling approach 
for assessing impacts of climate change on domestic irriga-
tion water use. Modifications to REUM outdoor water demand 
model associated with climatic parameters have been pre-
sented. The Penman-Monteith equation has been introduced 
into REUM for calculating potential evapotranspiration in the 
place of pan evaporation. The modified model is formulated to 
simulate water use at daily time-steps by maintaining a soil-
moisture balance of the root zone. Weather data and infor-
mation on landscape characteristics are the required inputs, 
whereas measured irrigation water use data is necessary for 
calibration. Calibration is required to select optimal values 
of some biophysical parameters which cannot be measured 
directly in a practical manner. Coupled with future climate 
projections from GCMs and relevant GHG emission scenarios, 
the proposed CIWU model can allow the quantification of 
uncertainty in the simulation of future domestic irrigation 
water use. The theoretical framework presented provides a 
potential tool for planning of various adaptation measures 
relating to climate-driven domestic irrigation water use.

Figure 1 
Schematic of CIWU modelling approach
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