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ABSTRACT

Floods are a serious hazard to life and property. The traditional probability statistical method is acceptable in analysing 
the flood risk but requires a large sample size of hydrological data. This paper puts forward a composite method based on 
artificial neural network (ANN) and information diffusion method (IDM) for flood analysis. Information diffusion theory 
helps to extract as much useful information as possible from the sample and thus improves the accuracy of system recog-
nition. Meanwhile, an artificial neural network model, back-propagation (BP) neural network, is used to map the multi-
dimensional space of a disaster situation to a one-dimensional disaster space and to enable resolution of the grade of flood 
disaster loss. These techniques all contribute to a reasonable prediction of natural disaster risk. As an example, application 
of the method is verified in a flood risk analysis in China, and the risks of different flood grades are determined. Our model 
yielded very good results and suggests that the methodology is effective and practical, with the potentiality to be used to 
forecast flood risk for use in flood risk management. It is also hoped that by conducting such analyses lessons can be learned 
so that the impact of natural disasters such as floods can be mitigated in the future.
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INTRODUCTION

Natural disasters are increasing alarmingly worldwide. 
Flooding is a common natural disaster which often causes loss 
of property and human life. Recent flooding disasters have 
shown the vulnerability of the so-called developed and devel-
oping countries to such events. In China, flood disasters occur 
frequently, and about two-thirds of the country’s area is facing 
the threat of different types and degrees of floods, as a result 
of both natural and unnatural influences, such as social and 
economic factors (Chen, 2010). Natural disasters present a great 
challenge to society today. Flood risk assessment for an area is 
important for flood disaster managers to be able to implement 
a compensation and disaster-reduction plan. As severe floods 
occur frequently, flood risk assessment and management play 
an important role in guiding governments in making timely 
and effective decisions for disaster rescue and relief.

Risk management for the operation of an existing flood 
protection system is the sum of actions for a rational approach 
to flood disaster mitigation. Its purpose is the control of flood 
disasters, in the sense of being prepared for a flood, and acting 
to minimise its impact. It includes the process of risk analy-
sis, which forms the basis for decisions on maintaining and 
improving the system. 

Risk analysis is a challenging task at the present. Assessing 
flood risk is difficult because of the lack of objective measures of 
acceptable risk, scarcity of data, and an abundance of unknown 
probability distributions. Flood risk analysis methods pro-
gressed from the direct integral method, Monte Carlo method, 

and mean first-order-second-moment method, to advanced 
first-order-second-moment method, second-order-method 
and JC method (design point in first-order second-moment 
method). Theories and methods of flood risk analysis have been 
established based on the work of several authors: e.g. Ang and 
Tang (1984),Ashkar and Rousselle (1981), Diaz-Granados et al. 
(1984), Kuczera (1982), Stedinger and Taylor (1982), Todorovic 
and Rousselle (1971), Todorovic and Zelenhasic (1970), Wood 
and Rodríguez-Iturbe (1975). Recently, many risk analysis 
approaches have been based on using linguistic assessments 
instead of numerical values. Using fuzzy sets theory (Zadeh 
1965), data may be defined in vague, linguistic terms, such 
as low probability, serious impact, or high risk. These terms 
cannot be defined meaningfully with a precise single value, but 
fuzzy sets theory provides the means by which these terms may 
be formally defined in mathematical logic.

In traditional flood risk analysis, the probability statistics 
method is usually used to estimate hydrological variables’ 
exceedance probability, because it is based on a mature basic 
theory and has easy application. However, problems exist 
in the feasibility and reliability of the method’s outcomes, 
without considering its fuzzy uncertainty. Especially in the 
case of small samples, results based on the classical statistical 
methods are usually unreliable. It is also rather difficult to col-
lect long sequence flood data and the sample is usually small. 
Information diffusion theory can be applied enabling as much 
useful underlying data as possible to be extracted from the 
sample and thus improving the accuracy of system recognition 
(Huang, 2002; Palm, 2007). 

Information diffusion is a fuzzy mathematic set-value 
method for samples, which considers optimising the use of 
fuzzy information of samples in order to offset the informa-
tion deficiency. In order to map the multi-dimensional space 
of a disaster situation onto a one-dimensional disaster space 
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nonlinearly, and to test the grade criteria for flood disaster loss, 
resolving the non-uniformity problem of evaluating results 
expressed as disaster loss indexes, an artificial neural network 
model, back-propagation (BP) neural network, is suggested 
for evaluating the degree of flood disaster, where the disaster’s 
degree of loss is a continuous real number.

In this study we propose a composite method, based on 
information diffusion and artificial neural networks, to estab-
lish a flood risk assessment model that can be applied with 
a small number of measured samples.  This method is then 
successfully applied to flood risk analysis in China. The prin-
ciple of the modelling framework is briefly described in the 
next section. This is a new attempt at applying information 
diffusion theory and artificial neural networks to flood risk 
analysis. Computations based on this flood risk model can yield 
an estimated flood damage value that is relatively accurate. The 
aforementioned model exhibits fairly stable results, even when 
using a small set of sample data. This also indicates that infor-
mation diffusion technology is highly capable of extracting 
useful information and can therefore improve system recog-
nition accuracy. This method can also be easily applied and 
understood, as illustrated by the example given.

MATERIALS AND METHODS

The essence of flood disaster risk analysis is to estimate the 
probability distribution of an index. Because of the incomplete 
data that is usually available, the application of traditional 
statistical methods cannot guarantee high precision in the 
results; fuzzy mathematical treatments are therefore necessary 
for a small sample size. This paper uses artificial neural net-
work techniques and obtains continuous degree index values 
for the samples; the degree values for observed samples are 
then turned into fuzzy sets by information diffusion method, to 
finally produce the risk values. This method is tested in a case 
study, showing that it is superior to traditional statistical mod-
els, and offers a means  improve on the results of traditional 
estimation.

Basis of artificial neural network methods

Artificial neural networks (ANN) are massive parallel intercon-
nected networks of simple (usually adaptive) nodes which are 
intended to interact with objects of the real world in the same 
way that biological nervous systems do (Simon, 2009). ANN 
was proposed based on modern biology research concerning 
human brain tissue, and can be used to simulate neural activity 
in the human brain (Markopoulos et al., 2008). ANN has the 
topological structures of information processing, distributed in 
parallel. The mapping of input and output estimation responses 
is obtained via combinations of non-linear functions (Srivaree-
Ratana et al., 2002).

In terms of their structures, neural networks can be divided 
into two types: feedforward networks and recurrent networks. 
In a feedforward network, the neurons are generally grouped 
into layers. Signals flow from the input layer through to the 
output layer via unidirectional connections, the neurons being 
connected from one layer to the next, but not within the same 
layer. The multi-layer perceptron (MLP) is perhaps the best 
known type of feedforward network. For the typical multi-layer 
perceptron of the feed-forward mode neural network there is 
an input layer, output layer, and hidden layer. Neurons in the 
input layer only act as buffers for distributing the input signals 
xj to neurons in the hidden layer. Each neuron j in the hidden 

layer sums up its input signals xj after weighting them with the 
strengths of the respective connections wji 

from the input layer 
and computes its output yj 

as a function ƒ of the sum:
                                      (1)

in which ƒ can be a simple threshold function or sigmoidal, 
hyperbolic tangent or radial basis function. The output of  
neurons in the output layer is computed similarly.

The back-propagation (BP) algorithm, a gradient descent 
algorithm, is the most commonly adopted MLP training 
algorithm. It gives the change ∆wji,, the weight of a connection 
between neurons i and j, as follows:
                                       (2)

where: 
η is a parameter called the learning rate and 
δj is a factor depending on whether neuron j is an output 
neuron or a hidden neuron. 

For output neurons: 

                                       (3) 

and for hidden neurons: 

                                       (4)

In Eq. (3), netj is the total weighted sum of input signals to  
neuron j and yj

( f ) is the target output for neuron j.
 The neural cell of each layer only affects the status of the 
next neural cell. If the expected output signals cannot be 
obtained in the output layer, the weight values of each layer of 
the neural cells must be modified. Erroneous output signals 
will be backward from the source. Finally, the signal error will 
arrive in certain areas with repeated propagation. After the 
neural networks’ training procedure is complete, the forecast 
information can be analysed with weight values and thresholds.

Information diffusion method

Information diffusion is a fuzzy mathematic set-value method 
for samples, which optimises the use of fuzzy information of 
samples in order to offset the information deficiency (Huang 
and Shi, 2002). The method can turn an observed sample into 
a fuzzy set, that is, turn a single point sample into a set-value 
sample. The simplest model of information diffusion is the 
normal diffusion model.

Information diffusion: Let X be a set of samples, and V be  
a subset of the universe, µ: X x V → [0,1] is a mapping from  
X x V to [0,1].                            is called a kind of information 
diffusion of X on V, and satisfies 3 conditions as follows (Huang 
and Shi, 2002):
•	 It is decreasing.                                   , if                               ,  

then µ(x,v’)≥µ(x,v”), where µ is the diffusion function.
•	               ; let v* be observed value of x, which satisfies 

                                      .
•	  µ(x,v) is conservative. If and only if               , its integral 

value on the universe is 1:                            .

In particular, if the random variable’s domain is discrete,  
suppose it is U = {u1, u2, …, um}, the conservation condition is   
                                              .
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Let X = {x1, x2, …, xm} be a sample, and U = {u1, u2, …, um} be the 
discrete universe of X. xi and uj are called the sample point and 
the monitoring point, respectively.                                       we  
diffuse the information carried by xi to uj at gain ƒi(uj) 

by using 
the normal information diffusion shown in Eq. (5).

               
(5)

where: 
h is called the normal diffusion coefficient, calculated by 
Eq. (6) (Huang and Shi, 2002; Huang, 2005).

                                       (6)

where 

      Let                                   (7)

We obtain a normalised information distribution on U deter-
mined by xi, shown in Eq. (8). 

                                       (8)

For each monitoring point uj, summing all normalised infor-
mation, we obtain the information gain at uj, which came from 
the given sample X. The information gain is shown in Eq. (9).

                                       (9)

q(uj) means that, with the information diffusion technique we 
infer that there are q(uj) (generally is not an integer) sample 
points in terms of statistic averaging at the monitoring point uj. 
Obviously q(uj) is not usually a positive integer, but is certainly 
a number not less than zero. It is assumed that:

                                       (10)

where: Q is the sum of the sample size of all q(uj). 

Theoretically, Q = n, but due to the numerical calculation error, 
there is a slight difference between Q and n. Therefore, we can 
employ Eq. (11) to estimate the frequency value of a sample 
falling at uj: 

                                       (11)

The frequency value can be taken as the estimation value of its 
probability. The probability value of transcending uj 

is calcu-
lated by:                                
               (12)

where: P(uj) is the required risk estimation value.

Flood disaster risk assessment

According to the above theory, we can calculate the prob-
abilities of each degree of flood disaster in China, based on the 

historical data from 1950 to 2009 collected by the Ministry of 
Water Resources of the People’s Republic of China (see Table 1). 
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TABLE 1 
Value of flood indexes for China over a 60-year period

Year Disaster area
(1 000 ha)

Inundated 
area

(1 000 ha)

Dead
Population
(persons)

Collapsed 
houses

(x 10 000)

1950 6 559.00 4 710.00 1 982 130.50
1951 4 173.00 1 476.00 7 819 31.80
1952 2 794.00 1 547.00 4 162 14.50
1953 7 187.00 3 285.00 3 308 322.00
1954 16 131.00 11 305.00 42 447 900.90
1955 5 247.00 3 067.00 2 718 49.20
1956 14 377.00 10 905.00 10 676 465.90
1957 8 083.00 6 032.00 4 415 371.20
1958 4 279.00 1 441.00 3 642 77.10
1959 4 813.00 1 817.00 4 540 42.10
1960 10 155.00 4 975.00 6 033 74.70
1961 8 910.00 5 356.00 5 074 146.30
1962 9 810.00 6 318.00 4 350 247.70
1963 14 071.00 10 479.00 10 441 1 435.30
1964 14 933.00 10 038.00 4 288 246.50
1965 5 587.00 2 813.00 1 906 95.60
1966 2 508.00 950.00 1 901 26.80
1967 2 599.00 1 407.00 1 095 10.80
1968 2 670.00 1 659.00 1 159 63.00
1969 5 443.00 3 265.00 4 667 164.60
1970 3 129.00 1 234.00 2 444 25.20
1971 3 989.00 1 481.00 2 323 30.20
1972 4 083.00 1 259.00 1 910 22.80
1973 6 235.00 2 577.00 3 413 72.30
1974 6 431.00 2 737.00 1 849 120.00
1975 6 817.00 3 467.00 29 653 754.30
1976 4 197.00 1 329.00 1 817 81.90
1977 9 095.00 4 989.00 3 163 50.60
1978 2 820.00 924.00 1 796 28.00
1979 6 775.00 2 870.00 3 446 48.80
1980 9 146.00 5 025.00 3 705 138.30
1981 8 625.00 3 973.00 5 832 155.10
1982 8 361.00 4 463.00 5 323 341.50
1983 12 162.00 5 747.00 7 238 218.90
1984 10 632.00 5 361.00 3 941 112.10
1985 14 197.00 8 949.00 3 578 142.00
1986 9 155.00 5 601.00 2 761 150.90
1987 8 686.00 4 104.00 3 749 92.10
1988 11 949.00 6 128.00 4 094 91.00
1989 11 328.00 5 917.00 3 270 100.10
1990 11 804.00 5 605.00 3 589 96.60
1991 24 596.00 14 614.00 5 113 497.90
1992 9 423.30 4 464.00 3 012 98.95
1993 16 387.30 8 610.40 3 499 148.91
1994 18 858.90 11 489.50 5 340 349.37
1995 14 366.70 8 000.80 3 852 245.58
1996 20 388.10 11 823.30 5 840 547.70
1997 13 134.80 6 514.60 2 799 101.06
1998 22 291.80 13 785.00 4 150 685.03
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We select the set of 60 records as the large sample, and then 30 
records are randomly chosen to form a small sample in order to 
provide a comparison of the results obtained using the method 
for a small sample. Damage area, inundated area, dead popula-
tion, and collapsed houses were chosen as the disaster indicator 
for flood risk analysis. By frequency analysis the disaster level 
is classified into 4 levels: small, medium, large and extreme (see 
Table 2).

In order to map the multi-dimensional space of the disaster 
situation onto a one-dimensional disaster situation, a rela-
tionship between the disaster degree and the disaster indexes 
is needed. Because it is impossible to describe the relation-
ship using a related function, we adopt the ‘simulation’ and 
‘memory’ of the neural networks in flood degree evaluation. 
This is because the advantages of neural networks can be used 
to simulate and record the relationship of the input and output 
variables in the complex ‘function’, through training and learn-
ing and without the use of any mathematical models.

We used damage area, 
inundated area, dead popu-
lation, and collapsed houses 
as input variables and 
disaster grading value as an 
output variable, and then 
set the nodes of the input 
as 4 and of the output lay-
ers as 1. This follows from 
Kolmogorov’s theorem 
(Hecht-Nielsen, 1987) that 

the number of nodes in the hidden layer is at least 2n +1, where 
n is the number of nodes in the input layer. Since n = 4, the 
number of nodes in the hidden layer is at least 9. Considering 
accuracy, we determined that the number of nodes in the hid-
den layer is 10. Thus, we obtained the topology structure (4, 10, 
and 1) of the neural networks for flood degree forecasting.

The four flood grades are small, medium, large and extreme 
flood, with degree values in the interval [0,1], [1,2], [2,3], [3,4]; 
we use the disaster grading standard boundary values (Table 2) 
as 5 four-dimensional training samples for training and learn-
ing in the BP neural network. Meanwhile initial parameters of 
BP model weights and biases are randomly assigned before the 
commencement of training. With 100 000 cycles of training 
and learning in the training samples, the global error of the 
networks is set E = 10-6. Learning rate and impulse parameter 
of the network are changed adaptively, and function trainlm is 
used for fast training.

The calculated output values are compared with the 
expected values where the mean square error is 5.498909 x 10-8, 
indicating a good fit. Thus the BP neural network has com-
pleted the training procedure. So we can use the BP network 
to forecast disaster degrees of all the samples with the weight-
ing coefficients and the thresholds modified. The flood degree 
estimations are listed in Table 3.

Based on the BP neural network, the disaster degree values 
of the 60 samples can be calculated (see Table 3), that is the 
sample points set X = {x1, x2, …, xn}. We selected the set of 60 
records as the large sample whose degree value ranges from 0 to 
4. Then 30 records are randomly chosen to form a small sample 
to compare with the large sample.

The universe of discourse, namely the monitoring points 
set, is taken as U = {u1, u2, u3, …, u41} = {0, 0.1, 0.2, … , 4.0}. The 
normalised information distribution of each xi, that is, 

 
            

, can be obtained according to Eqs. (5)–(8), then, based 
on Eqs. (9)–(12), disaster risk estimation, namely probability 

TABLE 1 
Value of flood indexes for China over a 60-year period

Year Disaster area
(1 000 ha)

Inundated 
area

(1 000 ha)

Dead
Population
(persons)

Collapsed 
houses

(x 10 000)

1999 9 605.20 5 389.12 1 896 160.50
2000 9 045.01 5 396.03 1 942 112.61
2001 7 137.78 4 253.39 1 605 63.49
2002 12 384.21 7 439.01 1 819 146.23
2003 20 365.70 12 999.80 1 551 245.42
2004 7 781.90 4 017.10 1 282 93.31
2005 14 967.48 8 216.68 1 660 153.29
2006 10 521.86 5 592.42 2 276 105.82
2007 12 548.92 5 969.02 1 230 102.97
2008 8 867.82 4 537.58 633 44.70
2009 8 748.16 3 795.79 538 55.59

)( jx ui
  

TABLE 2
Flood disaster rating standard

Disaster level Damage area
(1 000 ha)

Inundated area 
(1 000 ha)

Dead population
(persons)

Collapsed 
houses

(x 10 000)

Recurrence 
interval
(years)

Grade 
number

Small flood 0~9 045 0~4 989 0~3 446 0~112.1 <2 1
Medium flood 9 045~14 197 4 989~8216.7 3 446~5113 112.1~247.7 2~5 2
Large flood 14 197~20 388 8 216.7~13 000 5 113~10 676 247.7~754.3 5~20 3
Extreme flood 20 388~80 000 13 000~50 000 10 676~10 0000 754.3~5 000 >20 4

TABLE 3
Disaster degree estimations based on the  

BP network evaluation
Sample Degree value Sample Degree value

1 0.4968 31 1.1020
2 3.4372 32 2.6992
3 1.9236 33 1.6720
4 1.6588 34 3.4072
5 3.1968 35 2.0740
6 1.1336 36 0.6060
7 0.2592 37 0.3456
8 0.3244 38 1.9396
9 2.3124 39 2.3460
10 2.4576 40 1.7848
11 2.7404 41 2.7104
12 0.9520 42 3.2744
13 0.3892 43 1.8760
14 0.2496 44 3.0172
15 0.1996 45 2.2672
16 1.0908 46 2.100
17 1.7048 47 3.1532
18 1.4108 48 2.5816
19 1.4584 49 2.1920
20 1.4224 50 0.5588
21 1.8180 51 0.2980
22 1.7900 52 0.4520
23 1.8504 53 0.4144
24 1.9704 54 0.6748
25 1.3876 55 0.6804
26 4.0000 56 1.7912
27 1.7960 57 1.1428
28 0.9656 58 2.3168
29 1.7068 59 0.6428
30 1.9700 60 1.3928

app:ds:frequency analysis
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risk value, is calculated. The relationship between the recur-
rence interval N (years) and the probability p can be expressed 
as N = 1/p. The exceedance probability curve of flood disaster 
degree value is shown as Fig. 1, with a comparison to that 
obtained by the traditional statistical method.

RESULTS AND DISCUSSION

By information diffusion method (IDM), we obtain the exceed-
ance probabilities on the different disaster degree values shown 
in Fig. 1. 

In Fig. 1, the results reflect that the risk of the flood 
decreases smoothly with disaster degree value, using the 
BP-IDM model. The curve of the BP-IDM model is smoother 
and more accurate than that obtained using the traditional 
statistical method.

Thirty records were randomly chosen to form a small  
sample, and analysed in the same way for comparison with 
results from the large sample. These results are compared in 
Figs. 2 and 3.

Figure 2 provides a comparison of the two curves for esti-
mated risk using the BP-IDM model with the small sample and 
large sample. The two curves match well, which indicates that 
the result is largely unchanged when the sample size changes; 
the method results are thus stable and not greatly affected by 
the size of the sample. If the analysis results for a very large 
sample are used as the standard, the BP-IDM method results 
are considered to be closer to the standard than the results of 
the statistical method, as proven by some experiments (Huang 
and Shi, 2002).

In Fig. 3, we compare two curves for the estimated risk with 
a small sample and large sample by frequency statistics. The 
mean error between the results for a large vs. small sample by 
frequency statistics is 0.0428, which is larger than that obtained 
for the BP-IDM model.

Figures 2 and 3 indicate that the results for the small sam-
ple analysed by the BP-IDM model are satisfactory. The results 
reflect the fact that the risk of flood decreases smoothly with the 
increase in disaster degree value, and that the BP-IDM model 
gives more satisfactory results than the statistical method for 
practical problems. The results obtained with the BP-IDM model 
are closer to the standard. Table 4 presents a comparison of the 
mean errors between the results with large vs. small samples 

using the BP-IDM model and traditional statistics. Table 4 also 
shows that the mean error given by the BP-IDM model is much 
smaller than that given by the statistical method.

Flood disaster risk evaluation for China

The following 4 categories of flood degree are used(Chen, 2009):
•	 If 1.0 ≤H≤ 1.5, then flood degree is small (1st grade).
•	 If 1.5 <H≤ 2.5, then flood degree is medium (2nd grade).
•	 If 2.5 <H≤ 3.5, then flood degree is large (3rd grade).
•	 If 3.5 <H≤ 4, then flood degree is extreme (4th grade).

The result in Fig. 2 also illustrates the risk estimation, i.e., the 
exceedance probability of the disaster degree value. From this 
information, we know the risk estimation is 0.0356 when the 

 
 

 
 

 
 

  Figure 3 
Comparison of the risks by traditional statistics 

with small sample and large sample

Figure 1 
Comparisons of the risks by BP-IDM and the traditional statistical method

Figure 2 
Comparison of the risks by BP-IDM with small sample and large sample

TABLE 4
Comparison of mean error between large and small samples 

for BP-IDM and statistical methods
Method BP-IDM Statistics

Mean error 0.0227 0.0428
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We hope that further technological developments in flood 
control and many new effective methods of flood risk analysis 
can be used to enhance prediction accuracy. By conducting 
such analyses, lessons can be learned so that the impact of 
natural disasters, such as floods in China, can be prevented or 
mitigated in the future.
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disaster indicator is 3.5. In other words, floods exceeding the 
3.5 degree value (extreme floods) occur every 28.0899 years. 
Similarly, the probability of floods exceeding 2.5 degrees (large 
floods) is 0.2011, which means that floods exceeding that intensity 
occur every 4.9727 years. These findings indicate the serious situ-
ation relating to floods in China. The frequency and recurrence 
interval of the floods of the four grades are shown in Table 5. 

Limitations

A study of some simulation experiments by Huang reveals that 
the superiority of the information diffusion method is depend-
ent on whether we are blind to the population and whether the 
size of a given sample is small (Huang and Shi, 2002). In the 
experiments, the given sample is considered fuzzy due to its 
small size, so some benefits can be obtained by information dif-
fusion method. The work efficiency of the information diffusion 
method is about 35% higher than that of the histogram esti-
mate. That is, if no knowledge is available about the population 
from which the given sample is drawn, and if the sample size is 
small, we have to obtain more observations, adding about 35%, 
to guarantee that the estimation is as good as the one given by 
the fuzzy method.

However, if we have a lot of knowledge about the popula-
tion in order to confirm an assumption, the statistical object 
with respect to a given sample is clearer. So if the size of a given 
sample is large, there is an abundance of statistical informa-
tion in the sample. In this case, it is unnecessary to replace the 
statistics with the information diffusion method as little benefit 
can be obtained from this.

CONCLUSIONS

Disaster risk analysis is a complex multi-criteria problem 
crucial to the success of strategic decision making in disas-
ters. In China floods occur frequently and cause significant 
property losses and casualties. Flood risk analysis of an area is 
important for flood disaster managers to be able to implement 
a compensation and disaster-reduction plan. But results from 
use of traditional statistics for flood risk analysis are frequently 
inaccurate, especially in the case of small samples. In the 
present study, a comprehensive fuzzy BP-IDM method for flood 
disaster risk assessment is developed. This method provides an 
enhanced implementation of the information diffusion process 
which better corresponds to the actual situation.

In fact, disaster risk, as a natural or societal phenomenon, 
is neither precise nor certain. In the current paper, we use a 
fuzzy method of flood risk assessment based on BP neural 
network and information diffusion technique to improve 
probability estimation, and test this method using an example. 
The proposed method can be generalised as an integration of 
techniques and has been tested as stable and reliable. In view 
of the theoretic system of flood risk assessment developed thus 
far and the fact that observed time-series of flood disasters are 
quite short or even unavailable, the method adopted in the 
paper is indisputably an effective and practical method.

TABLE 5
Flood disaster risk evaluation for China

Disaster level Small 
flood

Medium
flood

Large 
flood

Extreme 
flood

Exceedance probability risk 0.7258 0.5955 0.2011 0.0356
Recurrence interval (years) 1.3778 1.6793 4.9727 28.0899
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