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Abstract

A flow duration curve (FDC) provides a valuable planning and management tool since it describes the entire flow regime of 
a river.  Water resource planning in South Africa is often based on monthly river flow data and synthetic FDCs are required 
for applications in ungauged catchments.  The objective of this study was to derive 11 monthly FDC percentile flows and 
the mean annual flow (MAQ) for catchments in the Cape Floristic Region of South Africa using regression equations with 
readily measureable catchment variables, including vegetation indices from Moderate Resolution Imaging Spectrometer 
(MODIS) satellite imagery.  An ‘all-models’ approach with 10-fold validation was adopted to identify the ‘best’ regres-
sion models.  Predictions of percentile flows above the median flow and MAQ were generally good but poor for low flows.  
Overall predictive uncertainty had a tendency to be larger in drier catchments.  The most important predictive variables 
were catchment mean annual precipitation, physiography and soils.  MODIS vegetation indices were significant predictors 
in equations for 6 percentile flows and MAQ, and predictive uncertainty increased if the MODIS indices were excluded 
from model development.  The regression approach implemented in this study may be appropriate for other regionalisation 
studies that are based on a small sample of gauged catchments.

Keywords: Western Cape Region, flow duration curve, ungauged catchments, multiple regression, 
cross-validation

Introduction

A flow duration curve (FDC) is a graphical representation of 
the frequency distribution of the complete river flow regime 
and is one of the most commonly-used techniques in hydrology 
(Croker et al., 2003).  While empirical FDCs can be developed 
using gauged flow data, estimation of FDCs in ungauged catch-
ments requires a regionalisation approach which is usually 
based on flow information from a network of gauged sites.  The 
International Association of Hydrological Sciences (IAHS) 
Decade on Predictions in Ungauged Basins (PUB) is an inter-
national initiative that recognises the critical need to advance 
hydrological predictions in ungauged catchments (Sivapalan, 
2003).  River flow prediction in ungauged catchments is widely 
regarded as the ultimate challenge in hydrology (Sivapalan, 
2003).

A number of regionalisation approaches have been pro-
posed for estimating FDCs in ungauged catchments.  A com-
mon regionalisation methodology describes the FDC in terms 
of a mathematical model and then relates the parameters of the 
model to catchment morphological and/or climatic variables 
using regression analysis (Niadas, 2005; Viola et al., 2011).  
Probabilistic models can be used to describe the FDC and 
regression models developed to estimate the parameters of the 
distribution (Castellarin et al., 2007)

Assumptions regarding models that describe the form of 
FDCs can be avoided by developing regional regression equa-
tions to predict the selected percentile flows (e.g., flows for 
exceedance percentages 5%, 10%, 20%, ...95%).  Catchment 

physical characteristics are used as the predictor variables in 
these regression equations (e.g., Mohamoud, 2008; Yu and 
Yang, 2000).   This approach has been used successfully by Yu 
and Yang (2000) in Taiwan to predict daily stream flow for 10 
percentile flows in ungauged catchments.  Precipitation was 
largely uniform across the study region and catchment area 
was the only independent variable in all 10 linear regression 
equations.  Predictions of low-flow discharge (80% and 90% 
exceedance probabilities) were less accurate than those for 
the higher flows (Yu and Yang, 2000).  A similar regionalisa-
tion scheme to predict FDCs in the United States Mid-Atlantic 
Region was developed by Mohamoud (2008).  In contrast to the 
study conducted by Yu and Yang (2000), a comprehensive set 
of catchment descriptors (n = 42) were investigated as potential 
independent variables in the percentile flow regression equa-
tions.  These variables represented catchment land use/land 
cover, geomorphology, geology and climate and a step-wise 
regression approach was used to select the best predictor vari-
ables (Mohamoud, 2008).

A major impediment to the development of FDC region-
alisation schemes relates to the number of gauged rivers in a 
region.  Small sample sizes impact the reliability of equations 
to predict FDCs and restrict the number of variables that can 
be used in the equations.  While this is a problem in many 
developed countries, the problem is generally more acute in 
developing countries where limited resources preclude install-
ing and maintaining extensive gauging networks.  Despite this 
limitation, the pressing need for flow information in ungauged 
catchments requires that attempts be made to formulate region-
alisation schemes using available flow data.

Water resource development and management decisions 
in South Africa are usually based on monthly stream flow 
characteristics (Hughes and Smakhtin, 1996; Smakhtin, 2001).  
Laws and policies have been implemented in South Africa that 
give priority of water to ecosystems once basic human needs 
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have been met (Acreman and Dunbar, 2004).  The term ‘envi-
ronmental flows’ refers to a flow regime which will maintain a 
river in some specified condition (Smakhtin, 2007).  In many 
countries, the concept of minimum flow level was the ini-
tial focus for establishing environmental flows, but now it is 
increasingly recognised that all elements of a flow regime are 
important to manage river ecosystems (Acreman and Dunbar, 
2004). 

There is a need for rapid, low-confidence hydrological pre-
dictions in South African catchments to facilitate initial plan-
ning related to ecological instream flow requirements (Hughes 
and Hannart, 2003).  Synthetic FDCs facilitate planning activi-
ties in ungauged catchments and have become an integral part 
of environmental flow assessments (Smakhtin, 2007).  This 
study was initiated to investigate the feasibility of developing  
a FDC regionalisation scheme for a critical ecological and  
economic region of South Africa, the Cape Floristic Region 
(CFR).  The CFR has a Mediterranean-type climate (wet  
winters and dry summers) with catchments that are physi-
ographically and hydromorphometrically distinct from catch-
ments in the summer precipitation region of South Africa 
(Seyhan and Hope, 1983).  The dominant natural vegetation is  
a schlerophyllous shrubland (fynbos) and is home to over  
9 000 plant species, including the highest known concentration 
of rare species in the world (Cowling and Hilton-Taylor, 1994; 
Rouget et al., 2003).  The CFR includes the Cape Town metro-
politan area which is dependent on local rivers for most of its 
water supply.  Catchments in the CFR are under pressure from 
agricultural development, diminished stream flow associated 
with invasion by exotic plant species and rapid urbanisation 
(Rouget et al., 2003).  These catchments require careful man-
agement to ensure flows can sustain both riparian and estuarine 
aquatic ecosystems.

The specific aim of this study was to develop a monthly 
FDC regionalisation scheme for small and intermediate size 
catchments (area < 300 km2) in the CFR.  Larger catchments 
were excluded since they are more prone to having dams, devel-
opment and water abstractions than smaller catchments, and to 
avoid excessive intra-catchment heterogeneity.  Recognising 
that the number of gauged catchments for the investigation was 
likely to be small, a goal was to design and implement a rigor-
ous regression approach to predict percentile flows.  Since data 

and vegetation indices (e.g., leaf area index, spectral vegetation 
indices) from the Moderate Resolution Imaging Spectrometer 
(MODIS) satellite imagery are readily available, a secondary 
objective was to test the utility of MODIS vegetation indices 
for predicting FDC percentile flows.

Methods

Study region and catchments

The CFR covers 87 892 km2 (Fig. 1) and while it is character-
ised by a Mediterranean-type climate, a limited amount of pre-
cipitation occurs during the summer months; increasing from 
west to east across the region (Goldblatt and Manning, 2002).  
Mean annual precipitation (MAP) ranges from 200 mm in the 
western lowlands to 3 600 mm in the high mountains (Linder, 
1991).  Free water evaporation is between 1 250 and 1 600 
mm/yr (Seyhan and Hope, 1983).  The region is characterised 
by diverse physiography which includes sandy coastal plains 
underlain by shale; low mountains of limestone, sandstone and 
conglomerate; undulating hills underlain by shale located along 
the inland margins of the coastal plains; and rugged mountain 
ranges comprised primarily of sandstones that rise abruptly 
to 2 000 m (Goldblatt and Manning, 2002).  As mentioned 
earlier, the shrubland landscapes of the CFR are characterised 
by remarkably high species richness (Linder, 1991; Cowling 
and Hilton-Taylor, 1994; Rouget et al., 2003).  Forests tend to 
be located in areas of deeper soils and high precipitation while 
most of the hills and valleys are under agriculture (Linder, 
1991).  

River flow data were obtained from the South African 
Department Water Affairs (DWA).  All gauged rivers in this 
region with catchment areas of less than 300 km2 were identi-
fied as potential candidates for the study.  Larger catchments 
were excluded in this proof-of-concept study since they are 
more prone to having dams, development and water abstrac-
tions than smaller catchments.  A set of elimination criteria 
were applied to identify the final set of study catchments and 
to minimise uncertainties in the derivation of percentile flows.  
Catchments were required to have a minimum of 10 years of 
high quality river flow record.  In a FDC regionalisation study 
in Italy, Castellarin et al. (2007) concluded that 5 years of 
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observed river flow data was sufficient to obtain consistent esti-
mates of the long-term FDC.  Catchments with impoundments 
(e.g., dams), water diversions, and significant urbanisation or 
agriculture (>5% of catchment area) were excluded and it was 
assumed that no major changes in land-cover occurred during 
the period of investigation.

Catchment variables

From an initial pool of 125 catchments, 30 were found to be 
suitable for the investigation. Characteristics of these catch-
ments are summarised in Table 1 and their locations in the CFR 
are indicated in Fig. 1.  This small sample size is not unusual 
for regionalisation studies such as those conducted by Yu and 
Yang (2000) in southern Taiwan (n = 10) and Mohamoud (2008) 
in the Mid-Atlantic Region, USA (n = 29).  Monthly river flow 
was expressed as a depth and period-of-record FDCs were 
constructed for each catchment. These FDCs were used to 
determine 11 percentile flows for regionalisation (i.e., Q5, Q10, 
Q20, Q30, Q40, Q50, Q60, Q70, Q80, Q90 and Q95).

The river flow characteristics and record length for the 30 
study catchments are summarised in Table 2.  The catchment 
sample covered a wide range of wetness conditions, with mean 
annual river flow (MAQ) ranging from 12 mm for the Sand 
River to 1 457 mm for the Wit River (Table 2).  Percentile flows 

for high (Q5), medium (Q50) and low (Q95) flows in Table 2 
also indicate a good distribution of flow regimes in the selected 
catchments and two of the rivers (Sand and Smalblaar) are 
ephemeral.

Catchment variables characterising vegetation, physiogra-
phy, soils and precipitation were tested as independent varia-
bles in regional regression equations to predict percentile flows 
and MAQ. Vegetation descriptors were based on MODIS 
satellite data from the Terra satellite which was launched by the 
US National Aeronautics and Space Administration (NASA) 
in 1999.  These data are converted on a systematic basis into 
derived terrestrial products, including indices that quan-
tify vegetation cover (Justice et al., 2002).  The USGS Land 
Processes (LP) Distributed Active Archive Center (DAAC) at 
the Earth Resources Observation and Science (EROS) Data 
Center distributes these MODIS products.  Three MODIS 
vegetation products were used in the study – 2 spectral vegeta-
tion indices and leaf area index (LAI).  The 2 spectral vegeta-
tion indices were the Normalised Difference Vegetation Index 
(NDVI) and the Enhanced Vegetation Index (EVI). These 
indices are obtained from:

                  (1)

where: 

Table 1
Research catchments and their associated area, mean elevation, average slope, 

soil texture, leaf area index (LAI) and mean annual precipitation (MAP)
DWA ID Name Area 

(km2)
Mean

elevation (m)
Average slope 

(%)
Soil texture LAI MAP (mm)

E1H006 Jan Dissels River 160.0 847 19.8 Loamy Sand 0.58 581
G1H012 Watervals River 36.0 439 13.4 Sand 0.90 358
G1H014 Zachariashoek River 2.8 525 16.4 Loamy Sand 1.30 778
G1H016 Kasteelkloof Spruit 3.3 504 18.9 Loamy Sand 1.19 849
G1H018 Bakkerskloof Spruit 3.4 673 13.1 Loamy Sand 1.32 812
G2H037 Jonkershoek River 21.4 778 24 Sandy Loam 1.21 1 423
H1H007 Wit River 84.0 919 20.4 Sand 0.96 1 216
H1H018 Molenaars River 113.0 858 20.5 Sand 0.96 1 277
H2H005 Rooi-Elskloof River 15.0 1 328 24.2 Sand 0.51 499
H4H015 Houtbaais River 25.0 743 22.8 Loamy Sand 0.64 517
H5H003 Boesmans River 25.0 724 20.4 Loamy Sand 0.78 584
H6H005 Baviaans River 24.0 855 23.7 Loamy Sand 0.88 548
H6H010 Waterkloof River 15.0 900 16.5 Sandy Loam 0.90 431
H7H005 Hermitage River 9.0 1 057 26.8 Loamy Sand 1.06 723
H9H004 Kruis River – West 50.0 709 18.5 Loamy Sand 1.18 527
J1H015 Bok River 8.8 1 570 25.4 Sand 0.35 541
J1H016 Smalblaar River 30.0 1 225 11.7 Loamy Sand 0.43 407
J1H017 Sand River 254.0 362 6.3 Sandy Loam 0.37 232
J3H014 Grobbelaars River 151.0 902 14.7 Sandy Loam 0.89 420
J3H016 Wilge River 32.0 1 166 18.5 Loamy Sand 0.59 286
K1H004 Brandwag River 215.0 395 10.9 Sandy Loam 1.27 553
K1H005 Moordkuil River 198.0 369 12.5 Sandy Loam 1.74 611
K3H002 Rooi River 1.0 615 19.6 Loamy Sand 2.41 714
K3H004 Malgas River 34.0 610 19.4 Loamy Sand 2.15 764
K3H005 Touws River 78.0 573 18.1 Loamy Sand 1.82 575
K4H001 Hoekraal River 111.0 443 13.1 Loamy Sand 3.24 559
K4H002 Karatara River 22.0 670 20.4 Loamy Sand 2.41 701
K4H003 Diep River 72.0 543 13.6 Loamy Sand 1.92 576
K8H001 Kruis River – East 25.6 675 23.9 Loamy Sand 1.86 1 008
K8H002 Elands River 35.0 583 20.7 Loamy Sand 1.49 1 008

)(
)(NDVI
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ρ is surface red or near infrared (nir) reflectance (Tucker, 
1979), and

                  (2)

where: 
G is a gain factor
L is a canopy background adjustment term (addresses non-
linearity of radiation transfer)
ρblue is the surface blue reflectance
C1 and C2 are weights to correct for different atmospheric 
aerosol concentrations (Huete et al., 2002)

The EVI is intended to be less sensitive to variations in atmos-
pheric conditions than the NDVI and to have a lesser tendency 
to saturate at high LAI values (Guo et al., 2007).  LAI is 
estimated by inversion of a radiative transfer model which uses 
MODIS spectral reflectance data (Myneni et al., 2002).
 The NDVI, EVI, and LAI products for the study area were 
obtained from the EROS Data Center DAAC for a regional 
study funded by the United States National Aeronautics and 
Space Administration (Hope et al., 2005) and covered the 
period April 2000 through March 2006.  The data have a 
ground resolution of 1 km and values are provided at 16-day 
intervals for NDVI and EVI and every 8 days for LAI.  Average 

NDVI, EVI, and LAI values were calculated for each catch-
ment over the 6-year period.
 Three physiographic variables were calculated for each 
catchment using a 90 m digital elevation model for the 
region that was developed using data from the Shuttle Radar 
Topographic Mission (SRTM) and provided by the South 
African Agricultural Research Council, Institute for Soil 
Climate and Water (ARC-ISCW).  These physiographic vari-
ables were mean elevation, mean slope and drainage density.  
Data from ARC-ISWC were used to determine the average 
fraction of sand, silt and clay for soils in the catchments.  
MAP was obtained from 1-km gridded precipitation data also 
provided by the ARC-ISCW.  Gridded values were based on 
interpolating data from all available precipitation gauges in the 
region and included an adjustment for elevation (J. Malherbe, 
2006).  The list of independent variables with their abbrevia-
tions and units of measurement are given in Table 3.

Regression models

Multiple regression models may be developed to produce the 
single ‘best’ model for prediction or to infer causal influences 
of selected independent variables on the dependent variable 
(Mac Nally, 2000).  Stepwise regression techniques are often 
used to identify predictive models, but there is wide recognition 

Table 2
Catchment mean annual river flow (MAQ); percentile flow for high (Q5), 

median (Q50), and low (Q95) flows; and record length
DWA ID Name MAQ (mm) Q5 

(mm)
Q50 
(mm)

Q95 
(mm)

Record 
(Years)

E1H006 Jan Dissels River 242 80.50 7.98 1.60 27
G1H012 Watervals River 353 97.69 14.34 0.07 13
G1H014 Zachariashoek River 400 131.62 11.15 3.93 19
G1H016 Kasteelkloof Spruit 860 246.43 30.99 6.48 14
G1H018 Bakkerskloof Spruit 693 220.00 17.75 1.60 20
G2H037 Jonkershoek River 1 084 309.03 42.88 1.13 15
H1H007 Wit River 1 457 413.16 53.44 4.00 29
H1H018 Molenaars River 1 387 371.30 54.99 10.63 31
H2H005 Rooi-Elskloof River 469 131.42 21.73 7.88 36
H4H015 Houtbaais River 245 70.16 12.34 1.50 27
H5H003 Boesmans River 255 66.85 13.22 4.25 29
H6H005 Baviaans River 262 75.15 12.34 0.84 26
H6H010 Waterkloof River 135 30.65 7.77 1.44 32
H7H005 Hermitage River 761 209.11 43.71 4.53 30
H9H004 Kruis River - W 287 81.02 14.73 4.14 32
J1H015 Bok River 309 87.70 14.25 5.60 28
J1H016 Smalblaar River 57 24.46 1.08 0.00 29
J1H017 Sand River 12 4.07 0.02 0.00 25
J3H014 Grobbelaars River 104 24.83 5.90 1.55 35
J3H016 Wilge River 37 12.91 1.17 0.26 26
K1H004 Brandwag River 46 16.20 1.71 0.06 33
K1H005 Moordkuil River 89 22.08 4.08 0.75 22
K3H002 Rooi River 472 133.84 23.80 2.53 27
K3H004 Malgas River 467 143.89 20.98 4.03 31
K3H005 Touws River 169 52.03 6.09 1.80 37
K4H001 Hoekraal River 201 55.72 8.92 3.10 21
K4H002 Karatara River 422 115.56 21.88 3.50 30
K4H003 Diep River 118 32.54 4.20 1.59 32
K8H001 Kruis River - E 696 170.14 42.23 6.23 32
K8H002 Elands River 446 117.27 25.07 5.25 27

)(
)(EVI
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that this is a flawed approach that is likely to yield spurious 
results (Mac Nally, 2000).  The technique frequently does not 
choose the best model predictors and is prone to producing 
inflated coefficient of determination values (R2), leading to poor 
model performance in validation (Keith, 2006).
 Given current computer power, it is now generally feasible 
to conduct an exhaustive search of all possible independent 
variable combinations (‘all-models’) to identify the best model 
(Mac Nally, 2000).  Model selection criteria need to be defined 
to provide a compromise between model ‘fit’ and model ‘com-
plexity’ (Mac Nally, 2000).  Model fit is usually evaluated by 
an objective function based on the residual sum of squares 
while model complexity is indicated by the number of model 
terms.
 The all-models approach was adopted in this study with a 
set of catchment descriptors (independent variables) to identify 
the best predictive models for the 11 percentile flows and MAQ.  
Additive and multiplicative model structures were tested along 
with an exhaustive search using untransformed and log-trans-
formed variables to allow for linear and nonlinear relationships 
between dependent and independent variables (Berger, 2004).  
Given the sample size for model development (n = 30), model 
complexity was limited to 4 terms.  A 2-step strategy was 
implemented to select the best model for each level of com-
plexity.  The first step screened all models for multicolinearity 
and the remaining models were then ranked according to their 
adjusted R2 to identify the best model.  Adjusted R2 is a modi-
fied version of R2 which decreases the R2 value based on the 
number of explanatory terms in the model.
 The degree of multi-colinearity was quantified in Step 1 
using the condition index (CI) which is given by:

                  (3)

where: 
for a given set of independent variables, λ are the eigenval-
ues of the rescaled crossproduct X’X matrix (Belsley et al., 
1980).  

The index value increases with increasing colinearity and, 
since the index is considered situational, only rules of thumb 
exist to reject models.  Models with CI greater than 15 
were rejected since Belsley et al. (1980) suggest that weak 

dependencies are associated with CI values around 5 or 10 and 
strong relations are associated with values above 30.

The selection of the best model structure at each percentile 
flow from the 4 calibrated models (1 to 4 terms) depends on 
how well the models predict percentile flows in ‘ungauged’ or 
validation catchments.   Unfortunately, a small sample size is 
often the reality investigators have to face when they conduct 
regionalisation studies using gauged catchment data.  The chal-
lenge for regression analyses is to have an adequate sample for 
model development and validation.  The holdout method, which 
splits the samples into independent calibration and validation 
datasets, is hindered by an inefficient use of sample data in the 
calibration model which increases prediction bias (Kohavi, 
1995; Blum et al., 1999).  A cross-validation approach, such as 
the k-fold technique (Kohavi, 1995), can be used to sample all 
of the data during calibration when it is not practical to with-
hold a sub-set for validation.  

The k-fold validation technique divides the sample data 
evenly into k groups or folds, which are then systematically 
removed from the calibration data as a validation set.  This 
process is repeated k times, and when k equals the number of 
samples in the data the technique is commonly referred to as 
a jackknife.  Breiman and Spector (1992) and Kohavi (1995) 
recommend the use of a 10-fold cross-validation.  Although 
predictions using the 10-fold cross-validation are generally 
more biased than in the jackknife approach, prediction variance 
is considerably reduced, leading to more accurate estimations 
and better results than the jackknife approach (Kohavi, 1995).
 For each regression model (1 to 4 terms) developed using 
all catchments in calibration, we used a 10-fold cross-validation 
with the removal of 3 catchments during each resample.  The 
3 catchments were selected by stratified random sampling, 
with 3 strata defined by magnitude of the percentile flow (3 
equal class widths).  A random catchment was selected from 
the upper-, middle- and lower-flow class for model validation.  
Observed and predicted flow values for the 3 validation catch-
ments from all of the 10-folds were then pooled to evaluate the 
validation performance of each model. The Nash and Sutcliffe 
(1970) coefficient of efficiency (NSE) was calculated from the 
observed and estimated flow values to quantify the validation 
performance of the 4 models tested for each percentile flow 
(i.e., a measure of the overall agreement between observed 
and predicted flow values for the validation catchments).  The 
NSE is the ratio of model error variance to the variance of 
observed values, subtracted from 1.0.  This index was used by 
Castellarin et al. (2004) to compare modelled and observed per-
centile flows and they considered values above 0.75 to indicate 
‘good’ agreement.
 The single best model for each percentile flow was selected 
from the 4 models (1 to 4 terms) using the largest NSE values 
determined from the 10-fold validation.  We calculated the 
relative root-mean-square-error (RRMSE) for each of these 
regional models to assess the magnitude of predictive uncer-
tainty.   The RRMSE is the root-mean-square-error divided by 
the average percentile flow for all catchments.

Contribution of MODIS variables

The regression approach outlined above was repeated with the 
3 MODIS variables excluded from the pool of potential predic-
tor variables.  Validation results (NSE, RRMSE) from both 
analyses were compared to assess how these variables affected 
predictive uncertainty.   We also compared the relative per-
formance of the predictive equations in each catchment using 

Table 3
Independent variables used to develop 

regression equations
Symbol Variable Description Units
MODIS Vegetation Indices:
LAI Leaf Area Index -
NDVI Normalised Difference Vegetation Index -
EVI Enhanced Vegetation Index -
Physiography:
ELEV Mean elevation m
SLOPE Mean slope %
DD Drainage density km/km2

Soils:
SAND Percentage sand %
SILT Percentage silt %
CLAY Percentage clay %
Precipitation:
MAP Mean annual precipitation mm

minmaxCI   
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‘relative error’ (RE) as suggested by Castellarin et al. (2004) 
and referred to as BIAS by Croker et al (2003). This quantity is 
obtained from:

                  (4)

where: 
QE and QO are respectively estimated and observed percen-
tile flows (or MAQ).  

For each catchment, we summed the absolute RE values from 
each predictive equation used in validation to quantify the 
overall uncertainty in the estimated FDC.  

Results and discussion

Model selection and validation

Adjusted R2 values for the 4 best models (1 to 4 variable mod-
els) to predict percentile flows and MAQ are displayed in  
Fig. 2.  In most cases, inclusion of more independent variables 
increased the adjusted R2 even though this statistic adjusts for 
the number of independent variables. Models for the higher 
flows (Q5 – Q50) were better than those for the flows below 
Q60, with the best adjusted R2 values all greater than 0.8  
(Fig. 2).  The 1-term models had substantially smaller adjusted 
R2 values than the other models while there was little difference 
in the adjusted R2 of the 3- and 4-term models.
 The NSE values obtained using 10-fold validation of the 
best models are given in Fig. 3.  As expected from the model 
development results, prediction of percentile flows above  
Q60 were notably better than predictions for the low flows  
(Fig. 3).  However, the model performance did not improve con-
sistently with the number of variables included in the equations 
as was the case in the model development phase.  Models with 
4 variables were not the best models in validation for any of the 
percentile flows or MAQ (Fig. 3).  Instead, models with  
3 variables were the best models in validation except for Q50  
(2 variables) and Q70 (1 variable).  Only equations for percen-
tile flows above Q50 and for MAQ had NSE values greater than 
0.75, the threshold suggested by Castellarin et al. (2004) to 
indicate ‘good’ FDC models.
 The best regression models for each percentile flow and 
MAQ based on validation performance are given in Table 4 
along with their adjusted R2 and CI values from model develop-
ment and the validation statistics (NSE, RRMSE).  In all cases, 
additive models were selected over the multiplicative models.  
Models for percentile flows from Q5 to Q50 and for Q70 and 
MAQ were linear while the remaining models for low flows 
included logarithmic terms (Table 4).  All models included 
MAP except the Q70 and Q80 models, while soil clay fraction 
(CLAY) appeared in the high-flow models and in the MAQ and 
Q95 models.  Although the adjusted R2 and NSE values from 
model development and validation were greater than 0.7 for 
percentile flows Q5 to Q50, validation RRMSE values were all 
greater than 37% (Table 4), indicating potentially large uncer-
tainty in predicting these quantities in ungauged catchments.
 Since the prediction of low flows was found to be uncer-
tain, it seemed likely that the overall regionalisation approach 
may be better suited to wet, rather than dry catchments.  For 
each catchment, we summed the absolute RE values from each 
predictive equation used in validation and then plotted this 
total RE against MAP (Fig. 4).  The upper limit of total RE in 
Fig. 4 (broken line) increased as MAP decreased, indicating 

the potential for larger uncertainties in the drier catchments.  
The total absolute RE for the driest catchment (Sand River) 
was considerably larger than values in the other catchments, 
indicating a possible threshold MAP (less than 300 mm) for 
appropriate use of this approach.  These findings are similar 
to those reported by Yu and Yang (2000) and Hope and Bart 
(2012), who also found weaker models for predicting the low 
percentile flows for FDCs in Taiwan and southern California 
USA, respectively.  In each of these studies, processes control-
ling low flows may not have been adequately represented by the 
variables used in the models or uncertainties in the measure-
ment of low flows may have contributed to predictive errors.

Effect of MODIS variables

 When MODIS variables were included in the development 
phase of the flow prediction models, 7 of the 12 equations 
included these variables (Table 4).  The EVI was included in 
equations for Q5, Q20, Q30, Q40 and MAQ while the NDVI 
was in the equation for Q10 and LAI was selected for the Q80 
model.  The 10-fold validation results (NSE, RRMSE) given 
in Fig. 5 are for equations developed with MODIS variables 
excluded from the model development phase.  All NSE values 
in Fig. 5 were smaller than values for corresponding models 
that did include MODIS variables (Fig. 3).

 

 

Figure 3
Nash-Sutcliffe Efficiency (NSE) values from 10-fold validation 

for models (1-4 variables) selected to predict flows for 11 
exceedance percentages and MAQ.

Figure 2
Adjusted R2 values for models (1-4 variables) selected to predict 

flows for 11 exceedence percentages and MAQ.
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 The best regression models without MODIS variables  
that were identified using the 10-fold validation are given 
in Table 5.  While models to predict percentile flows that 
included MODIS variables (Table 4) had better calibration 
results than models without MODIS variables (Table 5), the 
differences in NSE and RRMSE were not substantial.  At 
most, the RRMSE was 5% smaller with MODIS variables in 
the equations.  Except for Q70 and Q80, catchment MAP was 
the first variable to enter the regression equations, reflect-
ing the dominant effect of this variable for the estimation 
of percentile flows and MAQ.  While these results appear 
to indicate that vegetation has a small effect on river flows, 
the results also may be a consequence of the research meth-
odology.  The vegetation indices were represented in the 
regression equations as area- and time-averaged values for 
each catchment.  Vegetation effects on hydrological fluxes 
in different parts of the catchments and at different times of 
the year could not be represented.  For example, transpiration 
associated with phreatophytic vegetation located within the 

riparian zone could be expected to impact low flows more 
than transpiration from vegetation on the hill slopes.  This 
was demonstrated by Hope et al. (2009), who found a signifi-
cant relationship between a spectral vegetation index (NDVI) 
in the lowland area of a CFR catchment (Molenaars) and 
annual flow volume, but no relationship when the index was 
calculated for the upland areas.
 To assess the effect of MODIS variables on the prediction 
of percentile flows in individual catchments, the average RE 
values from validation of models with and without MODIS 
variables were plotted against each other (Figs. 6a-6g).  The 
exclusion of MODIS variables from the predictive equations 
had little effect on predictive accuracy in most catchments, 
with most of the points plotting around the 1:1 lines (Fig. 
6).  However, in 3 catchments (Sand River, Brandwag River 
and Wilge River) the exclusion of MODIS variables caused 
large predictive errors for percentile flows Q5-Q40 and MAQ 
(Fig. 6).  Prediction errors in the Smalblaar River catchment 
were also notably larger for models without MODIS variables 
to predict Q40 (Fig. 6e) and MAQ (Fig. 6g), but smaller to 
predict Q80 (Fig. 6f).  These 4 catchments (Sand, Brandwag, 
Wilge and Smalblaar Rivers) are also the catchments with 
the 4 lowest mean annual flows (MAQ) (Table 2).  Since 
soil moisture rather than the amount of vegetation tends to 

Table 4
Percentile flow and MAQ regression equations and their associated adjusted R2 and CI values from model 

development and NSE and RRMSE from validation
Regression equations Calibration Validation

Adj. R2 CI NSE RRMSE (%)
Q5 = 0.346MAP - 428.350EVI - 1247.623CLAY + 55.292 0.838 12.7 0.819 37.3
Q10 = 0.291MAP - 149.808NDVI - 857.279CLAY + 20.405 0.826 12.5 0.792 43.8
Q20 = 0.208MAP - 266.202EVI - 512.248CLAY + 11.351 0.826 12.7 0.799 45.3
Q30 = 0.144MAP - 189.007EVI - 386.015CLAY + 9.980 0.825 12.7 0.796 46.6
Q40 = 0.0830MAP - 90.591EVI - 264.414CLAY + 7.087 0.827 12.7 0.799 41.4
Q50 = 0.0400MAP + 0.912SLOPE - 25.404 0.776 9.5 0.712 45.7
Q60 = 0.0188MAP + 0.792SLOPE - 27.570log(DD) - 16.112 0.726 10.0 0.576 52.2
Q70 = 0.930SLOPE - 8.811 0.452 - 0.428 60.3
Q80 = 0.605SLOPE + 1.589LAI - 27.147log(DD) - 8.186 0.556 10.2 0.490 58.1
Q90 = 0.00437MAP - 84.936CLAY - 14.579log(DD) + 5.329 0.551 10.2 0.426 60.3
Q95 = 0.00360MAP - 69.598CLAY - 11.805log(DD) + 4.179 0.544 10.2 0.420 64.6
MAQ = 1.247MAP - 1496.137EVI - 4476.679CLAY + 179.216 0.846 12.7 0.816 38.2
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Figure 5
Nash-Sutcliffe Efficiency (NSE) values from 10-fold validation 
for models without MODIS variables (1-4 variables) selected to 

predict flows for 11 exceedence percentages and MAQ.

Figure 4
Relationship between total absolute RE from model validation in 
each catchment and MAP. The upper limit of total absolute RE is 

indicated by the broken line.
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be the controlling variable affecting evaporative losses and 
river flow in water-limited catchments, it is not apparent why 
vegetation indices were more important variables in these drier 
catchments than in wetter catchments.  However, given the 
small sample of catchments used in this study, direct conclu-
sions regarding the effect of vegetation on river flows may not 
be appropriate.

Conclusion

A goal of this study was to develop regional regression equa-
tions that could be used to predict monthly FDC percentile 
flows and MAQ from readily measureable catchment variables, 
including satellite-derived vegetation indices.  The all-models 
approach with 10-fold validation was found to be suitable for 
use with the restricted catchment sample size available for 
this study.  The challenge of predicting low flows in semi-arid 
catchments is well documented (e.g., Pilgrim et al., 1988; Croke 
and Jakeman, 2008) and, as expected, the prediction of the 
larger percentile flows (Q5 – Q50) and MAQ were notably bet-
ter than prediction of low flows.  Based on the prediction equa-
tions for FDC percentile flows in the CFR, it may be concluded 
that catchment mean annual precipitation, physiography and 
soils were more important predictive variables than MODIS 
vegetation indices.  Use of MODIS vegetation variables in the 
regression equations did not result in substantially better cali-
bration results in most catchments, but did reduce predictive 
uncertainty substantially in 3 or 4 catchments depending on the 
flow calculation. 
 While the validation results of this study pointed to large 
uncertainties in the prediction of percentile flows, the set of 
equations provide a means for rapid, low-confidence estimates 
for initial catchment planning, as suggested by Hughes and 
Hannart (2003).  Uncertainties in the measurement of river 
flows, due to flows exceeding the available rating curves 
and the possibility that some low flows were impacted by 
undocumented abstractions, may have contributed to predic-
tion uncertainties.   More reliable synthetic FDCs may be 
attainable if a larger sample of study catchments could be 
identified.  Alternative approaches should also be investigated 
where regression equations are used to derive parameters of 
mathematical or probabilistic FDC models (e.g., Niadas, 2005; 
Castellarin et al., 2007).
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Figure 6
Relationship between the relative error 
(RE) of models with and without MODIS 

variables to calculate percentile flows 
a) Q5, b) Q10, c) Q20, d) Q30, e) Q40, 

f) Q80 and g) MAQ.  Indicated outliers are 
(1) Brandwag River catchment, (2) Wilge 

River catchment, (3) Smalblaar River 
catchment and Sand River catchment 

(RE values for MODIS/non-MODIS 
equations are shown in the inset text)
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